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Abstract: In recent years, sensors in the Internet of things have been commonly used in Human’s life.
APT (Advanced Persistent Threats) has caused serious damage to network security and the sensors
play an important role in the attack process. For a long time, attackers infiltrate, attack, conceal, spread,
and steal information of target groups through the compound use of various attacking means, while
existing security measures based on single-time nodes cannot defend against such attacks. Attackers
often exploit the sensors’ vulnerabilities to attack targets because the security level of the sensors
is relatively low when compared with that of the host. We can find APT attacks by checking the
suspicious domains generated at different APT attack stages, since every APT attack has to use DNS
to communicate. Although this method works, two challenges still exist: (1) the detection method
needs to check a large scale of log data; (2) the small number of attacking samples limits conventional
supervised learning. This paper proposes an APT detection framework AULD (Advanced Persistent
Threats Unsupervised Learning Detection) to detect suspicious domains in APT attacks by using
unsupervised learning. We extract ten important features from the host, domain name, and time from
a large number of DNS log data. Later, we get the suspicious cluster by performing unsupervised
learning. We put all of the domains in the cluster into the list of malicious domains. We collected
1,584,225,274 DNS records from our university network. The experiments show that AULD detected
all of the attacking samples and that AULD can effectively detect the suspicious domain names in
APT attacks.
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1. Introduction

With the development of the Internet of things, sensors in the Internet of things are commonly
used in Human’s life, such as cameras in computers and temperature sensor, luminance sensor, and
positioning system in mobile phones. However, because the security level of the sensors is relatively
low when compared with that of hosts, Advanced Persistent Threats’ (APT’s) attackers often exploit
their security vulnerabilities to achieve the purpose of invading hosts. In APT’s lateral movement
stage, these sensor vulnerabilities are often exploited to install more backdoors to ensure long-term
control over the target host. More and more sensors can connect to routers due to the appearance of
Wireless Fidelity, which makes it possible for APT attacks to send information to servers through a
sensor. This feature will be reflected in APT data communication stage. In the report [1], the attackers
use the Internet of things to attack the target. They take advantage of weak passwords in cameras and
routers to gain access to hosts and install malwares in them.
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In recent years, various advanced persistent threats (APTs) have affected a large number of
enterprises, organizations, and governments, such as OceanLotus [2], Harvest [3], and Hangover [4].
APT is a complex customized multi-stage attack. First, the attackers will carefully collect as much
information of the potential attacking target as possible. Subsequently, they will launch customized
attacks that can be diverse, such as spear phishing, watering hole, etc. [5]. Attackers lurk in the host
for a long time to collect confidential information by using multiple malwares. Additionally, they use
a variety of methods to send the stolen information to external servers. A series of APT attacks are
closely linked and they are hidden in the targeted network. It is usually too late when the data leakage
is detected.

Most APT attacks share two important behaviors: the various attack ways and long attack time.
A variety of attack ways increase the infection possibility. The long attack time makes it possible to
easily distribute the attack behaviors and lower the possibility of being detected. APT attacks can easily
avoid the existing detection systems by mixing the malicious traffic in a large amount of normal traffic
(such as firewall, intrusion detection system, etc.). The Mandiant takes four years and ten months from
the preparation to the last data return [6].

The multi-staged APT attack usually includes four stages, preparation, attack, lateral movement,
and data return [7]. In the preparation stage, attackers try to install malwares on users’ host by
seducing them to visit the malicious websites. In the attack stage, attackers typically use such methods
as waterhole attack, sending phishing e-mail, or taking a zero-day attack through the bugs of some
softwares. In the lateral movement stage, the attackers obtain more information about the victim
and lurk in victim hosts for a long time. In the data return stage, the attackers will send collected
confidential information to external servers, during which DNS is usually to be used. Therefore, DNS
plays a vital role in the whole APT attack process. Therefore, the detection of APT suspicious domains
has become an important method for effectively detecting APT attacks. Currently, such suspicious
domain detection methods are usually divided into three categories: graph-based method, machine
learning, and credit rating. Graph-based methods mainly use the graphs to describe the relationships
between the domains and extract features from the graphs to detect malicious domains [8]. Machine
learning based methods mainly extract features that are based on the characteristics of APT in all
aspects and use supervised learning or unsupervised learning to detect malicious domains [9,10]. For
example, Gossip [11] proposes a method that is combined with natural language processing (NLP)
and machine learning. NLP method is mainly used to detect malicious domains. Weina Niu [12]
proposes an anomaly detection algorithm, Global Abnormal Forest (GAF), to detect malicious domains
by domain’s scores. Although existing machine-learning-based malicious domain detection methods
are effective, they still face two challenges: (1) the extracted features are based on one single point of
time, without considering the time locality features of APT attacks; (2) the small number of the samples
with ground truth (labeled) in APT attacks limits the use of supervised learning.

