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Abstract: In this work, we report an active respiration monitoring sensor based on a piezoelectric-
transducer-gated thin-film transistor (PTGTFT) aiming to measure respiration-induced dynamic force
in real time with high sensitivity and robustness. It differs from passive piezoelectric sensors in that
the piezoelectric transducer signal is rectified and amplified by the PTGTFT. Thus, a detailed and
easy-to-analyze respiration rhythm waveform can be collected with a sufficient time resolution. The
respiration rate, three phases of respiration cycle, as well as phase patterns can be further extracted for
prognosis and caution of potential apnea and other respiratory abnormalities, making the PTGTFT a
great promise for application in long-term real-time respiration monitoring.

Keywords: thin-film transistor; piezoelectric transducer; active sensor; self-driven sensor;
respiration monitoring

1. Introduction

Respiratory diseases are the second leading (~6.5%) cause of mortality globally [1]. Fortunately,
they are preventable if a reliable and accurate monitoring method is implemented. Therefore, real-time
monitoring of respiratory rhythm that provides ample information about breathing trend becomes
critical [2–5]. Moreover, study of respiratory patterns and phases helps diagnose pulmonary illness,
such as apnea [6], asthma [7], and chronic obstructive pulmonary diseases [8]. Conventionally,
electrocardiogram (ECG) [9,10] and transthoracic impedance plethysmography (TI-PPG) [11–13] are
widely used to perform non-invasive monitoring of respiration rate. ECG monitors electrical stimulus
response of lungs from multiple leads and TI-PPG monitors small change in tissue volumes upon
respiration. Both require the examined body to be immobile during examination for accurate and
reliable measurements. Therefore, such commercially-available devices are not well-suited for wearable
and real-time monitoring in daily activities. In addition, they are bulky and consume a lot of power,
which is inconvenient for long-term operation.

Other than ECG and PPG, various new wearable respiration rate sensors have also been
investigated. Supplementary Figure S1 summarizes these sensors in terms of sensing mechanisms and
sensing materials. Regarding sensing mechanisms, transduction of mechanical, electrical, thermal,
and vaporous stimuli to electrical signals are typical. Among them, direct detection of air-movement
upon respiration process using new-fashioned sensing materials has become popular since it is not
affected by motion artifacts [14–16]. For example, a paper-based humidity sensor, adjustable inside
a wearing mask, has been used for respiration rate monitoring through humidity measurement of
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conductive paper [14]. Impedance variation with water absorption of silica nanoparticles thin-film
on flexible substrate was measured to extract respiration rate [16]. However, such sensors are very
difficult to wear and are also affected by environmental humidity, thus giving unreliable data. Similarly,
flexible and wearable pressure sensors can directly measure pressure change during the respiration
process and they exhibit good features, such as being light and portable [17–19]. These sensors can be
based on piezoelectric effect [20,21], capacitance change [22,23], and thermoelectric effect [24,25] in
response of pressure change. However, they are passive devices with limited sensitivity and dynamic
range. More recently, a hollow micro-structured pressure sensor offering a wide dynamic range has
been reported [26]. However, it is non-contact based, limited to static pressure measurements, and its
response time is problematic due to deformation dependence on ethylene-vinyl acetate (EVA) film
structure. Respiration rate sensors based on triboelectric and pyroelectric effect with high sensitivity
were very attractive [24,27]. However, their super high sensitivities lead to reliability issues arising from
mechanical, motion, and electrostatic shocking. The long-term usage can also cause material/structural
fatigue as a result of frequent friction.

In this work, we propose an active self-driven wearable piezoelectric sensor intended for real-time
respiration monitoring. The device architecture will be presented along with the analytical modeling
of sensitivity. The respiration rates and rhythm at multiple body peripheral during various physical
activities will be obtained and the transient response of the sensor by detecting all respiratory patterns
and phases will be also given. The feasibility of using this sensor for real-time respiration monitoring
has been discussed particularly for mobile health care. Compared with other wearable respiration
sensors, this proposed sensor is very competitive in terms of sensitivity, signal-to-noise ratio (SNR),
dynamic range, operating voltage, power consumption, response time, and device fabrication process
as listed in Table 1.

Table 1. Summary of this research compared with the prior arts in terms of sensitivity, signal-to-noise
ratio (SNR), dynamic range, driving voltage, response time, and power consumption.

