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Abstract: This paper presents a detailed experimental assessment of Gaussian Process (GP) regression
for air-to-ground communication channel prediction for relay missions in urban environment.
Considering restrictions from outdoor urban flight experiments, a way to simulate complex urban
environments at an indoor room scale is introduced. Since water significantly absorbs wireless
communication signal, water containers are utilized to replace buildings in a real-world city.
To evaluate the performance of the GP-based channel prediction approach, several indoor experiments
in an artificial urban environment were conducted. The performance of the GP-based and empirical
model-based prediction methods for a relay mission was evaluated by measuring and comparing
the communication signal strength at the optimal relay position obtained from each method.
The GP-based prediction approach shows an advantage over the model-based one as it provides a
reasonable performance without a need for a priori information of the environment (e.g., 3D map of
the city and communication model parameters) in dynamic urban environments.

Keywords: unmanned aerial vehicles; communication relay; gaussian process regression; wireless
communication model; urban environment

1. Introduction

Stable communication for a team of multiple robots plays an important role to succeed the given
mission in the complex environments. Particularly, in urban environments, provision of reliable
communication is challenging due to obstructions by buildings, inducing significant delays and
limited range and bandwidth. To mitigate this issue, relay unmanned aerial vehicles (UAVs) can be
utilized to improve the communication performance of networked ground nodes operating in an
urban environment.

Reliable communication quality prediction between networked nodes is essential for successful
relay missions. In the literature, numerous approaches are developed for wireless communication
channel prediction and trajectory planning of relay UAVs. Shin and Gasco divided communication
channel prediction approaches into model-based and measurement-based ones [1]. In the model-based
approach, the communication strength between nodes is calculated by using a pre-defined model with
known parameters dependent on the mission environment [2,3]. Another example of a model-based
approach is proposed in [4], where the UAV is used to transfer command controls from the base station
to a distant ground node. The perturbation-based iterative algorithm shows similar performance to
that of the brute force approach but with less computation time. The main limitation of model-based
approaches is a lack of adaptability to deal with changes in the communication environments since
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significant prior knowledge (e.g., communication model parameters and 3D map of the environment)
is required.

In the measurement-based approach, the communication channel model is constructed in real
time by collecting signal strength measurements. This approach could be subdivided into the gradient
following and the learning methods. In the gradient following methods, the relay UAV gradually
improves the communication quality by following the gradient direction of the measured signal
strength [5,6]. However, the gradient following method could be trapped into local optima due to
unexpected signal strength variations caused by buildings in urban environments. Besides, this method
focuses on the control and trajectory planning aspect rather than communication channel prediction of
the mission area.

Learning approaches utilize the real communication data to provide a correction to the a priori
communication model or to construct a communication map [7-9]. In particular, many researchers
exploited Gaussian Process (GP), one of popular machine learning techniques, in communication
relay problems successfully [9-12]. The main benefit of GP-based channel prediction comes from its
non-parametric nature and accurate prediction ability even with sparse data. Besides, it requires less a
priori information about the environment. However, GPs are often expensive to compute and need to
be carefully designed in relay missions as communication measurements are usually very noisy.

Since our previous studies [13,14] deal with GP-based approaches only in numerical simulations,
they need to be validated in the real-world settings. In this study, the performance of channel
quality prediction using the GP in an urban environment was evaluated through several experiments.
Real-world tests in an urban environment are difficult to be performed due to flight restrictions in
cities. Hence, this study introduced an artificial urban environment in indoor settings to simulate
real-world cities at a room scale while keeping intrinsic properties of real-world cities for relay UAV
missions. Since water significantly absorbs wireless signal, water containers were used to take the role
of buildings in artificial indoor cities. In the relay mission, the relay UAV collects the signal strength
data from ground nodes by performing the pre-planned scan flight and builds the communication
map of the environment using the GP-based approach. For validation, the actual channel qualities at
certain positions were measured and compared with the GP-based predicted values. Besides, the GP
method was compared to an empirical model-based approach to highlight the benefit of the GP.

The main contribution of this paper is threefold as:

e  The accuracy and consistency of the GP-based channel prediction method was verified by real
experiments in an artificial indoor urban environment.
It is shown that the GP-based method can be run in real-time for urban relay missions.
It is shown that the GP-based method provides a reasonably good performance with much less
information (e.g., no need of the 3D map of the city and communication model parameters)
compared to the model-based approach.

