
sensors

Article

A Sensorless and Low-Gain Brushless DC Motor
Controller Using a Simplified Dynamic Force
Compensator for Robot Arm Application

Shih-Hsiang Yen 1, Pei-Chong Tang 2, Yuan-Chiu Lin 2 and Chyi-Yeu Lin 1,3,4,*
1 Department of Mechanical Engineering, National Taiwan University of Science and Technology,

Taipei 106, Taiwan
2 Ubiqelife Technology Corporation, Jhubei City, Hsinchu 302, Taiwan
3 Taiwan Building Technology Center, National Taiwan University of Science and Technology,

Taipei 106, Taiwan
4 Center for Cyber-Physical System, National Taiwan University of Science and Technology, Taipei 106, Taiwan
* Correspondence: jerrylin@mail.ntust.edu.tw

Received: 14 June 2019; Accepted: 16 July 2019; Published: 18 July 2019
����������
�������

Abstract: Robot arms used for service applications require safe human–machine interactions; therefore,
the control gain of such robot arms must be minimized to limit the force output during operation,
which slows the response of the control system. To improve cost efficiency, low-resolution sensors
can be used to reduce cost because the robot arms do not require high precision of position sensing.
However, low-resolution sensors slow the response of closed-loop control systems, leading to low
accuracy. Focusing on safety and cost reduction, this study proposed a low-gain, sensorless Brushless
DC motor control architecture, which performed position and torque control using only Hall-effect
sensors and a current sensor. Low-pass filters were added in servo controllers to solve the sensing
problems of undersampling and noise. To improve the control system’s excessively slow response,
we added a dynamic force compensator in the current controllers, simplified the system model,
and conducted tuning experiments to expedite the calculation of dynamic force. These approaches
achieved real-time current compensation, and accelerated control response and accuracy. Finally,
a seven-axis robot arm was used in our experiments and analyses to verify the effectiveness of
the simplified dynamic force compensators. Specifically, these experiments examined whether the
sensorless drivers and compensators could achieve the required response and accuracy while reducing
the control system’s cost.

Keywords: sensorless; Hall-effect sensors; dynamic compensator; low-gain control; low-pass filter;
real-time control

1. Introduction

Industrial robots have been developed for decades and have served as a solution for the two
automation insufficiencies: Quality uniformity and labor force. The number of robot arms in service
applications is expected to exceed those in industrial applications by 2020 [1]. However, large-scale
robot arm applications have not been observed in the service domain because their characteristics of
quickness and high precision are accompanied by drawbacks of heaviness, low payload-to-weight
ratio, and high risk. Robot arms used for service applications (hereafter referred to as service robots)
do not require the same specifications as industrial robots; they instead emphasize mobility and
safety of human–robot interaction [2]. In 2006, KUKA (Germany) launched the first lightweight robot
arm, (LWR) [3]; the LWR’s elastic joint design [4], which incorporates torque sensors and provides
safe control, has influenced various subsequent collaborative robot designs, such as the UR Robot

Sensors 2019, 19, 3171; doi:10.3390/s19143171 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-8931-7650
http://www.mdpi.com/1424-8220/19/14/3171?type=check_update&version=1
http://dx.doi.org/10.3390/s19143171
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 3171 2 of 20

(Universal Robots) and YuMi (ABB). However, despite the effective and safe control provided by
the LWR design, its unique structure combining elastic joints and numerous sensors leads to high
production cost, thus failing to achieve a favorable cost–performance ratio and limiting its service
applications. A service robot does not require high-precision position control; thus, fewer sensors
are required for service robots than for industrial robots. For example, replacing the encoders of
position sensors with Hall-effect sensors can reduce the amount of additional sensor installation
required; therefore, such robot arms exhibit lower production costs and wider potential applications in
service domains.

Studies related to sensorless control of Brushless Direct Current (BLDC) motors have used
Hall-effect sensors to perform motor position and speed control, although the low-resolution Hall
sensors may result in signal undersampling. The majority of research, shown in Table 1, proposed
the incorporation of low-pass filters in control as a solution for undersampling and noise but resulted
in signal phase delay problems. The signal delay may be ignored or not apparent in the high-speed
application, such as in [5]. In contrast, the delay issue in the low-speed application significantly
reduced control accuracy. The compensator was an excellent way to solve the issue of signal delay.
In Refs. [6–9], they designed compensator based on system models and experiments to achieve an
excellent control effect in the simple or no-load system. However, this sensorless control study has
not been applied in robot arm application, because their inherent problems of signal delay and low
response prohibit the real-time control required by complicated dynamic robot systems.