We find that the attack behaviors of APT are related to time to a certain extent, due to the long
time span of APT. Therefore, we intend to focus on the extraction of time-related DNS features to
perform the effective detection of APT. In particular, we extract three types of features that are based
on host, domain and time. They are not only simple time point features, but also features presented
in the prolonged cycle of APT attacks. However, the use of unsupervised learning is inefficient and
low-accuracy in the absence of attack samples. We use an improved K-means algorithm based on
density Canopy in order to improve the accuracy and stability of K-means algorithm and solve the
problem of determining the most appropriate number K of clusters and best initial seeds [13,14]. Our
method is motivated by the fact that literature [15] has shown that unsupervised learning can effectively
detect APT behaviors.

In this paper, we propose a framework, APT Unsupervised Learning Detection (AULD) to detect
APT attacks that are based on the features of DNS. It can detect the suspicious domains that are
associated with APT attacks by unsupervised machine learning and better restore the whole process of
APT attacks. Firstly, we preprocess the collected DNS request data. Afterwards, we extract ten features
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based on host, domain, and time. Subsequently, we use the unsupervised method to cluster the data
and get the list of suspicious domains. Finally, we collect 70 days’ DNS request records, a total of
1,037,572,118, from our university campus network. We use the first 20 days’ data as the training data
and the last 50 days’ data as the testing data. We use these data to evaluate our method.

The main contributions of this paper are as follows:

1. We propose a framework AULD to detect suspicious domains in APT activities, use the fully
automatic unsupervised machine learning to analyze a large number of DNS log data, and obtain
the list of suspicious domains.

2. We extract features based on host, domain, and time from the DNS log data according to attackers’
behaviors during the whole process of an APT attack, and then use them for clustering, in which
the features that are based on time have not been mentioned by the existing work.

3. We verify the validity of our method and framework by conducting experiments with a large
number of DNS log data collected from our university campus network.

2. Related Work

The existing researches on APT mainly focus on APT attack models and APT detection methods.
Reviews [5] summarize the life cycle and the attacking principles of APT from its origin and development.
They discuss the feasible defense system and detection method, but they do not provide the exact
detection framework and method [16–18]. Most researches consistently divide an APT attack model
into four stages: reconnaissance, compromise, lateral movement, and data return.

For detection methods, the existing work mainly uses methods, including machine learning,
graph method, and credit rating. They often use one or two of the methods to detect APT attacks.

The main method of using machine learning for research is to extract APT-compliant feature
vectors from DNS data. The researchers classify the domains according to the feature vectors and get
the malicious domains related to APT activities. Yong Shi proposes a method for detecting malicious
domains by using Extreme Learning Machine, which presents high precision and fast speed [19]. YI
Nadji puts forward the system framework ghost&rae to manually detect APT attacks [9]. X Liang et al.
proposed a Q-learning-based APT defense scheme that the storage defender can apply without being
aware of the APT attack model or the subjectivity model of the attacker in the dynamic APT defense
game is also proposed [20]. They extract the features from the latency period of APT for machine
learning and obtain the external malicious domains that are associated with specific APT attacks. The
framework only aims at the manual APT that was proposed by the author, so there are significant
limitations on detection. C Huang designs a framework Gossip to detect malicious domains based on
the analysis of discussions in technical mailing lists (particularly on security-related topics) by using
natural language processing and machine learning techniques [11]. Gossip can find the malicious
domains faster than network blacklist. Bohara extracts features from the graph his team proposed
and uses K-means clustering method to effectively detect the behaviors in APT’s lateral movement
stage [15], which also shows that unsupervised learning can detect APT behaviors well.

Researches based on the graph method mainly start with an undirected bipartite graph generated
by host-domain and domain-IP. Researchers usually extract features from graphs and use machine
learning or the determinate algorithms that they proposed for detecting the related APT activities.
RSA proposes a new framework based on the belief propagation in graph theory to solve the problem
of early detection of enterprise infection [21]. The framework can be used either with “seeds” of
compromised hosts or malicious domains or without any seeds. They also set up a detector of command
& control (C&C) to detect the communication between the host and C&C servers. The framework
outputs the suspicious domains by the belief propagation algorithm. Websites that have never been
accessed or been accessed for only as few times in internal network are the input data of the framework.
B Rahbarinia puts forward the system Segugio that can effectively track the unknown domains
maliciously controlled in internal network [10]. The system generates host–domain’s undirected
bipartite graph by a large number of DNS data and then labels the nodes to extract features from the
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graph. The limitation of the method is that it depends on the accuracy of samples with ground-true. I
Khalil proposes a determinate algorithm to detect unknown malicious domains, which assumes that
the domains have a strong correlation with malicious domains [8]. They detect unknown malicious
domains through a blacklist and determinate algorithm. The limitation of the method is that it can
only be an auxiliary method to detect APT attacks.

