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Abstract: Satellite telemetry data contains satellite status information, and ground-monitoring
personnel need to promptly detect satellite anomalies from these data. This paper takes the satellite
power subsystem as an example and presents a reliable anomaly detection method. Due to the lack of
abnormal data, the autoencoder is a powerful method for unsupervised anomaly detection. This study
proposes a novel stage-training denoising autoencoder (ST-DAE) that trains the features, in stages.
This novel method has better reconstruction capabilities in comparison to common autoencoders,
sparse autoencoders, and denoising autoencoders. Meanwhile, a cluster-based anomaly threshold
determination method is proposed. In this study, specific methods were designed to evaluate the
autoencoder performance in three perspectives. Experiments were carried out on real satellite
telemetry data, and the results showed that the proposed ST-DAE generally outperformed the
autoencoders, in comparison.
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1. Introduction

Anomalies might occur in all subsystems of satellites in orbit. Anomalies in some subsystems
are fatal to satellites, such as guidance, navigation, control, and power subsystems. A lot of work has
been done to ensure the normal operation of satellites. This paper focuses on the anomaly detection of
power subsystems. As an important part of the satellite, the satellite power subsystem is responsible
for all power supply in a satellite. The performance of the system directly affects the working status of
other systems and affects the life of the satellite [1]. Hence, detecting anomalous behavior of satellite
power subsystem is an important task to prevent failures that result in the unwanted outcome or even
cause damage to the system and developing a complete, accurate, and reliable anomaly detecting
system is the goal of every national satellite expert.

The satellite manufacturing industry intensively utilizes numerous sensors to seamlessly monitor
the temperature and electrical properties of machines. The recorded sensor data can be examined
to distinguish normal from unexpected behavioral patterns [2]. On-orbit satellites generate large
amounts of telemetry data every day, which are large-scale and multivariate time-series data. Moreover,
many instances of normal behavior are available, whereas the number of anomalous samples is
limited. Hence, the challenge in anomaly detection lies in modeling the normal patterns and detecting
previously unseen patterns that might hint at machine failure. In the past, this was often accomplished
by engineers with sufficient knowledge of the domain. However, this is often expensive in terms of
time. Therefore, the anomaly detection mothed of satellite power subsystem must have the capability
to efficiently complete this unsupervised task [3].
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Anomaly detection on multivariate time-series data is of great importance in both fundamental
machine learning research and industrial applications [4]. The main challenges of anomaly detection
in multivariate time-series data can be summarized as follows [2,5,6]:

1. Definition of anomalous behavior—The boundary between normal and anomalous behavior is
often not precise, so it is very difficult to define a normal region that encompasses every possible
normal behavior. Thus, an anomalous observation that lies close to the boundary can actually be
normal, and vice-versa.

2. Irrelevant features—A high proportion of irrelevant features effectively creates noise in the input
data, which masks the true anomalies. The challenge is to choose a subspace of the data that
highlights the relevant attributes.

3. Bias of Scores—Scores based on Lp norms are biased toward high-dimensional subspaces, if they
are not normalized appropriately. In particular, distances in different dimensionality (and thus
distances measured in different subspaces) are not directly comparable.

Fruitful methods for anomaly detection have been made in the last several years [7,8]. These
methods can be grouped into two categories—(1) traditional machine learning techniques and (2)
deep learning. Traditional machine learning include techniques such as, support vector machines
(SVMs) [6,9–11], Principal Component Analysis (PCA) [3,12,13], k-means algorithm [14], and Hidden
Markov Models (HMM) [15]. The development of deep learning provides new methods for anomaly
detection, such as Long Short-Term Memory Networks (LSTM) [16,17] and the autoencoder [2,4,18].
SVMs, especially the One-Class Support Vector Machines (1SVMs) are a popular technique for
unsupervised anomaly detection. However, training SVMs is memory-intensive and time-intensive.
SVMs are non-parametric learning models, whose complexity grows greatly with the number
of records [6]. For the large-scale and multivariate time-series satellite telemetry data, inherent
shortcomings exist in SVMs. PCA projects high-dimensional time-series into a low-dimensional
sequence. However, during the transformation process, information losses of multivariate time-series
become inevitable [15]. HMM also has the limitation of intensive computing, especially in case of fuzzy
integral-based detectors. Moreover, HMM needs to manually specify some initial values of degrees
of importance. LSTM is an artificial Recurrent Neural Network (RNN) architecture that has recently
been shown to be very effective for anomaly detection in standard time-series test data. However,
if the time-series data are not stationary, the algorithm performance decreases. An autoencoder adopts
the neural network architecture to perform unsupervised learning, which is trained to reconstruct
instances of normal time-series with the target time-series being the input time-series itself. Then,
the reconstruction error is used to compute the likelihood of anomaly, at that point [16]. However,
due to the interaction between different features, the autoencoder often extract meaningless or wrong
high-level features that cause the autoencoder model to become unreliable. Extraction of the correct
features cannot be guaranteed during the autoencoder training, in most cases.