Table 1. Comparison of sensorless Brushless Direct Current (BLDC) motor control research.

References [6] [7] [8] [9] Proposed Approach

Speed range (rpm) 19–4600 20–1000 1000–4800 200–3000 100–1000
Filter Low-pass filter Low-pass filter Low-pass filter Low-pass filter Low-pass filter

Motor poles 4 4 4 4 4

Application No load Petroleum
drilling system

Driveline
system No load Robot arm

Solution of
phase-delay

Flux linkage
threshold

Adaptive
compensation

Active
compensation

Novel speed
calculation

Dynamic
compensation

Service robots share workspaces with their users; therefore, for safety at work, such robots should
have limited velocity (<250 mm/s) and control force in robot motion [10]. Low-gain control is a safe
control approach that avoids producing excessive unspecified forces, but low-gain control exhibits
insufficient torque, which can lead to slow control response and low dynamic accuracy. Given a
system model, the open-loop control approach can provide an excellent control response [11] and
directly control motors in advance without any sensors providing status feedback. For example,
current feedforward controllers can enhance the response of dynamic control. In Refs [12,13], they have
incorporated robot dynamic equations into a robot controller to get better performance. However, these
researches require a highly accurate system model, and the complex component configuration of robots
yields great difficulty in obtaining the numerous system parameters, such as the moment of inertia and
friction, etc. Moreover, the calculation of the dynamic equation involves complex multidimensional
matrix operations, which requires long coding times and high costs, making it mostly infeasible on
real-time robot control in reality.

Focusing on increasing control safety and reducing cost, we proposed a low-gain control
architecture equipped with sensorless drivers and dynamic force compensators. In our previous
research [14], we have presented a safety control method using dynamic compensators to detect an
external force. In this study, the proposed architecture is intended to solve the problems of delayed
signals in servo control and insufficient torque in low-gain control as well as to increase the dynamic
control response and position accuracy. To address the complexity of system models, we employed a
method to simplify dynamic equations and developed a controller to realize a seven-axis robot arm.

Sensors 2019, 19, 3171 3 of 20

Our experimental results proved the accuracy of the sensorless position control and confirmed that
this control architecture achieves the real-time motion control effectiveness required of service robots.

2. Sensorless Control Problems

This study used sensorless drivers to control BLDC motors for low-cost robot application. Only
Hall-effect sensors and a current sensor are used to perform position and current control. We have
designed three joint modules with BLDC motors and harmonic drives according to the required torque
(specifications presented in Table 2), with a minimum joint position resolution of smaller than 0.2◦.
To reduce the size of driver, this study used embedded drivers designed from a development board of
Field-Programmable Gate Array (FPGA). The driver dimension is 80 × 65 × 35 mm3 with a double-layer
power circuit board shown in Figure 1. Each driver controls two BLDC motors.

Table 2. Specification of 3-phase BLDC motors.

Parameter Type 1 Type 2 Type 3

Joint J1–J4 J5/J7 J6
Weight 1050 g 150 g 150 g
Voltage 24 V 24 V 24 V

Rated speed 1000 rpm 4840 rpm 4840 rpm
Rated current 3.6 A 3.26 A 3.26 A
Rated torque 0.6 N·m 0.13 N·m 0.13 N·m

Torque constant 0.16 N·m/A 0.037 N·m/A 0.037 N·m/A
Motor poles 4 pairs 8 pairs 8 pairs
Resolution 24 pulse/rev 48 pulse/rev 48 pulse/rev
Gear rate 1:80 1:50 1:120

Min. joint resolution 0.1875◦ 0.15◦ 0.0625◦

Max. joint speed 75◦/s 576◦/s 242◦/s

Sensors 2019, 19, x FOR PEER REVIEW 3 of 20

Our experimental results proved the accuracy of the sensorless position control and confirmed that
this control architecture achieves the real-time motion control effectiveness required of service robots.