The researches that are based on credit rating mainly put the extracted feature vectors into a
credit rating system to score the domains that are to be detected and output suspicious domains or
the ranking list of suspicious hosts. Mirco Marchetti puts forward a method to detect APT’s weak
signals that were generated in the data return stage [22]. They extract the features in the header of
IP packet and use credit rating to output a ranking list of suspicious internal hosts. It helps security
officers to concentrate on the analysis of a small number of hosts, and it can detect the complete
process of an APT attack faster. The limitation of this method is that the features that they extracted
are few. They also put forward a new framework, AUSEPX, to detect hosts that may be infected
in internal network [7], and the framework provides the ranking list of suspicious internal hosts by
combining the calculation of internal host’s two indexes with the security intelligence. We put forward
the framework APDD in another paper of our study that assists to detect hidden DNS suspicious
behaviors in APT [23]. We collect a large number of DNS request data and extract all of the features
conforming to the characteristics of APT attack. We use the method change vector analysis to analyze
the similarity between the domain access record and the existing domain that was used by APT. We
build the credit rating system to score the accesses of high similarity and then the system outputs a
ranking list of suspicious domains’ access record. In terms of the combination of the above methods,
A Bohara [15] uses the combination of graph method and machine learning and Guodong Zhao [24]
uses the combination of credit rating and machine learning.

We summarize the features of the relevant work and present it in a tabular manner (see in Table 1).

Table 1. Feature summary.

Instances

F1: the fraction of known infected machines [10]
F2: the fraction of “unknown” machines [10]
F3: the total number of machines [10]
F4: total number of days in which d was actively queried [10]
F5: the number of consecutive days ending with now in which domain was queried [10]
F6: the fraction of IPs that were associated to known malware domains [10]
F7: the fraction of such prefixes that match an IP that was pointed to by malware domains [10]
F8: URL features [11]
F9: Terms used in email subjects [11]
F10: Number of replies [11]
F11: Number of domains [11]
F12: Number of IP addresses [11]
F13: Number of attachments [11]
F14: Number of organizations [11]
F15: Number of known malware-detection services [11]
F16: Number of cryptographic digests [11]
F17: Participant features [11]
F18: Text cleaning [11]
F19: Removing stop words [11]
F20: Stemming [11]
F21: Extracting contextual words [11]
F22: Number of distinct source IP addresses [11]
F23: Number of distinct IP addresses with the same domain [11]
F24: IP in the same country using the predefined IP addresses [11]
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Table 1. Cont.

Instances

F25: Alexa ranking [12]
F26: The length of domain [12]
F27: The level of domain [12]
F28: containing IP address [12]
F29: Request frequency [12]
F30: Reaction time [12]
F31: repeating pattern [12]
F32: Registration duration [12]
F33: Active duration [12]
F34: Update duration [12]
F35: Number of DNS [12]
F36: Length of domain [19]
F37: Number of consecutive characters [19]
F38: Entropy of domain [19]
F39: Number of IP addresses [19]
F40: Number of countries [19]
F41: Average TTL value [19]
F42: Standard deviation of TTL [19]
F43: Life time of domain [19]
F44: Active time of domain [19]

The existing detection methods that are mentioned above are almost based on single-time nodes.
For machine learning, most researchers use the supervised learning. We propose a framework AULD
to assist to detect APT attacks in order to solve the problem that the attacking samples are few and to
take the time locality feature into consideration. This framework adds the features that are based on
time locality to the features in exiting work and it can help to detect suspicious domains in the long
time span. It uses automatic unsupervised machine learning to cluster the domains that need to be
detected and it is not limited by the samples with ground truth (labeled) and it improves the accuracy
of the detection. It is a real-time detection that detects every day’s DNS data to find the suspicious
domains of APT faster. It can let the defenders restore the whole APT attack process more quickly and
minimize the loss.