The rest of this paper is organized as follows. In Section 2, the scenario and assumptions are
presented and a brief introduction to communication network topologies is given. Section 3 introduces
two channel quality prediction methods employed in this paper. The experimental setup is explained
in Section 4, followed by experimental results performed in four types of indoor environments in
Section 5. Conclusions and future work are given in Section 6.

2. Preliminaries

2.1. Scenario and Assumptions

This study considered an urban environment in which the UAV performs an aerial communication
relay mission for multiple unmanned ground vehicles (UGVs). The relay UAV first scans the area
by flying in a pattern, as shown in Figure 1 while collecting the signal strength data. The signal
strength value used in this study is received signal strength indicator (RSSI). The UAV computes the
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communication map and the optimal relay position using the GP-based channel prediction method.
The UAV also measures the actual signal strength at the optimal position from the GP and model-based
methods to compare their performance.
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Figure 1. Pattern of UAV scan flight on a sample urban scenario.

The assumptions used in this study include: (i) UGVs are stationary and able to transmit their
positions to the relay UAV prior to a mission; and (ii) the position and shape of buildings are known
for the model-based approach but unknown for the GP-based approach.

2.2. Overview of Network Topologies

The network topology determines the structure of connections amongst nodes. In [15], Meador
presented a good overview of network topologies. In general, there are four different topologies: ring,
star, tree and mesh. The mesh network appears to be the most suitable for the UAV communication
relay missions and experiments in this work due to robustness of reconfiguration. The topology is likely
to be reconfigured because signal strengths can keep changing, which causes connections between
nodes to break or appear. Besides, during a relay mission, the relay node may need to be added and
removed in the network. Hence, the mesh network topology was used in this study.

3. Communication Quality Prediction

In this section, the empirical model-based and the GP-based approaches for communication
quality prediction are presented. The benefits of the GP-based prediction method compared to the
model-based one are subsequently discussed.

3.1. Empirical Model-Based Approach

To fairly evaluate the communication performance by the GP approach, it is important to compare
its performance against existing model-based approaches. Conventional wireless communication
models may not be suitable in our experimental setting as the models are generally intended for a
much larger scale than the small indoor experiment. Thus, the need for establishing a communication
model suitable for our scenarios arises. To develop the communication model, two experiments were
performed: (i) to determine the distance-based model for an open space; and (ii) to model the effect
of buildings on the wireless communication signal strength. It is worth noting that this might not be
the best possible model given the circumstances, however, this model would be better than general
multi-purpose models in our experimental setup.

3.1.1. Distance-Based Model

To findthe effect of the distance between the relay UAV and a ground node on the signal strength,
the UAV and the ground node are placed in an open indoor space. The collected received signal
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strength indicator (RSSI) values between two nodes are used to fit the polynomial curve. The signal
strength is measured for four directions of the ground vehicle in order to take the directional effects
into account. The polynomial fitting yields a distance-based communication model suitable for our
experimental area shown as Figure 2, formulated as:

Wy = —46.054-1376 (1)

where Wy; is the LOS signal strength between the node i and the UAV and d; is the distance

between them.
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Figure 2. RSSI values with the distance between the UGV (Turtlebot) and the quadrotor UAV. The
distance is the ground distance between the UGV and the UAV.

The detailed procedure is illustrated in Figure 3.

The UAV is placed at the one
end of the room within Vicon.
The UGV is positioned at the
other end.

The UAV is moved back and
forth to and from the UGV

several times to collect the
RSSI from the UGV.

The UGV is rotated by 90
degrees.

Repeated for all four
sides of the UGV to
account for possible
directional differences
in the antennas.

Repeated for different
UGVs to account for
Possible differences

between Wi-Fi dongles.

Swap the UGV
to different one.

The data for four sides of the
multiple UGVs are combined
into a single dataset.

A polynomial fit for the
combined data is obtained.

Figure 3. Experimental procedure for calculating the LOS signal strength model.

3.1.2. Effects of Buildings

To consider the effect of building obstruction, buildings are placed between the UAV and the
UGYV, and then the signal strength is measured and analyzed. One to four buildings (water containers
in this study) are considered to collect the data. The dimensions and locations of the buildings are fully
known. Figure 4 shows the polynomial curve fitting using the measured data. It can be noted that
the fit is nonlinear. The majority of the electromagnetic waves are stopped by initial layers of water
containers. Upon entering the next layer of water containers, as there are not many electromagnetic
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waves, the probability which any of them will meet water particles to be absorbed is significantly
smaller. Thus, the overall reduction in the signal strength will be smaller as the length of buildings
increases (i.e., as more water containers are involved). The signal reduction Wj; by building obstruction

is formulated as:
Wy = —2.204d%23%% + 0.2642 @

obs

where d,; is the length of the obstructions in the building.
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Figure 4. Reduction of signal strength with the length of line-of-sight obstruction in a building.