The main objective of this study was to make the autoencoder model more reliable and robust by
incorporating expert knowledge into the process of training. Another objective of this study was to
develop an anomaly detector based on the autoencoder and demonstrate that the proposed method
can effectively detect anomalous behavior of a satellite power subsystem. In this study, we proposed
stage-training denoising autoencoders (ST-DAE) to accomplish these two objectives. The first step was
to do enough data exploration with expert knowledge and discover the features of the data. Then,
the features were trained through stage-training denoising autoencoders (ST-DAE) until the model
became reliable and robust. After this, we could reconstruct the test time-series and compute the
likelihood of anomaly, based on the reconstruction errors. Finally, the anomaly threshold could be
determined through a cluster-based method and the anomalies could be discovered on the basis of the
threshold. The paper is organized as follows. Section 2 introduces the basics of the satellite power
subsystem and autoencoder. Section 3 describes the research methodology, mainly including the
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autoencoder training strategy and anomaly evaluation method. The experiment results are shown and
discussed in Section 4. Conclusions and future work are discussed in Section 5.

2. Background

2.1. Satellite Power Subsystem Description

The satellite power subsystem converts different forms of energy to achieve energy distribution
and scheduling, thereby completing the on-orbit task. As shown in Figure 1, the satellite power
subsystem mainly includes the solar cell array, battery set, shunt regulator (SR), battery discharge
regulator (BDR), battery charge regulator (BCR), and battery connection relay box [3].
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Figure 1. Diagram of the satellite power subsystem.

The main electric energy comes from solar cells when the satellite runs in space. When the
satellite enters the illumination area, the solar panels are photoelectrically converted. Parallel switching
regulators control the electrical energy of the solar cells connected to the bus. When the satellite
enters the shadow area from the illumination area, the voltage of the solar cell decreases gradually
as the illumination decreases. All the parallel switch regulators that are not connected to the bus
successively transfer the power of the solar cell to the circuit, until all solar cells are connected. When
the illumination intensity decreases to a certain extent and the bus voltage cannot be maintained by
the parallel switch regulator, the battery discharge regulator starts to work. At this time, the solar
cell and the battery set supply power to the load at the same time, but the power supply capacity of
the solar cell decreases, and finally, the power supply stops. Satellites in the shadows are powered
entirely by the battery set. Although the light gradually increases, the discharge regulator still works.
When the light meets certain conditions, the discharge regulator withdraws from work, and then
the charging regulator starts to work. At this time, the solar cell supplies electrical energy to the
load, on the one hand, and charges the battery set through the charging regulator on the other hand.
When the illumination is further strengthened (when the satellite operates in the illumination area),
the output current of the charging regulator reaches the maximum value and becomes the constant
current charge of the battery set.

2.2. The Autoencoder

An autoencoder was first introduced to address the problem of “backpropagation without a
teacher”, in the 1980s [19]. An autoencoder is a type of artificial neural network used to learn
efficient data coding as an unsupervised technique, in which we leverage neural networks for the
task of representation learning, typically for dimensionality reduction. As shown in Figure 2, we can
take an unlabeled dataset and frame it as a supervised learning problem by predicting the target
value Y as close as possible to its original input X. This network can be trained by minimizing the
reconstruction error, L(X, Y), which measures the differences between our original input and the
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output reconstruction [20]. The autoencoder always consists of two parts, the encoder and the decoder,
which can be defined as transitions ∅ and ϕ. The ∅ = S(WX + b) defines the transition X→ H , where
W and b are the matrices of weights and biases, respectively, and S represents the activation functions.
Similarly, the ϕ = S(W′H + b′) defines the transition H→ Y . Therefore, the loss can be defined as
argmin‖X −Y‖2. An autoencoder is capable of discovering structure hidden in data, in order to develop
a compressed representation H of the input.
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For this purpose, many different variants of the general autoencoder architecture, such as
denoising autoencoders (DAE) [21] and sparse autoencoders (SAE) [22], were developed to ensure
the compressed representation represents meaningful attributes of the original data input. Denoising
autoencoders are trained to reconstruct a clean “repaired” input from a corrupted version X̃, which
is done by adding noises to input data X by means of a stochastic mapping X̃ ∼ qD