2. Sensorless Control Problems

This study used sensorless drivers to control BLDC motors for low-cost robot application. Only
Hall-effect sensors and a current sensor are used to perform position and current control. We have
designed three joint modules with BLDC motors and harmonic drives according to the required
torque (specifications presented in Table 2), with a minimum joint position resolution of smaller than
0.2°. To reduce the size of driver, this study used embedded drivers designed from a development
board of Field-Programmable Gate Array (FPGA). The driver dimension is 80 × 65 × 35 mm3 with a
double-layer power circuit board shown in Figure 1. Each driver controls two BLDC motors.

Table 2. Specification of 3-phase BLDC motors.

Parameter Type 1 Type 2 Type 3
Joint J1–J4 J5/J7 J6

Weight 1050 g 150 g 150 g
Voltage 24 V 24 V 24 V

Rated speed 1000 rpm 4840 rpm 4840 rpm
Rated current 3.6 A 3.26 A 3.26 A
Rated torque 0.6 N·m 0.13 N·m 0.13 N·m

Torque constant 0.16 N·m/A 0.037 N·m/A 0.037 N·m/A
Motor poles 4 pairs 8 pairs 8 pairs
Resolution 24 pulse/rev 48 pulse/rev 48 pulse/rev
Gear rate 1:80 1:50 1:120

Min. joint resolution 0.1875° 0.15° 0.0625°
Max. joint speed 75°/s 576°/s 242°/s

(a) (b) (c)

Figure 1. Embedded Field-Programmable Gate Array (FPGA)/Digital Signal Processor (DSP) driver:
(a) layer1; (b) layer2; (c) assembled driver.

Hall sensors used in low-speed operation cause an undersampling problem, which results in
discontinuous and high-frequency oscillation; thus, they are unsuitable for highly adaptive
Proportional-Integral-Derivative (PID) controllers. Therefore, we propose in this chapter a low-pass
filter capable of velocity adaptation to solve this problem.

2.1. Low-Speed Control with Low-Pass Filter

Sensorless current control was performed using a single-phase current sensing approach [15],
which involved the use of only one current sensor and measuring phase Back Electromotive Force
(EMF) to predict the current of the BLDC motors. However, this approach measured only the
magnitude of current and could not detect current direction. To solve this problem, we adopted
reference values based on output voltage directions, but this approach also exhibited a problem;
when a current approached the zero-crossing point, the voltage led to high-frequency phase shifts,
which resulted in incorrect current detection.

Figure 1. Embedded Field-Programmable Gate Array (FPGA)/Digital Signal Processor (DSP) driver:
(a) layer1; (b) layer2; (c) assembled driver.

Hall sensors used in low-speed operation cause an undersampling problem, which results
in discontinuous and high-frequency oscillation; thus, they are unsuitable for highly adaptive
Proportional-Integral-Derivative (PID) controllers. Therefore, we propose in this chapter a low-pass
filter capable of velocity adaptation to solve this problem.

2.1. Low-Speed Control with Low-Pass Filter

Sensorless current control was performed using a single-phase current sensing approach [15],
which involved the use of only one current sensor and measuring phase Back Electromotive Force (EMF)
to predict the current of the BLDC motors. However, this approach measured only the magnitude of
current and could not detect current direction. To solve this problem, we adopted reference values
based on output voltage directions, but this approach also exhibited a problem; when a current
approached the zero-crossing point, the voltage led to high-frequency phase shifts, which resulted in
incorrect current detection.

Sensors 2019, 19, 3171 4 of 20

To obtain the motor velocity in sensorless control, the position feedback information must be
changed for each sample. With an assumption that the motor’s control resolution is n [pulse/rev],
the sampling frequency is fs [Hz], the minimum detectable velocity v [rpm] is given by (1). After
substitution of detectable velocity range, which is 100–1000 rpm, and the Type 1 motor’s (Table 1)
resolution into the equation, the sampling frequency must be 40–400 Hz.

v =
fs
n
× 60 (1)

With the position resolution constant, this study changed the sampling frequency to solve these
problems of speed and current detection [9]; we designed a Low-Pass Filter (LPF), which adjusted the
sampling frequency fs according to the velocity command v, as presented in (2) where kT is sampling
gain. The LPF could adapt to a wide range of velocity control and stabilize velocity signals by adjusting
sampling frequency, also it can filter out high-frequency noises or oscillations from current signals.