The detailed procedure is illustrated in Figure 5.

The signal strength from the
UGV to the UAV is collected
over two minutes.

The quad-rotor UAV and the
UGV are placed with buildings
between them

Repeat after each
removal to collect data
with the decreasing
number of buildings (i.e.
reducing the length of
Buildings are removed the building obstruction);

one by one.

A polynomial fit to the

combined data is obtained.

Figure 5. Experimental procedure for calculating the NLOS signal reduction model.

By combining above two models, the empirical model-based channel prediction (W;) between the
UAV and the ground node (i.e., UGV) can be expressed as:

Wi = Wy — Wy, 3)

It could be worthwhile reiterating that this empirical communication model is established only
for comparison with the GP approach as a benchmark method.
3.2. Gaussian Process-Based Approach

In this subsection, the concept of the GP techniques is introduced and how the GP was utilized in
this work is described. The GP is a Gaussian distribution over functions, described as:
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fep ~ GP(m(x),k(x,x)) @

where m(x) is the mean function and k(x’, x) is the covariance function between x” and x. A constant
mean function m(x) = ¢ where ¢ is one of hyperparameters to be optimized is used and the following
squared exponential covariance function [16] is adopted in this study.

k(x',x) = (7]% (Z) : exp (X_bXIHZ), ®)

where a = 21(x)I(x'), b = 212(x) + I?>(x) and n is a number of variables being correlated. I(-) represents
the spatially-varying length scale hyperparameter and oy is another hyperparameter to be optimized,
which determines the magnitude of covariance. A training set with N; observations is expressed as
D = {(xn,yn)|n =1,--- ,Nt} = {X,y} where X is a set of input vectors consisting of the position
of the UAV and ground nodes and y is a set of measured signal strength values from ground nodes.
The GP model is evaluated by marginal likelihood as:

1
L(6) = log(ylX, 8) = —7 log | Cul

Sy = m(0) (G (y — m(x)) — 5 Tog(2m)

(6)
where hyperparameters 6 are the parameters to be trained to fit the mean and covariance functions to
the training data. To be more specific, hyperparameters are used to compute the value of m(x) and C,
in Equation (6). C, = Z + 04 I,, in which X denotes a set of covariance functions of N; x N size with
entries k;; = k(x;,x;) fori,j =1,..., N¢. 72 is the hyperparameter accounting for noisy data. To obtain
the trained GP, the hyperparameters should be optimized by maximizing the marginal likelihood.
Given the training set D and the covariance function with the trained hyperparameters, the mean and
variance at an arbitrary test position x* are computed as:

Hp(x*) = m(x") + k0 x" ) (Ca ™ (y — m(x)) )
Urz,(x*) = k(x*,x*) — k(x,x)T(Cy) 1k(x,x*). (8)

where m(x*) is the mean function value at the test position x* and k(x,x*) is a set of covariance
functions of size N; x 1 between all training points collected so far and the test position x*. Here,
1p(x*) represents the predicted signal strength at the test position x* and (T]%(x*) represents how
accurate the GP prediction p,(x*) is at that position. After the relay UAV scans the area, the collected
RSSI values during the scan flight and the corresponding positions of the UAV are used to train the GP;
this creates the communication map of the area (i.e., predicted RSSI values with respect to arbitrary
UAV positions for a given region of interest). This GP-based channel prediction has the following
benefits compared with the model-based approach in relay missions:

e  GP prediction requires relatively less preliminary effort. The GP-based approach autonomously
computes the optimal hyperparameters of the GP model using collected measurements while the

model-based approach should go through the exhausting procedure described in Section 3.1.
e  GP prediction does not use a 3D map of the city. However, the model-based approach requires a

map of the city to provide the building obstruction information used for Equation (3).
o The GP approach is able to deal with environmental changes by quickly re-scanning the city.

On the contrary, it is hard to obtain relevant parameters in the model-based approach when some
changes occur in the environment in terms of wireless communication.