(
X̃
∣∣∣X)

. In this

case, a good representation can be obtained robustly from a corrupted input X̃ which would be useful
for recovering the corresponding clean input X. There are three recommended ways to add noises
into input data [23]—(1) additive isotropic Gaussian noise, (2) masking noise, which is a fraction of
the input values that are randomly selected and forced to be 0, (3) salt-and-pepper noise, which is a
fraction of the input values that are randomly selected and set to their minimum or maximum possible
value (typically 0 or 1). Sparse autoencoders are the ones whose numbers of hidden units are large
(perhaps even greater than the number of input pixels), however, we can still discover an interesting
structure, by imposing a sparsity constraint on the hidden units, then the autoencoder would still
discover interesting structure in the data, even if the number of hidden units is large. ‘Sparse’ can
be understood as follows—a neuron is considered as “active” if its output value is close to 1, or as
“inactive” if its output value is close to 0. We would like to constrain the neurons to be inactive most of
the time [24].

3. Research Methodology

3.1. Data Exploration and Preprocessing

Data exploration is the initial and important approach to understand the characteristics of the
telemetry data. In order to establish an effective anomaly detection model, enough data exploration
work should be done. As numerous sensors are set on the satellite to monitor the status of the satellite,
it also causes a redundancy in telemetry data. Therefore, the first step is to select meaningful features
based on expert knowledge. The second step is to traverse each feature to check the completeness
and correctness of the data. Missing data are common occurrences, which can have a significant
effect on the conclusions that can be drawn from the data. There are several methods to handle
missing data [25]—imputation [26], pairwise deletion [27], and sensitivity analysis [28]. Finally, for the
time-series, we need to plot every feature on the x-axis (time) and find out the changing rule of each
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feature over time, and the relationships between features. Then, the features can be grouped on the
basis of observations and analysis, as well as domain knowledge. All of the above steps can create a
clear mental model and understanding of the data in the mind of the domain experts, and define basic
metadata (statistics, structure, relationships) for the data set, which can be used in further analysis [29].

3.2. Stage-Training Denoising Autoencoders

An autoencoder can encode and decode data distributions. Ideally, an autoencoder would have
a smaller test error and would learn efficient latent features of the data set when the autoencoder is
in training [30]. However, it is often observed that autoencoders end up obtaining small test errors
but are not able to learn efficient latent vector of the data. When the telemetry data is trained with a
autoencoder, we find the following problems. As shown in Figure 3a, the battery error amplifier (BEA)
signal value rises after the BCR input current rises, then their values are partially similar. After the
autoencoder model is trained, we find that the reconstructed BEA signal value has large reconstruction
errors, where the BCR input current rises as shown in Figure 3b. Solar cell array current and BCR input
current, as shown in Figure 3c,d, face this problem, while the BEA signal value and battery set charge
current, as shown in Figure 3e,f, have the same issue. The reason for this is that the autoencoders have
a powerful fitting ability, but the latent high-level features learned from the data set may be deviated
due to the interaction between the features.
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Figure 3. High reconstruction error caused by the interaction between features. (a) The BEA signal
value and BCR input current. (b) The reconstruction result of the BEA signal value. (c) The BCR
input current and solar cell array current. (d) The reconstruction result of the BCR input current.
(e) The BEA signal value and battery set charge current. (f) The reconstruction result of the battery set
charge current.

In this study, stage-training denoising autoencoders (ST-DAE) were developed to isolate this
adverse effect, as described above. The first step was to group all features based on the results of
data exploration and the features in each group had the same characteristics and did not affect each
other during the training. Then, we determined the structure of the autoencoder, and selected one
group of features to keep the values unchanged and change the values of the remaining features into a
constant. In this case, the autoencoder mode was easy to train and extract latent high-level features
from among the selected ones, as most features had the same value. In the next stage, the autoencoder
model was first initialized with the weight of the autoencoder model trained in the previous stage.
Then, we selected another group of features among the remaining ones to change back to the original
value and trained these data into this autoencoder model. This operation was looped until all the
groups of features were trained.