3. The Framework of Auld

In this section, we introduce the detection framework AULD and describe each part of the
framework in detail in the subsections. This framework is based on fully automated unsupervised
machine learning, and it outputs the list of suspicious domains by analyzing the features of DNS log
data. The test cycle of the framework is one day and the framework tests every day’s DNS data. It can
report to the security officers timely when it finds suspicious domains, and it can help the defenders
discover APT attacks faster. This framework consists of four parts: data collection, data preprocessing,
feature extraction, and clustering. Figure 1 shows the flow diagram of our framework.
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Figure 1. The flow diagram of Advanced Persistent Threats Unsupervised Learning Detection (AULD).

3.1. Data Collection

Through our university campus network, which is one of the largest campus networks in China,
we collect a total of 1,037,572,118 pieces DNS request records (including wireless access) and use
the data to test our framework. The IP field of the host is treated anonymously in order to protect
individual privacy. The data used in this paper includes 70 days’ consecutive DNS log data from May
23, 2016 to July 31, 2016, which includes source port, the IP of the internal host the accessing domain,
the accessing date, and other fields. We find that there is a clear time sequence among the APT attacks
of the reports and that the reports give some related malicious domains as well as the corresponding
accessing time through the analysis of recent APT attack reports [25,26]. According to the analysis of
these reports, we generate six independent DNS simulation data without changing the domain access
time in the literatures (label the simulation data from S1 to S6) and put them into the existing DNS
request data [23].

3.2. Data Preprocessing

Figure 2 shows the process of data preprocessing.
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Data preprocessing consists of four parts: extracting valid fields and changing the data format,
folding the domain into the second-level domain, removing the white list of websites, and removing
the popular websites in the internal network. The preprocessed data is used for cluster analysis and to
verify the validity of this method.

We introduce the four parts as follows:
Extracting valid fields and changing the data format: We extract three fields the IP of the internal

host, the accessing domain, and the accessing time from DNS logs. Additionally, we standardize the
accessing time to make processing more convenient.

Fold the domain into the second-level domain: We fold all of the domains into second-level
domains, for example, the third-level domains www.zhidao.baidu.com and hexjlxm.zhidao.baidu.com
are both folded into the second-level domain zhidao.baidu.com.

Removing the white list of websites: We remove the domains that are in the top one million
websites of ALEXA, because attackers have to pay a great deal to launch attacks through these very
popular websites.

Removing popular websites from internal networks: This stage of preprocessing is based on
three rules: (1) Remove the request record of popular domain names. In the APT attack process, if the
attacker wants to launch an attack by attacking a very popular website, the cost is too high, so it is
considered that the very popular domain name’s request record is a good access behavior. (2) The
number of accesses to the host has been >α times (for example, if the times that the host 11. 22. 33. 44
accessed apple.com on May 26, 2006 are more than α time, all records of the requests for the access to
apple.com by 11.22.33.44 on 2016.5.26 will be deleted). An attacker will try to access an external C&C
server or domain name as little as possible in order to avoid border detection. (3) Remove the record
with the total access record less than β times in the detection time window. Obviously, hosts that are
particularly inactive in long time windows are not helpful in the detection system.

3.3. Feature Extraction

We summarize three types of features based on host, domain, and time by considering the
characteristics of the domains behavior in APT activities by analyzing a large number of APT
reports [27] and according to the whole APT attack process. Among these features, feature 2, 9, and 10
all include APT’s characteristic of time locality and the feature 6 involves the characteristic of time
interval. These all reflect that APT attackers lurk in targets for a long time and obtain information
quickly in a short period of time. We select the relevant features according to this characteristic of time.
Table 2 shows the feature set.

Table 2. Feature set.

Cluster Instances

Host-based features
F1: The number of hosts that access the domains to be detected
F2: Independent access

Domain-based features

F3: Access times of domain
F4: Similarity of domains
F5: Popularity of domains
F6: Automatic connection
F7: Domain age
F8: The expiration date of domain

Time-based features
F9: Time point of access
F10: Time interval between two accesses of the domain to be
detected

www.zhidao.baidu.com
hexjlxm.zhidao.baidu.com
zhidao.baidu.com


Sensors 2019, 19, 3180 8 of 18

F1: The number of hosts that access the domains to be detected. APT has an obvious feature in the
attack stage that the attackers only attack a single host or a small number of hosts because the attackers
launch attacks purposely. The number of hosts infected by APT malicious domains is very small.

F2: Independent access. APT attackers try to avoid boundary detection and bypass the existing
various security measures in internal networks. We set the access times of domains that are to be
detected within time σ as the characteristic value of an independent access. The smaller the value is,
the more suspicious the domain is.