However, in general, the GP method suffers from growing computational burden as the number
of observations increases; the computational complexity of the GP is O(N;’) where N} is the size of
training data (i.e., the number of measurements). The feasibility of the GP method in real time is
verified in the following sections.
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4. Experimental Setup

This section introduces experimental setup including artificial urban environments, mesh network
protocol, ground nodes and an aerial relay UAV. Due to the limitations of experiments in real urban
environments such as flight restriction and experiment repeatability, a down-scaled indoor urban
environment was employed, which reserved similar communication characteristics to outdoor urban
environments. The 802.11 s mesh protocol was adopted for the wireless communication through rt5870
Wi-Fi chipsets in the experiments. Comparison amongst several mesh network protocols was provided
to justify why the 802.11 s mesh protocol was used. Two Turtlebot UGVs for the ground nodes and a
quadrotor UAV for the aerial relay node were used in the robot operating system (ROS) environment.
The localization of the UAV was obtained via the Vicon motion capture system. A separate laptop was
used for the GP-based channel prediction algorithm. As mentioned above, water containers were used
for obstructions of buildings.

4.1. Artificial Indoor Urban Environment

Performing experiments involving communication relay UAVs in a real urban environment is
challenging. Regulations heavily restrict flights in an urban environment. Although it could be possible
to utilize military or firefighter’s urban training grounds, those environments would be limited in
repeatability. Indoor experiments can address those limitations as the experiment can be repeated as
many times as necessary to obtain meaningful results.

However, the use of indoor areas poses some challenges of effectively emulating effects on
communication signal transmission in the urban environment. First, due to the limited size of the
buildings in the scaled environment, typical building materials such as bricks and concrete are not
thick enough to attenuate signal significantly. This is particularly an issue considering the low cost
Wi-Fi dongles used in this experiment, which are even less likely to detect small differences in signal
strength. The second challenge is making the indoor urban environment easily adaptable to extensively
test the performance of the GP-based prediction.

To address those challenges, the use of water as a material for the building is proposed. Water is
excellent at absorbing 2.4 GHz wireless signal even with a small obstruction [17]. With the significant
signal strength change when the line-of-sight between nodes is obstructed by the building, typical
Wi-Fi dongles are capable of detecting the difference easily. Moreover, water containers can be easily
moved and stacked to create different city layouts, as shown in Figure 6. In this work, an artificial
urban environment of 5 m by 5 m size was considered.

&w“ Water containers
.

in the box

Figure 6. A snapshot of an indoor flight experiment in an artificial urban environment where there are
water containers inside boxes representing buildings.

4.2. Mesh Networks Protocols

To allow data routing within the mesh topology, an appropriate protocol has to be chosen. One of
important requirements is the compatibility with the robot operating system (ROS) as all devices were
running on ROS framework in this experiment. The second requirement is the ability to send data
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quickly and reliably to facilitate the position data transfer between the Vicon motion tracking system
and the relay UAV. This delay cannot be longer than 0.2 s; otherwise, the autopilot (Pixhawk used
in this experiment) assumes that data are too old and starts an emergency descent procedure. Note
that this delay is not only communication delay but also time needed for the Vicon motion capture
system to generate the positional data and for ROS to translate to/from mavlink messages to/from
appropriate message types. To fulfill those requirements, three protocols were considered: BATMAN
Adpv. [18], IEEE 802.11 s [19] and IEEE 802.15.4 ZigBee [20].

BATMAN. A better approach to mobile ad-hoc network (BATMAN) is designed as a low
computational complexity with a distributed networking protocol. In this approach, each node on the
network only holds information about neighbors and the general direction to the destination node,
rather than full routing information. With limited knowledge, each node can determine the sub-optimal
route quickly. BATMAN is well-documented and is capable of working with the ROS.

802.11 s. This protocol is a standard mesh networking developed by IEEE. It has several distinct
features compared to other approaches. First, each node on the network can act as a mesh station, mesh
access point or mesh portal. A mesh station is used to connect 802.11 s to other 802.11 based networks.
Mesh access point can forward and receive packets within the 802.11 s network. A mesh portal has
a very similar function to an access point but provides services to other non-802.11 networks such as
802.3. For data transfer, the following procedure is obeyed. Initially, the path request from the origin
node to the destination node is sent out. Each node adds either its own ID in sequence and forwards it
to its neighbors, or if it knows the route to the target node, it simply fills the rest of the table. Once the
full destination node is reached, the optimal route is determined, and a route table with confirmation of
destination is sent back to the origin. The route table is cached for some pre-specified amount of time
for future usage.