Sensor System
Operating

Voltage
(V)

Power
Consumption

(W)

Response
Time (sec)

Dynamic
Range

Sensitivity
(@ 0.5N) SNR (dB) Device

Process

Triboelectric
Based Sensing
Method [27]

Self-Driven
(~0 V) <1 m ~100 m ~ 0.2 N to

10 N ~600 mV 45 Low cost and
simple

Humidity Based
Measurement [16] >5 V ~20 m ~700 m —— Low —— Low cost and

complex

Optical Based
Sensing Method
[12,13]

>3 V ~60 m >1000 m —— Low Low Medium cost
and complex

This Work Self-Driven
(~0 V) ~600 µ 50 m > 50 mN ~800 mV >20 Low cost and

simple

2. Methods

2.1. Sensor Architecture

The cross-sectional schematic diagram of the proposed sensor is illustrated in Figure 1a. Different
from a passive piezoelectric transducer with simply a sandwich structure, an active sensor is
architected by a piezoelectric transducer and a dual-gate thin-film transistor (DG-TFT) forming
a piezoelectric-transducer-gated TFT (PTGTFT). The sensor is capable of not only detecting a dynamic
force signal but also rectifying it into a direct current (DC) signal and further amplifying it. The
equivalent circuit diagram for respiration monitoring system based on the PTGTFT is shown in
Figure 1b, where shortening bottom gate (BG), top gate (TG), and drain (D) terminals of the PTGTFT
makes a diode-mode connection for signal rectification. Here, the DG-TFT is used instead of single-gate
TFT for the sensitivity enhancement and better interfacing with the readout electronics. In this
architecture, no external power source is needed and all the biasing voltages for the sensor originate



Sensors 2019, 19, 3241 3 of 10

from the PVDF transducer, making it self-driven with zero power consumption. The output DC current
signal is further handled by an AFE consisting of a low-noise current amplifier and low-pass RC filter
before entering the data acquisition module (DAM), which includes an ultra-low power microcontroller
unit (MCU) that houses a built-in 12-digit analog-to-digital converter (ADC), an I/O interface, and a
LCD panel. Figure 1c shows a photo of the proposed respiration monitoring sensor system.
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Figure 1. (a) Cross-sectional schematic illustration of a piezoelectric-transducer-gated thin-film
transistor (PTGTFT) where a PVDF transducer is connected to a FIN-shaped a-Si:H piezoelectric
transducer and a dual-gate thin-film transistor (DG-TFT); (b) equivalent circuit diagram of respiration
monitoring sensor system composed of a PTGTFT, low-power analog front end (AFE) and conventional
data acquisition module (MSP430F149); and (c) photo of the experimental setup for measuring the
respiration rhythm signal by the proposed sensor system.

2.2. Analytical Modeling

In the self-driven mode, the top gate voltage (VTG) is equal to the drain-source voltage (VDS) and
the bottom gate voltage (VBG), and is given by the piezoelectric-induced charges (QPVDF) over the total
capacitance, CTotal:

VTG = VBG = VDS =
QPVDF

CTotal
=

QPVDF

(CPVDF + CTG + CBG)
(1)

where CPVDF: Capacitance of the PVDF transducer, CTG: Top gate capacitance and CBG: Bottom gate
capacitance in the DG-TFT. Threshold voltage (VT) of the DG-TFT is dependent with VTG as follows:

VT = VTO − γ.VTG (2)

where VTo is the original threshold voltage of the DG-TFT with applying zero top-gate bias and γ

indicates the variation in the VT with the VTG. The working regime of the PTGTFT depends on its force
stimuli. In our previous studies [28–30], a similar device working in the deep-subthreshold regime
is used to detect very weak dynamic forces from the heart beating for heart rate monitoring. The
respiratory force is generally strong and thus the PVDF transducer generates voltages greater than VT
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(normally smaller than 1 V) while VDS > VBG − VT is readily satisfied. As a result, the PTGTFT likely
works in the saturation region, giving the output current (IDS) as below:

IDS =
1
2
µFE·CBG·

W
L
·[(VBG −VT)]

2 (3)

where µFE: Field-effect mobility of the PTGTFT; W: Channel width of the PTGTFT, and L: Channel
length of the PTGTFT. Substituting Equations (1) and (2) in Equation (3) gives:

√
IDS =

√
1
2
µFE.CBG.

W
L

.
[(

QPVDF

(CPVDF + CTG + CBG)

)
(1 + γ) − VTO

]
(4)

The sensitivity, S, in the saturation region can be defined as the ratio of the change of the square root of
output current, d

√
IDS, to the change of the generated charges by the respiration action, dQPVDF, as

follows:

S =
d
√

IDS

dQPVDF
=

√
1
2
µFE.CBG.

W
L

.
[(

(1 + γ)
(CPVDF + CTG + CBG)

)]
(5)

As can be seen, the sensitivity is attributed to the material, design, and process parameters of µFE,
channel width and length (W/L) ratio, γ, CTotal, and CBG, among which γ is a key parameter dictating
how the transducer interacts and couples with the TFT. Our previous study has already found that
the value of γ can be doubled by using a 3-D FIN-shaped TFT structure as opposed to a regular
planar structure [30]. Hence, in this research, we designed and fabricated the PTGTFT with a 3-D
FIN-shaped structure.