F3: Access times of domain. In both the attack stage and the lateral movement stage, to avoid the
detection, the attacker’s behavior is very covert and they rarely access external servers. Accordingly,
the fewer times a domain is accessed, the more suspicious it is.

F4: Similarity of domains. Some attackers use the domains that are similar to the popular ones in
the process of APT attacks, so the victims are easy to be seduced to access these domains when they do
not act carefully. Hence, the higher the similarity between the domains to be tested and the popular
websites, the more suspicious the domains are.

F5: Popularity of domains. The websites that internal hosts access frequently are credible. If the
domains to be detected are never accessed or are accessed few times by internal hosts, they will be
suspicious. Accordingly, the access time of domains to be detected can be the characteristic value of
the popularity of domains.

F6: Automatic connection. Under normal conditions, the interval of the internal host’s accessing
the same domain twice is not too short. In one host, if the interval between two domain accesses is less
than 1 s, the domain is suspicious.

F7 and F8: Domain age and the expiration date of domain. We use these two features as the
auxiliary features for improving the accuracy of clustering. F7 and F8 can be obtained by extracting
the information of the domains’ WHOIS.

F9: Time point of access. In general, there are some regularities among the time points of domain
accesses in internal hosts. It is suspicious that there are some domain accesses during abnormal time.
We put the access times of the domains to be accessed in abnormal time points as the characteristic
value. The higher the value is, the more suspicious the domain is.

F10: Time interval between two accesses of the domain to be detected. Attackers lurk in the host
for a long period of time in the lateral movement stage. In this stage, the attackers conceal their own
behaviors in the infected hosts and rarely access external servers. Hence, the longer the time interval
of two domain accesses is, the more suspicious the domain is. We put the time interval between two
accesses of the domain to be detected as the characteristic value.

We have found that using large feature sets does not improve accuracy and the use of some
features adds noise. For example, the use of features of WHOIS and TTL. The characteristics of different
websites will increase our false positive rate. The reason for this phenomenon is that the information
provided by WHOIS and TTL in the report is not perfect in our simulation process. In the case where it
is impossible to simulate the characteristics of malicious DNS behavior, we use the effective features
that are reflected in the report for malicious behavior detection.

3.4. Complexity of Algorithm

The time complexity of the traditional Kmeans algorithm is O (nck), where n is the number of
data objects, c is the number of iterations, and k is the number of classes. This paper introduces the
Canopy clustering to generate k canopies, and each data object may belong to q (q ≤ k) canopies at the
same time. The time complexity of the algorithm is O (ncq2k/p) when the number of clusters is p. It
can be seen that the time complexity of the algorithm is significantly reduced compared to that of the
traditional Kmeans.
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3.5. Clustering Algorithm

In this paper, we use the mixed algorithm of Canopy and K-means due to the lack of attacking
samples and the proof that unsupervised learning can effectively detect APT attack behaviors in
existing work. The K-means algorithm is the most widely used algorithm among existing clustering
algorithms. The K-means algorithm has the function of optimizing iteration and it can reduce the
total time complexity of clustering for small samples. However, in K-means algorithm, the K value is
set in advance, and the selection of K value is very difficult to estimate. The cost of the algorithm is
huge when the data volume is quite large [28]. The Canopy algorithm is different from the traditional
K-means algorithm. Its most obvious characteristic is that it does not need to give a K value in advance.
The precision of Canopy is low, but there is a big advantage in the operational speed [29]. Accordingly,
the Canopy algorithm is commonly used in clustering first to get the K value and then K-means
algorithm is used to cluster. Therefore, the mixed algorithm of Canopy and K-means performs well
in clustering.

When adjusting the training model, we perform parameter debugging for the distance centroid
t1–t2 in Canopy algorithm, and evaluate the performance of the model in different parameter settings.

We introduce the clustering effect: ARI (Adjusted Rand Index) in order to express the performance
level of the unsupervised training model we selected. We first introduce an element RI (Rand index)
that constitutes ARI in order to explain ARI. We have the following definition:

RI = (a + b)/(C_2ˆ(n_samples)) (1)

In (1), C represents the actual category information, K represents the clustering result, a represents
the logarithm of the same category of elements in both C and K, and b represents the logarithm of the
elements of different categories in both C and K.

C_2ˆ(n_samples) represents the logarithm that can be formed in the dataset and the range of RI is
[0,1]. The larger the value, the more consistent the clustering result is with the real situation.

The larger the RI, the higher the accuracy of the clustering effect and the higher the purity within
each class.