Four sets of control experiments that were constructed with three types of autoencoders and
two training methods were set up, as shown in Table 1. ‘AE’, ‘SAE’, and ‘DAE’ represent common,
sparse, and denoising autoencoders, respectively. The autoencoder is denoted by the prefix ‘ST-’ if the
stage-training method was used, else it is denoted as ‘T-’.
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Table 1. Description of the control experiments.

Autoencoders Autoencoder Type Training Method

T-AE Common Traditional
T-SAE Sparse Traditional
T-DAE Denoising Traditional

ST-DAE Denoising Stage-training

3.3. Performance Evaluation

3.3.1. Computing the Anomaly Scores and Anomaly Threshold

There are two ways to calculate the anomaly scores. The anomaly score for ti can be calculated

by the root mean squared error e =

√∑n
i=1(xi−x′i )

2

s , where s is the count of features [18]. The error e
can be directly used as an anomaly score. Another method is to treat the root mean squared errors as
observations, which can be used to estimate the parameters µ and

∑
of a Normal distributionN(µ,

∑
),

using the Maximum Likelihood Estimation (MLE). Then, the anomaly score ai = (ei − µ)
T ∑

−1(ei − µ)

for each point at ti [16].
Due to the lack of anomaly labels, it can be difficult to define the anomaly threshold. Two general

methods are usually used [18]—(1) specify the threshold based on domain expertise; (2) specify the
threshold based on common assumptions of anomalies, e.g., 5%–10% of the data are anomalous
candidates. In this study, a novel method is presented to define the anomaly threshold. Considering
the anomaly scores, they can be divided into a normal value and an abnormal value, so the anomaly
scores could be clustered into the normal cluster and an anomalous cluster. In this way, we could
automatically get the anomaly threshold. K-means clustering [31] was used in our study.

3.3.2. Model Evaluation

It is difficult to evaluate the performance of unsupervised anomalous detection due to the lack of
anomaly labels [18]. In this study, the proposed methods were evaluated from three perspectives. First,
the well-developed autoencoders needed to be capable of efficiently limiting the false alarm rate. False
alarms occur when autoencoders do not learn all characteristics of the normal data. To check the false
alarm rate in the normal dataset is a good method of evaluating the model. The false alarm rate is
expected to be lower for autoencoders with better reconstruction abilities. These four autoencoder
models, as described in Table 1, could test the ability to limit false alarms on the test data sets. The
most important step is to determine anomaly threshold in this progress. In this study, we used a
common autoencoder (T-AE) as the baseline method and the anomaly threshold could be determined
on the basis of the reconstruction results generated by the ‘T-AE’. After getting the reconstruction
result, the anomaly scores could be obtained by calculating the root mean squared error of the input
data and the reconstruction data. Then, the anomaly scores could be clustered into two clusters by
the K-means clustering method and the minimum anomaly score of the abnormal cluster was the
anomaly threshold. Second, random point anomalies often occurred in satellite power subsystems.
The occurrence of point anomalies was closely related to the health of satellite power subsystems and
could be used to predict their life-span. The detection rate of point anomalies could be used to evaluate
the model. Third, the model must be able to detect common satellite power subsystem contextual
anomalies [8], such as main error amplifier (MEA) circuit failure and battery set open-circuit failure.
The MEA value is larger than the normal value, which leads to lower discharge current when MEA
circuit failure occurs. There are several sets of batteries on the satellite. When a group of batteries has
an open-circuit failure, the battery set discharge current of the group becomes 0, and the discharge
current of the other group of batteries increases.
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4. Experiment and Discussion

4.1. Data Exploration and Preprocessing of the Telemetry Data

The methodology was applied to analyze the real telemetry data of a navigation satellite power
subsystem. The original data set contained 65 features and 102,472 rows, and was acquired in
December 2016 with a frequency of 2 s. We needed to select the appropriate features in the telemetry
data to train the model. According to expert knowledge, the following kinds of features should be
removed—(1) backup features, i.e., the backup values of other features; (2) low-frequency sampled
features—the values that are the same as their corresponding high-frequency sampled features; (3)
switch features—the switch value is unchanged; and (4) mark features—for example, battery charging
overvoltage protection mark, which marks the serious faults in a satellite. At this time, the satellite's
state could only be judged by this feature. After feature selection and removing the rows with excessive
missing values, a data set with 34 features (as shown in Table 2) and 96,717 rows was generated. About
80,000 rows from these data sets were selected as the training data, and the rest as the test data. Among
these features, the bus current required special handling (as shown in Figure 4a). The original value of
the bus current fluctuated greatly, which the neural network treated as noise. In order to solve this
problem, we could deal with this feature using the moving-average method [32], so as to eliminate the
factors of accidental change and find out the development trends of the feature (as shown in Figure 4b).