fs = kT |v| (2)

This study incorporated three LPFs into the current controller and velocity controller to solve the
signal discontinuity and high-frequency noise. The controller architecture on FPGA driver is shown
in Figure 2. In current control, the LPF filtered out high-frequency noises and oscillations. Figure 3
compares the voltage signal outputs with and without the LPF. In velocity control, one LPF filtered the
discontinuous signal on the velocity feedback and the other LPF smoothed the output signal on the
velocity controller. Figure 4 compares the outputs with and without the LPF, thus producing more
stable and comprehensive output signals in low-speed operation.

Sensors 2019, 19, x FOR PEER REVIEW 4 of 20

To obtain the motor velocity in sensorless control, the position feedback information must be
changed for each sample. With an assumption that the motor’s control resolution is n [pulse/rev], the
sampling frequency is 𝑓௦ [Hz], the minimum detectable velocity 𝑣 [rpm] is given by (1). After
substitution of detectable velocity range, which is 100–1000 rpm, and the Type 1 motor’s (Table 1)
resolution into the equation, the sampling frequency must be 40–400 Hz. 𝑣 = 𝑓௦𝑛 × 60 (1)

With the position resolution constant, this study changed the sampling frequency to solve these
problems of speed and current detection [9]; we designed a Low-Pass Filter (LPF), which adjusted
the sampling frequency 𝑓௦ according to the velocity command 𝑣, as presented in (2) where 𝑘் is
sampling gain. The LPF could adapt to a wide range of velocity control and stabilize velocity signals
by adjusting sampling frequency, also it can filter out high-frequency noises or oscillations from
current signals. 𝑓௦ = 𝑘்|𝑣| (2)

This study incorporated three LPFs into the current controller and velocity controller to solve
the signal discontinuity and high-frequency noise. The controller architecture on FPGA driver is
shown in Figure 2. In current control, the LPF filtered out high-frequency noises and oscillations.
Figure 3 compares the voltage signal outputs with and without the LPF. In velocity control, one LPF
filtered the discontinuous signal on the velocity feedback and the other LPF smoothed the output
signal on the velocity controller. Figure 4 compares the outputs with and without the LPF, thus
producing more stable and comprehensive output signals in low-speed operation.

Figure 2. Servo control diagram on FPGA driver.

Figure 3. Voltage signal output on current controller.

Figure 2. Servo control diagram on FPGA driver.

Sensors 2019, 19, x FOR PEER REVIEW 4 of 20

To obtain the motor velocity in sensorless control, the position feedback information must be
changed for each sample. With an assumption that the motor’s control resolution is n [pulse/rev], the
sampling frequency is 𝑓௦ [Hz], the minimum detectable velocity 𝑣 [rpm] is given by (1). After
substitution of detectable velocity range, which is 100–1000 rpm, and the Type 1 motor’s (Table 1)
resolution into the equation, the sampling frequency must be 40–400 Hz. 𝑣 = 𝑓௦𝑛 × 60 (1)

With the position resolution constant, this study changed the sampling frequency to solve these
problems of speed and current detection [9]; we designed a Low-Pass Filter (LPF), which adjusted
the sampling frequency 𝑓௦ according to the velocity command 𝑣, as presented in (2) where 𝑘் is
sampling gain. The LPF could adapt to a wide range of velocity control and stabilize velocity signals
by adjusting sampling frequency, also it can filter out high-frequency noises or oscillations from
current signals. 𝑓௦ = 𝑘்|𝑣| (2)

This study incorporated three LPFs into the current controller and velocity controller to solve
the signal discontinuity and high-frequency noise. The controller architecture on FPGA driver is
shown in Figure 2. In current control, the LPF filtered out high-frequency noises and oscillations.
Figure 3 compares the voltage signal outputs with and without the LPF. In velocity control, one LPF
filtered the discontinuous signal on the velocity feedback and the other LPF smoothed the output
signal on the velocity controller. Figure 4 compares the outputs with and without the LPF, thus
producing more stable and comprehensive output signals in low-speed operation.

Figure 2. Servo control diagram on FPGA driver.