The adjusted rand index is proposed since the indicator should be close to zero in the case of
random generation of clustering results, which has a higher degree of discrimination:

ARI = (RI-E[RI])/(max(RI)-E[RI]) (2)

The range of ARI is [−1,1]. The larger the value, the more consistent the clustering result is with
the real situation. From a broad perspective, ARI measures the degree of agreement between the two
data distributions.

We set the value interval of t1–t2 to (0,10) and generate the following evaluation result graph that
is based on the results.

We conclude that the canopy model performs best when the parameter is set to 4.98 (shows
in Figure 3).

We also put a feedback system into the framework AULD. The framework outputs the report
of APT malicious domains to reflect to the local APT repository. When we find the domains of the
local APT repository again, we directly label them as suspicious domains. We remove the domains
from the local APT repository until the security officers determine that the domains are irrelevant with
APT activities.
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4. Experiments

In this section, we introduce the details of the experiments’ process and results. We first introduce
the situation of the data preprocessing and then analyze the results of the Canopy and K-means
algorithm. Finally, we compare our experiments’ results with those of the other methods.

The purpose of the experiments can be concluded as the following three points:

1. explaining that the framework we proposed can be implemented in the environment of a real
operating system;

2. verifying that the framework AULD proposed can effectively detect suspicious domains in APT
activities; and,

3. comparing the advantages and disadvantages of Canopy + K-means algorithm with
other algorithms.

4.1. Exprimental Environment

We deploy the framework AULD on a Win 10 system host with four cores eight threads, 16 gb
memory, and 2t hard disk. It can be seen that the requirement of our framework’s hardware equipment
is relatively low and the deployment is also very convenient. The clustering algorithms all run on
WEKA (version 3.8.1).

4.2. Data Set Description

4.2.1. Experiments’ Data Set

Table 3 shows the comparison between the initial data set and the data set that has been
preprocessed and filtered by the features. Here we just show the average size of daily data. The first
column represents the state of the data. The second column represents the number of domains and the
third column represents the number of records. It can be seen from Table 3 that the data scale after
data preprocessing and feature extraction is greatly reduced, which improves the efficiency of the
subsequent clustering algorithm.

Table 3. Average size of daily data.

Data Domain Records

raw data 17675 17009379
data preprocessing 9068 36821
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After the data preprocessing (in 3.2), we filter the logs that do not match our defined APT behavior.
We will not detect single attacks or short-cycle attacks in the log, because the object that we are detecting
is APT attacks, and the detected log must be consistent with the characteristics of APT attacks.

4.2.2. Test Data Set

We constructed two data sets for experiments in order to test the feasibility and performance level
of our designed framework: white dataset, black dataset.

White data set: For the construction of the white data set of this paper, we use the top one million
whitelisted domain names of alex rankings for classification. We believe that so long as the access to
the domain name in this whitelist is innocent.

Black data set: In the selection of black data, we refer to a large number of APT attack reports.
Reading attack reports and related papers was undertaken to retrieve samples of available APT attacks.
According to a report by Kaspersky Lab [30], we define a bunch of DNS traffic in Greece. This reflects
the attacker’s transfer of the IP to the victim’s area via the groundwater server. We found a phenomenon
in which an IP corresponds to two different domain names according to the report published by
bae [25]. This report also points out that an attacker has a certain working time as a human being. This
feature was also revealed by a report by Clearskysec [26]. We simulate this feature to some extent.
Some malicious DNS traffic is mostly composed of multiple IPs parsed by a domain owner [31]. We
also read other reports [32,33] to seek out the details of real APT attacks and simulate them.

We give an example of DNS log emulation in this paragraph. First, we read the report to find a
report that is suitable for simulation. For example, in this report, the security team gave detailed attack
cycles and details of the attack. The key attack behavior is expressed in the form of a timeline (see in
Figures 4–6). We simulated our DNS logs according to these timelines. At the same time, the report
also provided us with a large number of malicious domain names. For example, in the following list of
malware domain names, we can use the domain names in the list to simulate the domain names in the
log, or we can simulate the domain names in the simulated log, according to the characteristics of them.
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4.3. Data Set Description

We first construct the feature vectors of the domains that are to be detected according to 10 types
of features that we proposed. Subsequently, we use the Canopy algorithm to cluster them. The
framework we proposed aims to detect every day’s data. We just show the experiments’ results of the
day of June 10, 2016 (the results contain the samples of attack simulation data flow S1, S4, S5). Table 4
shows the results of Canopy clustering. The first column represents the number of the clusters. The
second column represents the number of instances and the third column represents the proportion of
the instances in each cluster to the total.

Table 4. The results of canopy clustering.