802.15.4. This protocol is a mesh implementation relying on ZigBee infrastructure. ZigBee is
a small and low-powered radio commonly found in UAV applications due to its weight and size.
In 802.15.4, one of the nodes is called the coordinator. The coordinator is responsible for holding
information about routes and make them available on request from any of the ground nodes. With this
single node holding all routing information, routing can be performed almost optimally.

A comparison between the performance of protocols needs to be performed in order to choose
an appropriate networking protocol. There does not exist a direct comparison amongst the three
protocols in the literature to the best our knowledge. Thus, the comparison was conducted between
BATMAN against 802.11 s based on the work in [21] first. In this work, it was shown that 802.11 s
has much lower throughput than BATMAN. The 802.11 s standard is using the 802.11g standard as
the underlying architecture, as opposed to the 802.11n standard used in BATMAN. 802.11g has a
maximum throughput of 54 Mbps while 802.11n has a throughput of 300 Mbps. On the other hand,
802.11 s showed an advantage in two aspects: reduced latency and increased data delivery reliability.
The suboptimal routing methodology in BATMAN means that many packets are simply lost or take a
very long route. It is worth reiterating that one of the essential requirements for our purpose is the
reliability of data transfer in the network to facilitate fast transmission of position data to the UAV.
Moreover, the high bandwidth is not of primary concern as data size used in this experiment is small.
Thus, 802.11 s could be regarded as the better solution for this problem than BATMAN considering
relatively enhanced data delivery reliability and reduced latency.

With the 802.11 s standard being better than BATMAN, it only remains to compare 802.11 s with
802.15.4. The choice between those two standards can be made using the second requirement criterion,
compatibility with the ROS. 802.11 s is compatible with the ROS “out of the box” while 802.15.4
requires an external package such as rosserial xbee [22]. Encoding and decoding data to and from the
ROS would likely introduce delays in data transfer. This can result in slow transmission of position
data. Consequently, the 802.11 s standard is adopted for the mesh network protocol in this study.
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4.3. Ground Node

For the ground nodes, the Turtlebot 3 Burger UGV was utilized, as shown in Figure 7. The
Turtlebot is equipped with a Raspberry Pi, an open CR board and a Lidar.

Lidar (laser sensor)

Wi-Fi module

Raspberry Pi

Figure 7. Overview of the Turtlebot 3 UGV used in this experiment with important components
highlighted.

Raspberry Pi. It is a main onboard computer of the Turtlebot which runs on Ubuntu 16.04 with
ROS Kinetic. An external Wi-Fi dongle is attached for the mesh network connections. It is compatible
with 802.11 s. Although a Raspberry Pi has a built-in Wi-Fi module, its drivers are incompatible with
802.11 s. In the Turtlebot, the computing board is responsible for running the Turtlebot packages.
Raspberry Pi connects to the ROS node with an onboard OpenCR controller.

OpenCR . 1t is a controller board for Turtlebots. The OpenCR board is responsible for translating
commands from the onboard computer to motors and power distribution. The board is based on
Arduino microcontroller and uses a serial port to communicate with the Raspberry Pi.

4.4. Aerial Relay Vehicle

In this experiment, a custom built quad copter UAV was used, as shown in Figure 8. It is a
standard F300 size frame with large 3 cell 5000 mAh battery for extended endurance. A more specific
component breakdown of both the hardware and the software is shown in Figure 9.

Autopilot (Pixhawk)

Motion capture marker

Wi-Fi module

Figure 8. Overview of the quad-rotor UAV used in this experiment with important components highlighted.
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Wireless connection

Quadrotor

Pixhawk

Accelerometers
Px4

Gyroscopes

Figure 9. System overview for the aerial relay vehicle.

Pixhawk . The Pixhawk is a commercial off-the-shelf autopilot and popular in the small UAV field.
In terms of hardware, the Pixhawk provides a broad range of sensors including a 6-DOF IMU, GPS
and barometer. On the software side, the PX4 flight stack is used. With PX4 and the MAVlink protocol,
most of the PX4 data inputs and outputs are available over the serial port. MAVROS interprets these
on the Raspberry Pi.