Figure 3. Voltage signal output on current controller. Figure 3. Voltage signal output on current controller.

Sensors 2019, 19, 3171 5 of 20Sensors 2019, 19, x FOR PEER REVIEW 5 of 20

Figure 4. Current signal output on velocity controller.

2.2. Phase Delay Problem

We added three LPFs in the closed-loop controllers to produce smooth and continuous output
signals. However, these filters increase the sampling period and thus caused signal phase delay.
Based on our experiment, the current output exhibited a phase delay of approximately 50–500 ms
under different velocities. Such delay slowed the response of the closed-loop control and reduced the
accuracy of dynamic control.

To accelerate the controller’s response, we added a velocity feedforward controller, which
provided compensation through velocity commands, thus reducing the controller delay caused by
the LPFs. Since the operation of the current feedforward controller required force information
obtainable only from the robot arm motion, the current feedforward controller could not operate
separately in each single-axis driver.

3. Simplified Robot Dynamic Compensator

Robot arms are nonlinear systems whose parameters are highly complex and difficult to obtain.
Therefore, dynamic force calculation in a program is difficult and entails high costs and long
calculation times. This chapter discusses the approaches we used to reduce development cost, namely
simplifying the dynamic models and reducing the number of parameters, and how we increased the
accuracy of the model parameters by experiments.

3.1. Robot Dynamic Model

The ideal dynamic model of an n-joint manipulator can be written in the Lagrangian form as
[16]: 𝑀ሺ𝑞ሻ𝑞ሷ + 𝐶ሺ𝑞, 𝑞ሶ ሻ𝑞ሶ + 𝐺ሺ𝑞ሻ = 𝜏 (3)
where 𝑞 ∈ ℝ௡×ଵ is the joint variable vector [rad], 𝜏 ∈ ℝ௡×ଵ is the vector of generalized torque [N∙m], 𝑀ሺ𝑞ሻ ∈ ℝ௡×௡ is the inertia matrix [kg∙ mଶ], 𝐶ሺ𝑞, 𝑞ሶ ሻ𝑞ሶ ∈ ℝ௡×ଵ is the vector of Coriolis and centripetal
torque [N∙m], and 𝐺ሺ𝑞ሻ ∈ ℝ௡×ଵ is the vector of gravity torque [N∙m]. Under single-joint motor
steady-state operation [17], electromagnetic torque will be counter-balanced by load torque, inertia
torque, and friction torque as Figure 5. Therefore, 𝑀௠𝜃ሷ௠ + 𝐵௠𝜃ሶ௠ = 𝜏௘ − 𝜏௟𝑟 (4)

Figure 4. Current signal output on velocity controller.

2.2. Phase Delay Problem

We added three LPFs in the closed-loop controllers to produce smooth and continuous output
signals. However, these filters increase the sampling period and thus caused signal phase delay. Based
on our experiment, the current output exhibited a phase delay of approximately 50–500 ms under
different velocities. Such delay slowed the response of the closed-loop control and reduced the accuracy
of dynamic control.

To accelerate the controller’s response, we added a velocity feedforward controller, which provided
compensation through velocity commands, thus reducing the controller delay caused by the LPFs.
Since the operation of the current feedforward controller required force information obtainable only
from the robot arm motion, the current feedforward controller could not operate separately in each
single-axis driver.

3. Simplified Robot Dynamic Compensator

Robot arms are nonlinear systems whose parameters are highly complex and difficult to obtain.
Therefore, dynamic force calculation in a program is difficult and entails high costs and long calculation
times. This chapter discusses the approaches we used to reduce development cost, namely simplifying
the dynamic models and reducing the number of parameters, and how we increased the accuracy of
the model parameters by experiments.