Cluster Instances Percentage

1 6705 14%
2 20445 44%
3 12652 27%
4 3879 8%
5 427 1%
6 220 0%
7 201 0%
8 360 1%
9 916 2%
10 145 0%
11 194 0%
12 136 0%
13 91 0%
14 152 0%

Canopy algorithm chooses the method that is simple and needs fewer times of iteration to calculate
the similarity of objects. It puts the similar objects into one subset and gets several subsets through a
series of calculations. Table 3 shows that 14 subsets are obtained by the Canopy clustering. As the
Canopy algorithm can only make a rough clustering, the effect is not satisfactory and the number of
instances in each cluster has great difference. The simulation attack samples are not well clustered.
Afterwards, we use the K-means algorithm to cluster the data set. We take the number of the subsets of
Canopy clustering as the K value, which reduces the blindness of the selection of the K value to some
extent. Table 5 shows the results and average characteristic values of K-means clustering. The first
column represents the number of the clusters. The second column represents the number of instances
in each cluster. The third to the tenth columns represent the average characteristic value of each feature
in each cluster. F1 to F10 correspond to the 10 features in the third section. F1 represents the number
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of hosts. In the feature F2, we set the value of σ at 2 s and the unit of the parameter is time. In the
feature F4, we get the value that is between 0 and 1 by the comparison between the domains and the
white paper. The larger the value is, the higher the similarity between the domains and the white
paper. F6 represents the time interval that one domain is accessed twice and the unit is second. F7
represents domain’s age, and we obtain the value by subtracting the domain’s registration time with
the current time and the unit is day. F8 represents the expiration date of the domain. We obtain the
value by subtracting the current time with the domain’s expiration time and the unit is day. In feature
F9, we set the suspicious time at one point to six and the unit is time. The unit of the values in F3 and
F5 is time and the unit of the value in F10 is day.

Table 5. The average characteristic values and results of k-means clustering.

Cluster Instances F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

1 7408 5 2.05 9 0.71 183 1 272 348 0 2
2 1128 5 21.02 8 0.72 178 6 2738 2503 0 2
3 5341 1 30.46 1 0.31 0 1 1102 524 0 30
4 846 13 6.12 19 0.72 431 6 2610 2694 0 1
5 3318 4 2.25 9 0.73 189 1 2688 947 0 2
6 3250 30 14.04 44 0.73 952 23 2403 984 1 1
7 2190 5 21.66 7 0.74 165 6 4264 890 0 2
8 5217 12 12.30 20 0.72 456 9 247 329 0 0
9 2295 4 22.09 6 0.81 176 5 38 47 0 1

10 2691 4 22.63 6 0.64 122 5 45 77 0 1
11 4603 1 4.05 1 0.51 0 0 980 493 0 29
12 1691 1 22.25 1 0.72 3 1 965 499 0 11
13 5534 5 22.48 7 0.72 163 6 1037 787 0 1
14 1011 1 5.86 2 0.70 20 1 760 478 2 11

It can be seen from Table 5 that the average characteristic values of cluster 14 fit the characteristics
of the APT attack mode well. In the cluster, the number of hosts accessing the domain, the average
time of independent access and the number of domain accesses are all small. The similarity of the
domains is slightly higher than the mean. There is not a particularly popular domain in internal
networks. The time of automatic connection is less than the average. The domain age and validity
period are relatively short. There are accessing behaviors in an abnormal time point. The interval of
domain accesses is long. While considering all the features above, cluster 14 is the most suspicious. By
observing the domains in cluster 14, we find that the simulated attack samples (S1–S6) are all in this
set, which indicates that the hybrid Canopy + K-means algorithm can effectively detect the suspicious
domains in APT activities.

We can see from the results of clustering that the average characteristic values of cluster 3, 11,
12 are similar to the values of cluster 14. The domains in cluster 3 are never accessed in internal
networks, but the domains’ similarity is less and the average characteristic value of the independent
accesses is too high. It does not conform to the characteristics of APT attacks. In cluster 11, we find
that the domains are almost out of date and the time points of the accesses are normal. The similarity
of domains is not high. In cluster 12, the time points of accesses are normal and the characteristic
value of independent accesses is too high. To summarize, we can see that cluster 14 conforms to the
characteristics of APT attacks most. We put all of the domains in cluster 14 into the list of malicious
domains. It also shows that the effect of the clustering algorithm is good. We choose other clustering
algorithms to deal with the data and, after comparing, we find that the effect of these algorithms, like
DBSCAN and Density Peaks clustering (local density clustering), is general. They cannot effectively
put the simulation attack samples into a cluster.