Raspberry Pi . A popular credit card-sized computer running Ubuntu 16.04 and ROS Kinetic.
The Raspberry Pi on board the UAV has two main purposes. Firstly, it is used to connect quad-rotor
UAV with the rest of the 802.11 s network. Secondly, it acts as an interpreter and relay for messages
between various sources and the autopilot. The Pixhawk communicates with a Raspberry Pi through a

serial port, as shown in Figure 10.

Figure 10. Hardware overview of common ROS/Autopilot system components.

MAVROS [23] This is a ROS package and bridges between ROS messages and the MAVlink
standard used on autopilots. MAVROS topics include transmitter output, position in a global and local
frame, aircraft attitude and speed and many more. To control the UAV from the external computer,
a facility called “offboard mode” is utilized. Attitude, position and velocity commands can be sent to
Pixhawk through the offboard mode.

Wi-Fi Receiver The Wi-Fi interface is used to provide network connectivity between the
quad-rotor UAV and the rest of the system. The adapter used here is based on the rt5780 chipset
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to ensure the best compatibility with the 802.11 s standard. For more details regarding the system,
the reader is referred to the recently-published ROS overview [24].

5. Experimental Results

Indoor flight experiments in various environments were carried out to validate the performance of
the GP-based channel prediction method. The first experiment (Case I) was performed with one UGV
and one relay UAV flying a back-and-forth scan pattern in an open space at a constant height. In the
second experiment (Case II), two UGVs were used. For the third experiment (Case III), one building
was added between two UGVs in order to compare the performance of the GP and model-based
prediction on a slightly more complex scenario. Finally, randomly-generated city environments
(Case IV) were tested.

Experiments were performed with the following procedure. First, the relay UAV scanned the city
at a 1 m height by collecting the signal strength data. Then, the discretized communication strength
grid map for each UGV was computed by GP-based prediction. Finally, the UAV stayed at the optimal
position for 15 s to collect the actual RSSI data. The optimal position was determined by finding the
position having the maximum sum of the signal strength between the UAV and all ground nodes.

5.1. GP Computation Time

About 1800 measurements were obtained during scan flight in each test; half of the collected data
were used to train the GP model and the rest were used for error analysis. The computation time for the
GP with two UGVs was 11.4 s on average on the Intel Core i7-5775 processor using the GPML toolbox
written in Matlab [25]. The computational time included both optimizing the GP hyperparameters and
generating the discretized communication strength grid map for the entire indoor environment where
the distance between grid points was set for 15 cm. This implies that the GP-based prediction approach
could be used in real-time relay applications. Besides, the computation time could be significantly
improved if implemented in faster programming languages such as C/C++.

5.2. Case I: Single UGV in an Open Space

For the single UGV experiment, the Turtlebot UGV was placed in the centre of the room so
that the USB Wi-Fi dongle on the UGV was at the origin in Cartesian coordinates. The relay UAV
performed the pre-planned pattern flight to collect the RSSI data, as shown in Figure 11a. Comparing
experimental trials in Figure 11, it can be seen that, across the trials, the maximum RSSI prediction
occurred on or close to the origin. This was expected behavior as the signal strength should be the
strongest near the Wi-Fi dongle of the UGV. It can be noted that, sometimes in the UAV boundary area,
the GP predicted a high signal strength value. This was caused by a few random high RSSI values on
the edges during the back-and-forth scan pattern. This could also be caused by reflections from the
metal wall of the building.
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Figure 11. Experiment result for Case 1.
5.3. Case II: Two UGV's in an Open Space

Two UGVs in an open space (i.e., without any buildings) were used in the experiment. The main
purpose of this experiment was to compare the communication relay performance of the GP-based
prediction against the empirical communication model in a simple environment.

Figure 12 shows the communication map predicted by the GP method and predicted optimal
relay positions of GP and model-based approaches for each trial. For model-based communication
prediction, the optimal relay position was apparently in the middle between two ground nodes.
For GP-based prediction, the optimal position varies, as shown in Figure 12. This variation was due to
the error of GP prediction and dynamic characteristic of the wireless communication environment at
the time of the experiment. Table 1 provides actual signal strength values averaged for 15 s from two
ground nodes at predicted optimal positions from GP and model-based approaches. On average, the
GP had slightly better performance compared to the model-based approach. It is worth e noting that,
for Trial 3, the GP performance was better than that of the model-based approach despite the optimal
position not being in the middle of two ground nodes. This clearly showed the benefit of learning-based
GP prediction, which is the ability to adapt to dynamic and unknown communication environments.
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Figure 12. Experiment results for Case II.