3.1. Robot Dynamic Model

The ideal dynamic model of an n-joint manipulator can be written in the Lagrangian form as [16]:

M(q)
..
q + C

(
q,

.
q
) .
q + G(q) = τ (3)

where q ∈ Rn×1 is the joint variable vector [rad], τ ∈ Rn×1 is the vector of generalized torque [N·m],
M(q) ∈ Rn×n is the inertia matrix [kg·m2], C

(
q,

.
q
) .
q ∈ Rn×1 is the vector of Coriolis and centripetal

torque [N·m], and G(q) ∈ Rn×1 is the vector of gravity torque [N·m]. Under single-joint motor
steady-state operation [17], electromagnetic torque will be counter-balanced by load torque, inertia
torque, and friction torque as Figure 5. Therefore,

Mm
..
θm + Bm

.
θm = τe −

τl
r

(4)

Sensors 2019, 19, 3171 6 of 20

q = θs =
θm

r
(5)

where τe is the electromagnetic torque, τl is the load torque [N·m], Mm is the inertia constant of the
rotor and coupled shaft [kg·m2], Bm is the friction constant factor [N·m·s/rad], θm is the motor ration
angle [rad], θs is the joint ration angle [rad], and r is the gear ratio.

Sensors 2019, 19, x FOR PEER REVIEW 6 of 20

𝑞 = 𝜃௦ = 𝜃௠𝑟 (5)

where 𝜏௘ is the electromagnetic torque, 𝜏௟ is the load torque [N∙m], 𝑀௠ is the inertia constant of
the rotor and coupled shaft [kg∙ mଶ], 𝐵௠ is the friction constant factor [N∙m∙s/rad], 𝜃௠ is the motor
ration angle [rad], 𝜃௦ is the joint ration angle [rad], and 𝑟 is the gear ratio.

Figure 5. Lumped model of a single link with actuator/gear train.

Using (4) and (5), which expands calculation from a single-joint to n-joint, into (3), we obtain the
motor dynamic Equation (6), where 𝑀ሺ𝑞ሻ, 𝐶ሺ𝑞, 𝑞ሶ ሻ, and 𝐺ሺ𝑞ሻ are related to posture and motion of
the robot arm, and 𝑀௠ ∈ ℝ௡×௡ and 𝐵௠ ∈ ℝ௡×௡ are the constant matrices of motors. In the constant
loading application, the dynamic inertia, Coriolis/centripetal, and gravity torque can be ignored.
However, the serial robot arm has drastic changes in dynamic inertia and gravity torque with
different postures. Therefore, the electromagnetic torque must be real-time calculated from each joint
position feedback and robot arm model.

𝜏௘ = ቆ𝑀௠ + 𝑀ሺ𝑞ሻ𝑟ଶ ቇ 𝜃ሷ௠ + ቆ𝐵௠ + 𝐶ሺ𝑞, 𝑞ሶ ሻ𝑟ଶ ቇ 𝜃ሶ௠ + 𝐺ሺ𝑞ሻ𝑟 (6)

3.2. Simplified Robot Dynamic Model

The design of robot arms entails many parts of various materials and shapes, which reduce the
accuracy of system model estimation [18], and requires numerous system parameters and a complex
process to calculate dynamic force. To reduce the difficulty of obtaining and calculating system
parameters, this study simplified a robot arm’s continuous mass model into mass points system
according to its link system (Figure 6). To account for inertia and gravity torque calculation, this study
adopted the Universal Robot Description Format (URDF) [19] to define the robot arms’ coordinate
system (Table 3). To simplify relevant definitions in the URDF model, the coordinate directions of
each joint are set to be the same directions as the world coordinate system. In Table 3, X, Y, and Z
represent the offset of each joint coordinate, M refers to the mass of the link, CM denotes the offset of
a link’s center of mass from the joint coordinate, and R gives the rotational directions of the motors.
This study used a robot arm under a no-loading condition; the mass of Link 7 and center of mass
could be adjusted if grippers or any other components were installed on the end-effector.

Figure 5. Lumped model of a single link with actuator/gear train.

Using (4) and (5), which expands calculation from a single-joint to n-joint, into (3), we obtain the
motor dynamic Equation (6), where M(q), C

(
q,

.
q
)
, and G(q) are related to posture and motion of the

robot arm, and Mm ∈ Rn×n and Bm ∈ Rn×n are the constant matrices of motors. In the constant loading
application, the dynamic inertia, Coriolis/centripetal, and gravity torque can be ignored. However,
the serial robot arm has drastic changes in dynamic inertia and gravity torque with different postures.
Therefore, the electromagnetic torque must be real-time calculated from each joint position feedback
and robot arm model.