Table 2. Description of sensors.

Sensor Classes Numbers

Bus current 1
Battery set charge current 1

Battery set discharge current 1
BCR input current 2

BDR /BCR output current 6
Temperature 4

Solar cell array current 2
Battery set whole voltage 2
Battery set single voltage 11

MEA voltage 2
BEA 2
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The time-signal plots of features can help to find out the changing rule of each feature over
time and the relationships between features. According to the observations and expert knowledge,
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the selected 34 features could be divided into 7 groups, each of which had features that monitored the
same physical quantities, such as current and voltage, or did not affect each other during training. The
grouping was as follows:

• Bus current and temperature;
• Battery set whole voltage and battery set single voltage;
• BDR/BCR output current and battery set discharge current;
• BEA and solar cell array current;
• BCR input current;
• Battery set charge current;
• MEA voltage.

4.2. Model Training

In order to eliminate this big reconstruction error and make the autoencoder model more reliable,
we used the method mentioned above to train the autoencoder in stages. The architecture of the four
types of autoencoders is shown in Figure 5. Since the experimental dataset contained 34 features,
the size of the input and output of the autoencoder was 34. As mentioned above, these 34 features
could be divided into 7 groups, so the dimension of the middle layer was 7. The training of ‘ST-DAE’
was divided into 7 stages. Each training stage trained a set of features grouped above. The training
order and the features of each stage were as follows—(1) BCR input current; (2) battery set charge
current; (3) MEA voltage; (4) bus current and temperature; (5) battery set whole voltage and battery set
single voltage; (6) BDR/BCR output current and battery set discharge current; and (7) BEA and solar
cell array current. At each stage, the values of the untrained features were set to 0.5. The denoising
autoencoder could be developed by adding additive isotropic Gaussian noise into the inputs. The
comparison between the original value of BEA and the one with Gaussian noise is shown in Figure 6.
In the experiment, the common activation functions were tested, and the Tanh function was finally
selected. For the other hyperparameters, such as batch size and learning rate, Bayesian optimization
was applied to search for the optimal values. The search ranges were [4, 8, 16, 32, 64, 128, 256] and
[10−4, 10−3, 10−2, 10−1], respectively.
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4.3. Performance Evaluation

This section evaluates the performance of the autoencoders from the following three perspectives,
i.e., model reconstruction capability, contextual anomalies detection capability, and point anomalies
detection capability.

4.3.1. Evaluation on Model Reconstruction Capability

A well-developed autoencoder model must have the ability to reconstruct the input data. As shown
in Figure 3, BEA, BCR input current, and battery set charge current had large reconstruction errors in
some points due to the interaction between the features. This situation could lead to false alarms. The
three features’ reconstruction results and errors generated by the four types of autoencoder, as described
in Section 4.2, are shown in Figures 7–9, respectively. It was observed that the denoising autoencoder
had a better effect than the sparse autoencoder, in removing the interaction between features, and the
stage-training method further enhanced the effect. The number of false alarms of each model could
further prove this conclusion. According to the method mentioned in Section 3.3, we could observe that
the normal cluster center was 0.046, the anomaly cluster center was 0.502, and the anomaly threshold
was 0.275. Finally, the number of false alarms of each model was 776 (T-AE), 545 (T-SAE), 98 (T-DAE),
and 8 (ST-DAE). The results indicated that stage-training denoising autoencoders (ST-DAE) were able
to eliminate the false alarms, to a great extent.
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4.3.2. Evaluation on Point Anomalies Detection Capability

The occurrence of point anomalies is closely related to the health of satellite power subsystems.
In order to verify the model’s point anomaly detection capability, 2,000 point noises which conform
to the standard normal distribution were randomly added to the test dataset, which contained 34
features and 16,700 rows. The experimental results are shown in Table 3. Since our purpose was to
detect anomalies, we needed to take the point anomalies as positive samples. Accuracy and recall
rates were calculated in a method different from the usual and the calculation methods considered to
be ‘correct’ in this study, were TN/(TN + FN) and TN/(TN + FP), respectively. The accuracy and
recall of these four autoencoders were high. Their difference was mainly reflected in the recall rate.
The recall rates from small to large were T-AE, T-SAE, T-DAE, and ST-DAE, which also confirmed the
content described in Section 4.3.1. This experiment result showed that these four types of autoencoder
models had high point anomaly detection capabilities; ST-DAE performed better.