Table 1. Actual signal strength value (RSSI) at the predicted optimal position for Case II.

Trial GP (dBm)

Model (dBm)

1 —91.15
2 —86.44
3 —95.46
4 —96.53
5 —94.93
Mean —92.90

—92.79
—-92.87
—99.66
—99.33
—100.86
—97.10

5.4. Case I1I: Two UGV's with One Building

93

95

96

7

98

-100

-101

13 0f 18

In this case, one building was placed close to one of the ground nodes to obstruct the line-of-sight
between them, as shown in Figure 13a. In Figure 13, it can be noted that the predicted optimal positions
of the UAV were quite different between two prediction methods. However, based on Table 2, their
performances were similar on average with a slight advantage of the GP-based approach. This is a
promising result, implying that, in a realistic setting, the GP can have performance similar to that of a
good empirical model. In fact, the GP-based method is more attractive than the model-based method
in a practical manner: the GP approach does not require a priori knowledge such as 3D city map and
communication model parameters required for model-based approach.
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Figure 13. Experiment results for Case III.

Table 2. Actual signal strength value (RSSI) at the predicted optimal position for Case III.

Trial GP (dBm) Model (dBm)

1 —95.90 —98.91
2 —96.74 —95.33
3 —93.4 —98.5

4 —96.08 —97.94
5 —98.06 —95.97
Mean —96.04 —97.34

5.5. Case 1V: Two UGVs in Complex Cities

Lastly, ten randomly-generated complex cities were introduced. The random cities consisted of
buildings with the same height but different positions and rotations for each trial. These random cities
were used to show the robustness of the GP-based prediction in different scenarios. Due to the space
limitation, five of the ten trials are displayed. Comparing the results in Figure 14, it can be noted
that best positions varied widely between the model and GP-based approaches. Table 3 also shows
significantly different performance results across trials. On average, the GP method had a similar
performance to the communication model-based approach with a slight advantage; this is consistent
with earlier results. It can be noted that, in some scenarios, the performance of the model approach
was better than the GP approach. In a complex scenario such as this, with many water containers
inside the boxes, the stochastic nature of wireless communication was particularly prominent, which
means that it is possible for the GP to make erroneous prediction. However, the GP approach can still
be considered useful as it does not require a priori information about the environment.
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Figure 14. Experiment results for Case IV.
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The error in prediction is displayed in Figure 15. Most of the errors are less than 5 dBm.
The relatively high error of very few data points can be explained by smoothing tendencies of the
GP. The GP prediction will never entirely match the actual signal strength close to the Wi-Fi dongle
of the UGV. In GP, such a high reading close to the Wi-Fi dongle is smoothed out by the relatively
low signal strength reading nearby. This is one of the well-known limitations of the GP and could be
addressed by the use of the Gaussian process mixture techniques described in [26]; this remains as
future work. A movie clip for an indoor experiment in this complex urban environment can be found

at: https:/ /youtu.be/rFXoIMM6CNA.


https://youtu.be/rFXolMM6CNA

Sensors 2019, 19, 3221 16 of 18

Table 3. Actual signal strength values (RSSI) at the predicted optimal position for Case IV.

Trial GP (dBm) Model (dBm)

1 —101.33 —97.20
2 —94.70 —111.62
3 —91.27 —98.30
4 —99.57 —99.09
5 —98.51 —100.63
6 —97.81 —103.98
7 —95.56 —92.68
8 —92.57 —94.73
9 —95.26 —93.23
10 —101.48 —94.17
Mean —97.10 —98.56
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Figure 15. Error histogram averaged over multiple runs.
6. Conclusions Future Work

This study conducted flight experiments to evaluate the performance of Gaussian Process-based
channel prediction in an urban environment. An artificial urban environment was introduced to
alleviate the limitations from the flight restrictions in outdoor urban environments. Several experiments
were performed for four cases with the different number of ground nodes and buildings: (i) one UGV
in an open space; (ii) two UGVs in an open space; (iii) two UGVs with one building; and (iv) two
UGVs in complex city environments. The fact that GP computation took about 10 s to train with
about 900 training points and generate the discretized communication grid map shows the feasibility
of the GP method in real time. The performance of GP-based prediction was consistent across all
experiments and outperformed the model-based approach. Outdoor experimental validation in more
realistic settings will be followed as future work.
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