2.3. Sensor Fabrication

The fabrication process included preparation of the 3-D FIN-shaped DG-TFT based on amorphous
silicon (a-Si:H) thin-film semiconductor material and processes [30] and the PVDF transducer that was
formed by a sandwich structure of silver coated PVDF film (thickness: 52 µm; supplier: Measurement
Specialties Inc., Hampton, VA, USA), i.e., Ag/PVDF/Ag. The process flow of fabricating 3-D FIN-shaped
DG-TFT consisted of six photolithographic masks and was based on top–down approach of mainstream
a-Si:H TFT process as shown in Supplementary Figure S2. Mask #1: A Chrome (Cr) metal layer of
100-nm thickness was deposited on glass substrate (Corning 1737) by direct current (DC) sputtering
at room temperature followed by wet-etching to pattern photolithography of bottom gate. Mask #2:
A 300-nm-thick SiNX film as a bottom gate dielectric layer film and a 600-nm-thick a-Si:H film as
an active semiconducting layer were deposited consecutively by a plasma-enhanced chemical vapor
deposition (PECVD) at 300 ◦C in a single vacuum process. The second lithography step was patterned,
followed by a selective dry etching process using inductively coupled plasma (ICP) reactive ion etcher
at 10 ◦C to form the 3-D FIN-shaped structure. Mask #3: Ohmic contacts are formed by deposition
of an additional layer of heavily doped n+-a Si:H of 50-nm thickness by PECVD at 300 ◦C. The third
lithography was used to define TFT island followed by dry-etching of dual layers of n+-a-Si:H and
a-Si:H. Mask #4: A 100-nm thick layer of Cr was deposited by DC sputtering and was then patterned
by lithography to form source/drain electrodes followed by wet-etching processes. Afterwards, the
n+-a-Si:H layer between the source/drain electrodes was removed using dry etching process. In the next
step, 300-nm-thick SiNX film was deposited as a top-gate dielectric layer by PECVD at 300 ◦C. Mask
#5: The dielectric layer deposition is followed by the deposition of 100 nm Cr layer by DC sputtering
and patterning by lithography and wet etching processes as top-gate electrode. Later on, the device
was passivated with deposition 300-nm-thick SiNX film by PECVD at 300 ◦C. Mask #6: In the final
step, the contact vias were patterned by lithography and opened by dry-etching process for electrical
probing. After the DG-TFT was prepared, the PVDF transducer was mechanically laminated over the
DG-TFT on a glass substrate via low-temperature anisotropic conductive film (ACF) from Teamchem
Materials Company. The laminator (Model: TWB-150; Company: Guangzhou KeFu Instrument Co.,
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Guangzhou, China) was used to laminate PVDF over ACF, keeping the pressure at more than 0.3 MPa
to completely crush the particles of interfacing ACF layer, and the temperature below 75 ◦C to retain
the electrical properties of PVDF film (Supplementary Figure S3).

3. Results and Discussion

Figure 2a shows the IV characteristics of a-Si:H dual-gate TFT with 3-D FIN-shaped channel
structure in a self-driven mode, where VTG = VBG = VDS. The force generated from mechanical shock
or sudden impact lies in the range of more than 10 N, which may produce output voltage peaks with
tens of vs. [19,24]. For a highly-sensitive force sensor, a high voltage peak can be generated in a short
time and may damage the AFE and cause reliability issue. However, in the case of the PTGTFT, the
output signal upon mechanical or electrostatic shocking is high current instead of high voltage. From
Figure 2a, we can observe that under self-driven voltage of 50 V, quite high voltage value to mimic the
peak voltage received by the device, the output current is around 100 µA which can be safely handled
by the AFE. In other words, the sensor is capable of bearing high voltages, thereby proving to have
wide dynamic range and good reliability. Figure 2b illustrates that the square root of the output current
varies with the self-driven voltage in a linear manner in accordance with Equation (4). The self-driven
voltage generated from the PVDF transducer from the respiration process is typically around several
voltages well above the threshold voltage of the DG-TFT. Figure 2c plots dynamic response of the
sensor upon force load of 1 N at 6.5 Hz. The sensor is able to trace a dynamically-applied force with a
rise time of 50 ms, sufficient for respiration monitoring.
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Figure 2. (a) Transfer characteristics of 3-D FIN-shaped DG-TFT, when operating in a self-driven mode;
(b) Current variation of the fabricated 3-D FIN-shaped DG-TFT when operating in saturation region; (c)
mechanical stability assessment and time-resolution evaluation of PTGTFT sensor at 6.5 Hz and force
of 1 N.