Table 3. Point anomaly detection results.

Autoencoders. True
Positive

False
Negative

False
Positive

True
Negative Recall Precision

T-AE 14591 109 186 1814 0.90700 0.94331
T-SAE 14611 89 191 1809 0.90450 0.95311
T-DAE 14690 10 63 1937 0.96850 0.99486

ST-DAE 14695 5 12 1988 0.99400 0.99749
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4.3.3. Evaluation on Contextual Anomalies Detection Capability

The contextual anomalies were determined within a specific context and usually reflected in
several features. As shown in Figure 10, the third group of battery output current dropped to zero
when this group of batteries had an open circuit fault. In order to maintain the power supply to the
load, another two sets of battery power supply current increased. Since the autoencoder model we
trained did not learn this data distribution, the anomaly scores as shown in Figure 10d increased
greatly, during failure. Detection result of the battery set’s open-circuit failure is shown in Figure 11.
The MEA voltage (A), as shown in Figure 11a, showed anomalous behavior where values were larger
than normal ones, which led to battery set discharge current being smaller than normal, as shown in
Figure 11b. Similarly, the anomaly scores, as shown in Figure 11c, increased greatly during failure,
as shown in Figure 10d. Figures 10 and 11 show the experimental results with ST-DAE as an example.
In the process of experiment, we found that these four autoencoders had approximately the same
detection effect for contextual anomalies. This showed that the autoencoder had strong contextual
anomaly detection capability.

Sensors 2019, 19, x FOR PEER REVIEW 11 of 14 

 

ST-DAE 14695 5 12 1988 0.99400 0.99749 

4.3.3. Evaluation on Contextual Anomalies Detection Capability 

The contextual anomalies were determined within a specific context and usually reflected in 
several features. As shown in Figure 10, the third group of battery output current dropped to zero 
when this group of batteries had an open circuit fault. In order to maintain the power supply to the 
load, another two sets of battery power supply current increased. Since the autoencoder model we 
trained did not learn this data distribution, the anomaly scores as shown in Figure 10d increased 
greatly, during failure. Detection result of the battery set’s open-circuit failure is shown in Figure 11. 
The MEA voltage (A), as shown in Figure 11a, showed anomalous behavior where values were larger 
than normal ones, which led to battery set discharge current being smaller than normal, as shown in 
Figure 11b. Similarly, the anomaly scores, as shown in Figure 11c, increased greatly during failure, 
as shown in Figure 10d. Figures 10 and 11 show the experimental results with ST-DAE as an example. 
In the process of experiment, we found that these four autoencoders had approximately the same 
detection effect for contextual anomalies. This showed that the autoencoder had strong contextual 
anomaly detection capability. 

 
Figure 10. Detection result of the main error amplifier (MEA) circuit failure ((A) indicates the 
anomalous curve). (a) The normal BDR1 output current and anomalous BDR1 output current. (b) The 
normal BDR2 output current and anomalous BDR2 output current. (c) The normal BDR3 output 
current and anomalous BDR3 output current. (d) The anomaly score of the reconstruction results. 

Figure 10. Detection result of the main error amplifier (MEA) circuit failure ((A) indicates the anomalous
curve). (a) The normal BDR1 output current and anomalous BDR1 output current. (b) The normal
BDR2 output current and anomalous BDR2 output current. (c) The normal BDR3 output current and
anomalous BDR3 output current. (d) The anomaly score of the reconstruction results.
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Sensors 2019, 19, 3216 12 of 13

5. Conclusion and Future Work

Autoencoder is one of the most advanced techniques in unsupervised learning. This study
proposed a new anomaly detection method for a satellite power subsystem based on state-training
denoising autoencoder. In this work, based on the expert knowledge and full analysis of satellite
telemetry data, the features of the data were trained in the denoising autoencoder model, in stages.
A model trained in this manner has good reconstruction capabilities and can greatly limit false alarms.
Four sets of comparative experiments were set up to illustrate the reliability of this method. In this study,
a new cluster-based anomaly threshold determination method was proposed. The research results
showed that the proposed state-training denoising autoencoders (ST-DAE) and threshold determination
method could successfully identify contextual and point anomalies in satellite telemetry data.