τe =

(
Mm +

M(q)
r2

)
..
θm +

Bm +
C
(
q,

.
q
)

r2

 .
θm +

G(q)
r

(6)

3.2. Simplified Robot Dynamic Model

The design of robot arms entails many parts of various materials and shapes, which reduce the
accuracy of system model estimation [18], and requires numerous system parameters and a complex
process to calculate dynamic force. To reduce the difficulty of obtaining and calculating system
parameters, this study simplified a robot arm’s continuous mass model into mass points system
according to its link system (Figure 6). To account for inertia and gravity torque calculation, this study
adopted the Universal Robot Description Format (URDF) [19] to define the robot arms’ coordinate
system (Table 3). To simplify relevant definitions in the URDF model, the coordinate directions of
each joint are set to be the same directions as the world coordinate system. In Table 3, X, Y, and Z
represent the offset of each joint coordinate, M refers to the mass of the link, CM denotes the offset of a
link’s center of mass from the joint coordinate, and R gives the rotational directions of the motors. This
study used a robot arm under a no-loading condition; the mass of Link 7 and center of mass could be
adjusted if grippers or any other components were installed on the end-effector.

To calculate the moment of inertia, this study simplified the parallel axis theorem according to
mass points system as shown in Figure 7, where IP is the inertia of point P, ICM is the default inertia
based on the center of mass, such as that of a motor rotor and all structures, m is mass, and d is the
offset between the link’s center of mass and point P. This moment of inertia was difficult to obtain
through models; therefore, we conducted experiments to obtain these moments of inertia.

Sensors 2019, 19, 3171 7 of 20
Sensors 2019, 19, x FOR PEER REVIEW 7 of 20

Figure 6. Simplified mass-point model on a seven-axis robot.

Table 3. Universal Robot Description Format (URDF) table of a seven-axis robot arm.

Joint X [mm] Y [mm] Z [mm] M [kg] CM [mm] R [axis]
J1 0.0 0.0 156.0 2.95 31.0 Z
J2 0.0 0.0 58.5 2.17 43.7 −Y
J3 0.0 0.0 63.5 4.35 147.7 −Z
J4 0.0 0.0 229.5 2.43 86.6 −Y
J5 0.0 0.0 222.4 1.24 48.5 Z
J6 15.0 0.0 53.0 1.07 70.5 Y
J7 0.0 0.0 110.7 0.0 0.0 Z

CM = Center of Mass.

To calculate the moment of inertia, this study simplified the parallel axis theorem according to
mass points system as shown in Figure 7, where IP is the inertia of point P, ICM is the default inertia
based on the center of mass, such as that of a motor rotor and all structures, m is mass, and d is the
offset between the link’s center of mass and point P. This moment of inertia was difficult to obtain
through models; therefore, we conducted experiments to obtain these moments of inertia.

Figure 7. Simplification of the parallel axis theorem.

Dynamic inertia changes with the center of mass offsets; only the inertia component on the motor
from offset (𝑑௞௜) is considered, which was projected from 𝑟௞పሬሬሬሬ⃑ onto the motors’ rotation plane. Figure
8 shows an example for inertia calculation on Joint 1. Calculation of the two elements’ inertia was

Figure 6. Simplified mass-point model on a seven-axis robot.

Table 3. Universal Robot Description Format (URDF) table of a seven-axis robot arm.

Joint X [mm] Y [mm] Z [mm] M [kg] CM [mm] R [axis]

J1 0.0 0.0 156.0 2.95 31.0 Z
J2 0.0 0.0 58.5 2.17 43.7 −Y
J3 0.0 0.0 63.5 4.35 147.7 −Z
J4 0.0 0.0 229.5 2.43 86.6 −Y
J5 0.0 0.0 222.4 1.24 48.5 Z
J6 15.0 0.0 53.0 1.07 70.5 Y
J7 0.0 0.0 110.7 0.0 0.0 Z

CM = Center of Mass.

Sensors 2019, 19, x FOR PEER REVIEW 7 of 20

Figure 6. Simplified mass-point model on a seven-axis robot.

Table 3. Universal Robot Description Format (URDF) table of a seven-axis robot arm.