Figure 3a shows the output voltage signals obtained from the AFE of the sensor system. The
measurements were performed at the neck and the chest locations when a subject was at rest. Respiration
rate was extracted from either the time difference between two peaks or the number of peaks over a
specified time interval. The sensor was also collecting respiratory rhythms from multiple locations
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across the body. Figure 3b demonstrates that the signal increased and decreased as the subject exhaled
and inhaled, respectively. In the chest location, the rib cage expanded during exhalation, making the
PTGTFT experience an elevated force and leading to a signal increase. Contrarily, inhalation contracted
the rib cage, driving the PTGTFT to experience a decreased force, thus resulting in the decrease of the
output voltage.Sensors 2019, 19, x FOR PEER REVIEW 6 of 10 
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one complete respiration cycle.

Moreover, Figure 4a illustrates the output voltage signal of a monitored subject for different
respiration modes, i.e., apnea, deep, moderate, and rapid. The time dependence of the voltage signals
indicates the steady variation in the process of three breathing patterns. Shown in Figure 4a, as well, the
zero voltage signal before and after different respiration modes corresponded to the subject holding the
breath, thus showing the potential of indication for the diagnosis and warning of apnea. In addition to
this, to demonstrate the sensor’s ability, the respiration rate of a subject was measured for an extended
period of time (over one week), for two different circumstances of normal breathing and moderate
breathing. The respiration rate was calculated and averaged for each position and was compared
with the respiration derived from the ECG measurement (EDR). The resulted average value from both
devices for each day is listed in Supplementary Table S1. The obtained results found no significant
difference between PTGTFT and EDR measurements and infers the viability of PTGTFT for monitoring
and analysis of respiratory activities of multi-subjects.

Furthermore, a series of experiments were conducted for the subject in various daily activities,
to validate the portability of the sensor for real-time respiration monitoring. The respiration was
monitored in four different states, i.e., sitting (state I), lying (state II), standing (state III), and walking
(state IV). The experiment for state II was designed to evaluate and simulate the breathing process
during sleep, while the other cases were designed to evaluate the respiration patterns of the subject in
typical daytime activities. Figure 4b illustrates the signal variation during different breathing processes
of sitting, sleeping, standing, and walking, respectively. The portion of the waveform where no signal
was detected, e.g., in state I and state II, shows a clear sign of pause in a breath rhythm (black box).
The measured respiration rates for the four states were 21/min, 26/min, 32/min, and 38/min, which
are reasonable respiration rates for the healthy adults [27]. In the case of blank experiment or during
breath holding (apnea), no signal occurred, which means that the generated signal corresponds to the
physiological parameter. It also indicated that mechanical motion of monitored individual can be
acquired by the PTGTFT. Therefore, in the event of coughing, where the air is entrapped in the lungs
due to shutting of vocal cords, the rib-cage muscle experiences the substantial force, resulting in the
sudden rise of output voltage as shown in Supplementary Figure S5, thus showing the effectiveness
of the PTGTFT towards additional monitoring of human motion and activities, e.g., swallowing,
sneezing, etc.
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monitoring tests for three different daily activities when the subject is (I) sitting; (II) lying; (III) standing,
and (IV) walking.

To evaluate normality of human breathing patterns, three phases of respiration are examined:
Inspiratory, expiratory, and pause phase. Thanks to the quick dynamic response this sensor has, phases
of respiration can be accurately monitored. Figure 5a shows a typical voltage waveform obtained
from a series of respiration cycles where the three respiration phases in each respiration cycle are
highlighted. The expiratory time (TE) corresponds to the time of signal rise and the inspiratory time
(TI) and pause time (TP) correspond to the time when the signal decreases and the signal keeps at the
minimum. Figure 5b–d presents the relation of TE and TI + TP for each respiration mode of deep,
moderate, and rapid breathing for a monitored subject, and the patterns distribute around the lines of
TI + TP:TE = 1:1.5, 2:1.52, and 3:1.5, respectively. When inhaling and exhaling are successive without
being stopped, it means TP is much smaller than TE and TI, and the plot moves to the red line of
1:1.5. Similarly, when the subject is experiencing deep breathing, the pause time will increase and the
plot will move towards the green line of 3:1.5, which is equal to the usual I:E ratio [6]. Thus, phase
analysis of respiration patterns can give a better understanding of human respiratory dynamics. Our
study shows that the proposed sensor enables efficient collection of respiration signal waveforms
for real-time monitoring that could be utilized during various medical assessments similar to the
application of a fiber-optic sensor to study the relationship between anxiety and respiratory rates
for the patients undergoing MRI treatment [31]. In such application scenarios, the PTGTFT would
be potentially capable of acquiring and analyzing respiratory activities during intermittent stages of
assessment as well.
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