In the process of research, we found that although autoencoders have a strong reconstruction
ability, it is difficult to learn meaningful high-level features. It is difficult to achieve this purpose by
adding constraints to the existing autoencoder models. In future, we intend to restrict the training
of autoencoders by changing the initialization method of autoencoder weights and pruning the
autoencoder to enable it to learn meaningful high-level features.

Author Contributions: Investigation, S.Z.; Methodology, W.J. and Z.L.; Project administration, B.S.; Resources,
Z.C.; Software, W.J.; Writing—original draft, W.J.; and Writing—review & editing, S.Z.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank all the colleagues in the lab, who provided recommendations
and encouragement.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Ziqian, C. Research on Satellite Power System Diagnosis Based on Qualitative Model [D]. Ph.D. Thesis,
Harbin Institute of Technology, Harbin, China, 2007.

2. Assendorp, J.P. Deep Learning for Anomaly Detection in Multivariate Time Series Data. Ph.D. Thesis,
Hochschulinformations-und Bibliotheksservice HIBS der HAW Hamburg, Hamburg, Germany, 2017.

3. Pan, D.; Liu, D.T.; Zhou, J.; Zhang, G.Y. Anomaly detection for satellite power subsystem with associated
rules based on Kernel Principal Component Analysis. Microelectron. Reliab. 2015, 55, 2082–2086. [CrossRef]

4. Zong, B.; Song, Q.; Martin, R.M.; Wei, C.; Lumezanu, C.; Cho, D.; Haifeng, C. Deep autoencoding gaussian
mixture model for unsupervised anomaly detection. In Proceedings of the 6th International conference on
Learning Repretations, Vancouver, BC, Canada, 30 April–3 May 2018.

5. Danfeng, Y.; Xiaokui, S.; Long, C.; Stolfo, S.J. Anomaly Detection as a Service: Challenges, Advances, and
Opportunities. Anomaly Detection as a Service: Challenges, Advances, and Opportunities. Synth. Lect. Inf.
Secur. Priv. Trust 2017, 9, 1–173.

6. Erfani, S.M.; Rajasegarar, S.; Karunasekera, S.; Leckie, C. High-dimensional and large-scale anomaly detection
using a linear one-class SVM with deep learning. Pattern Recognit. 2016, 58, 121–134. [CrossRef]

7. Ahmed, M.; Mahmood, A.N.; Hu, J. A survey of network anomaly detection techniques. J. Netw. Comput. Appl.
2016, 60, 19–31. [CrossRef]

8. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection:A survey. ACM Comput. Surv. 2009, 41, 1–58.
[CrossRef]

9. Yang, Y.; Wu, J.; Wei, X. Incremental SVM based on reserved set for network intrusion detection.
Expert Syst. Appl. 2011, 38, 7698–7707.

10. Schölkopf, B.; Williamson, R.C.; Smola, A.J. Support Vector Method for Novelty Detection. In Proceedings of
the International Conference on Neural Information Processing Systems, Denver, CO, USA, 29 November–4
December 1999.

11. Aliakbarisani, R.; Ghasemi, A.; Wu, S.F. A data-driven metric learning-based scheme for unsupervised
network anomaly detection. Comput. Electr. Eng. 2019, 73, 71–83. [CrossRef]

http://dx.doi.org/10.1016/j.microrel.2015.07.010
http://dx.doi.org/10.1016/j.patcog.2016.03.028
http://dx.doi.org/10.1016/j.jnca.2015.11.016
http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.1016/j.compeleceng.2018.11.003


Sensors 2019, 19, 3216 13 of 13

12. Bo, L.; Wang, X. Fault detection and reconstruction for micro-satellite power subsystem based on PCA. In
Proceedings of the International Symposium on Systems & Control in Aeronautics & Astronautics, Harbin,
China, 8–10 June 2010.

13. Hong, D.; Zhao, D.; Zhang, Y. The Entropy and PCA Based Anomaly Prediction in Data Streams. Procedia
Comput. Sci. 2016, 96, 139–146. [CrossRef]

14. Olukanmi, O.P.; Twala, B. Sensitivity analysis of an outlier-aware k-means clustering algorithm. In
Proceedings of the 2017 Pattern Recognition Association of South Africa and Robotics and Mechatronics
(PRASA-RobMech), Bloemfontein, South Africa, 30 November–1 December 2017.