4.4. Comparison

(1) We used three standard evaluation parameters to evaluate the test framework we designed.
The evaluation parameters include: TP, FP (shows in Figure 7), and Accuracy Rate. We introduce
a confusion matrix to show the relationship between the false positive rate, false negative rate,
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malicious sample detection accuracy, and normal sample detection accuracy. Figure 7 determines
these relationships. The false positive rate (FP-rate) indicates the proportion of innocent DNS behavior,
which is determined by our detection framework to be malicious. The following formula 3 shows the
relationship between these evaluation parameters.

Accuracy=(TP+TN)/(TP+TN+FP+FN) (3)
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(2) We used the Canopy + k-means algorithm in this paper with several mainstream unsupervised
learning and supervised learning to perform a ten-dimension verification on the dataset that we have
built and labeled.

The supervised learning methods we choose are decision tree algorithm and logistic regression
algorithm. Density-based algorithm DBSCAN and Density Peaks clustering (local density clustering)
were the unsupervised learning methods we chose.

We compare the FP-rate TP-rat and Accuracy of different models (see in Table 6). The experiments’
results are as follows:

Table 6. Comparison result.

Accuracy Rate TP Rate FP Rate

Decision Tree 97.6% 96.5% 2.31%
Logistic Regression 97.8% 95.8% 2.1%

DBSCAN 96.4% 77.8% 3.4%
Density Peaks 96.5% 76.1% 3.5%

Canopy + Kmeans 96.9% 91.8% 3.1%

We can see that the performance of the AULD architecture is lower than that of the supervised
learning algorithm(shows in Figure 8). However, our algorithms perform better when compared
to unsupervised learning algorithms. It can be concluded that our detection framework has higher
detection performance in the absence of a label detection environment.
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4.5. Algorithm Complexity Comparison

This section compares the time complexity of the algorithms used in the same kind of work.
Table 7 shows the comparison structure in the following:

Table 7. Algorithm complexity comparison.

Time Complexity

Decision Tree O (n*M*D)
Logistic Regression O (n*C*I)

DBSCAN O (nˆ2)
Density Peaks O (nˆ2*logn)

Canopy + Kmeans O (n*c*q*2*k/p)

In Table 7, n represents the number of samples, C for a single sample, I for the number of iterations
depends on the speed of convergence. M is the number of features, and D is the depth of the tree. The
remaining elements can be viewed in 3.4. It can be seen that our algorithm is superior to the supervised
learning algorithm in time complexity. It can be seen that the accuracy is superior to the unsupervised
learning algorithm from the experimental results.

4.6. Internal Problem

We filtered the high frequency access domain names located on the internal network. In the
past attack cases, there are cases in which an attacker first sneaked into the internal network through
the host managed by the internal network and attacked the target network segment through the
internal network.

Accordingly, we re-added the filtered internal network data to our test data set and ran our test
framework on this data set after completing all of the above experiments. The experiments’ results are
shown in the following Table 8:
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Table 8. Readd internal network data comparison.

Input Data Malicious Domain Names Dectected

Internal domain contained 11896 1689
Internal domain not contained 9068 1462

The test results show that there is a malicious domain name in the internal network, but the
malicious behavior we detect is very rare because of the huge amount of white data. In this way, we
can improve the model and data characterization in future research.

4.7. The Conclusion of Experiment

The experiments’ results show that the framework we proposed can effectively detect the
suspicious domains in APT activities, and the security experts can further detect the domains in the list
of suspicious domains to find the whole APT process. We compare the different clustering algorithms
in the WEKA and choose the most popular K-means. We set the number of subsets of the clustering
results of Canopy as the K value. The effect of the algorithm, combined with Canopy and K-means, is
better than other clustering algorithms. According to the results, we can see that the framework AULD
can effectively put the domains that correspond to the features of APT among the large number of
domains into one category. Security experts can preferentially analyze these domains and interrupt
APT activities as soon as possible to reduce the loss.

5. Conclusions

We propose a framework AULD, which is a method that assists in detecting suspicious domains in
APT attacks since an APT attack has its time locality feature and unsupervised learning can effectively
solve the problem that the samples with ground truth (labeled) are few. The list of suspicious domains
output finally can help security officers to find and restore the entire APT attack process faster. AULD
extracts features that are related to host, domain, and time in DNS request data, and it uses unsupervised
machine learning to cluster to provide a list of suspicious domains. In this paper, we just propose an
auxiliary method, and it cannot detect the complete process of an APT attack. In the future work, we
will restore the entire APT attack process through the analysis of associated logs and the method that
we proposed in this paper.
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