15. Li, J.; Pedrycz, W.; Jamal, I. Multivariate time series anomaly detection: A framework of Hidden Markov
Models. Appl. Soft Comput. 2017, 60, 229–240. [CrossRef]

16. Malhotra, P.; Ramakrishnan, A.; Anand, G.; Vig, L.; Agarwal, P. LSTM-based Encoder-Decoder for
Multi-sensor Anomaly Detection. arXiv 2016, arXiv:1607.00148.

17. Taylor, A.; Leblanc, S.; Japkowicz, N. Anomaly Detection in Automobile Control Network Data with Long
Short-Term Memory Networks. In Proceedings of the 2016 IEEE International Conference on Data Science
and Advanced Analytics (DSAA), Montreal, QC, Canada, 17–19 October 2016.

18. Fan, C. Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in
building energy data. Appl. Energy 2018, 211, 1123–1135. [CrossRef]

19. Rumelhart, E.D.; Hinton, G.E.; Williams, R.J. Learning Internal Representations by Error Propagation; MIT Press:
Cambridge, MA, USA, 1988.

20. Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [CrossRef] [PubMed]
21. Vincent, P.; Larochelle, H.; Bengio, Y. Extracting and composing robust features with denoising autoencoders.

In Proceedings of the International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008.
22. Olshausen, A.B.; Field, D.J. Sparse coding with an overcomplete basis set: A strategy employed by V1?

Vis. Res. 1997, 37, 3311–3325. [CrossRef]
23. Vincent, P.; Larochelle, H.; Lajoie, I. Stacked Denoising Autoencoders: Learning Useful Representations in a

Deep Network with a Local Denoising Criterion. J. Mach. Learn. Res. 2010, 11, 3371–3408.
24. Ng, A. Sparse autoencoder. CS294A Lect. Notes 2011, 72, 1–19.
25. Hyun, K. The prevention and handling of the missing data. Korean J. Anesth. 2013, 64, 402–406.
26. Laberge, Y. Advising on Research Methods: A Consultant’s Companion; Johannes van Kessel Publishing: Huizen,

The Netherlands, 2011.
27. Kim, J.-O.; Curry, J. The Treatment of Missing Data in Multivariate Analysis. Sociol. Methods Res. 1977, 6,

215–240. [CrossRef]
28. Little, R.J.; Cohen, M.L.; Dickersin, K.; Emerson, S.S.; Farrar, J.T.; Frangakis, C.; Hogan, J.W.; Molenberghs, G.

The prevention and treatment of missing data in clinical trials. N. Engl. J. Med. 2012, 367, 1355–1360.
[CrossRef] [PubMed]

29. Idreos, S.; Papaemmanouil, O.; Chaudhuri, S. Overview of Data Exploration Techniques. In Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data, Victoria, Australia, 31 May–4
June 2015; pp. 277–281.

30. Kuchaiev, O.; Ginsburg, B. Training Deep AutoEncoders for Collaborative Filtering. arXiv 2017,
arXiv:1708.01715.

31. MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of
the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, 21 June–18
July 1967.

32. Kim, C.A.; Park, W.H.; Dong, H.L. A Framework for Anomaly Pattern Recognition in Electronic Financial
Transaction Using Moving Average Method; Springer: Dordrecht, The Netherlands, 2013.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.procs.2016.08.115
http://dx.doi.org/10.1016/j.asoc.2017.06.035
http://dx.doi.org/10.1016/j.apenergy.2017.12.005
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1016/S0042-6989(97)00169-7
http://dx.doi.org/10.1177/004912417700600206
http://dx.doi.org/10.1056/NEJMsr1203730
http://www.ncbi.nlm.nih.gov/pubmed/23034025
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Background 
	Satellite Power Subsystem Description 
	The Autoencoder 

	Research Methodology 
	Data Exploration and Preprocessing 
	Stage-Training Denoising Autoencoders 
	Performance Evaluation 
	Computing the Anomaly Scores and Anomaly Threshold 
	Model Evaluation 


	Experiment and Discussion 
	Data Exploration and Preprocessing of the Telemetry Data 
	Model Training 
	Performance Evaluation 
	Evaluation on Model Reconstruction Capability 
	Evaluation on Point Anomalies Detection Capability 
	Evaluation on Contextual Anomalies Detection Capability 


	Conclusion and Future Work 
	References