Joint X [mm] Y [mm] Z [mm] M [kg] CM [mm] R [axis]
J1 0.0 0.0 156.0 2.95 31.0 Z
J2 0.0 0.0 58.5 2.17 43.7 −Y
J3 0.0 0.0 63.5 4.35 147.7 −Z
J4 0.0 0.0 229.5 2.43 86.6 −Y
J5 0.0 0.0 222.4 1.24 48.5 Z
J6 15.0 0.0 53.0 1.07 70.5 Y
J7 0.0 0.0 110.7 0.0 0.0 Z

CM = Center of Mass.

To calculate the moment of inertia, this study simplified the parallel axis theorem according to
mass points system as shown in Figure 7, where IP is the inertia of point P, ICM is the default inertia
based on the center of mass, such as that of a motor rotor and all structures, m is mass, and d is the
offset between the link’s center of mass and point P. This moment of inertia was difficult to obtain
through models; therefore, we conducted experiments to obtain these moments of inertia.

Figure 7. Simplification of the parallel axis theorem.

Dynamic inertia changes with the center of mass offsets; only the inertia component on the motor
from offset (𝑑௞௜) is considered, which was projected from 𝑟௞పሬሬሬሬ⃑ onto the motors’ rotation plane. Figure
8 shows an example for inertia calculation on Joint 1. Calculation of the two elements’ inertia was

Figure 7. Simplification of the parallel axis theorem.

Dynamic inertia changes with the center of mass offsets; only the inertia component on the motor
from offset (dki) is considered, which was projected from

⇀
rki onto the motors’ rotation plane. Figure 8

shows an example for inertia calculation on Joint 1. Calculation of the two elements’ inertia was
simplified as ka0 + kaMk, where ka0 is a constant inertia coefficient, ka is a dynamic inertia coefficient,
and Mk is the dynamic inertia of kth joint, as presented in (7).

Mk =
7∑

i=k

mi·dki
2 =

7∑
i=k

mi·

∣∣∣∣⇀rki ×
⇀
εk

∣∣∣∣2 (7)

Sensors 2019, 19, 3171 8 of 20

Sensors 2019, 19, x FOR PEER REVIEW 8 of 20

simplified as 𝑘௔଴ + 𝑘௔𝑀௞ , where 𝑘௔଴ is a constant inertia coefficient, 𝑘௔ is a dynamic inertia
coefficient, and 𝑀௞ is the dynamic inertia of 𝑘௧௛ joint, as presented in (7).

𝑀௞ = ෍ 𝑚௜ ∙ 𝑑௞௜ଶ଻
௜ୀ௞ = ෍ 𝑚௜ ∙ |𝑟௞పሬሬሬሬ⃑ × 𝜀௞ሬሬሬ⃑ |ଶ଻

௜ୀ௞ (7)

Figure 8. Dynamic inertia calculation of kth joint (example for k = 1, i = 6).

Regarding the calculation of gravity torque, we calculate only the torque based on each link’s
center of mass projection on the motors’ rotation direction. Specifically, gravity torque was simplified
as 𝑘௚𝐺௞, where 𝑘௚ is a gravity coefficient and 𝐺௞ is the gravity torque of kth joint. In Equations (7)
and (8), 𝑟௞పሬሬሬሬ⃑ refers to the vector from kth joint to ith link’s center of mass, 𝑚௜ is the mass of ith link, 𝑔⃑ denotes gravitational acceleration, and 𝜀௞ሬሬሬ⃑ is the unit vector of kth joint’s rotating direction.

𝐺௞ = ෍ሺ𝑟௞పሬሬሬሬ⃑ × 𝑚௜𝑔⃑ሻ ∙଻
௜ୀ௞ 𝜀௞ሬሬሬ⃑ (8)

According to Equation (9), Coriolis and centripetal torques are related to the partial differentials
of inertia [20]. In this study, the robot arm’s lightweight structural design produced relatively small
inertia in its links, thus minimizing the influence on the arm’s overall motion. To favor calculation
efficiency, this study disregarded the compensation for Coriolis and centripetal torques.

𝐶௜௝ሺ𝑞, 𝑞ሶ ሻ = 12 ෍ሺ௡
௞ୀଵ

𝜕𝑀௜௝𝜕𝜃௞ + 𝜕𝑀௜௞𝜕𝜃௝ − 𝜕𝑀௞௝𝜕𝜃௜ ሻ𝜃௞ሶ (9)

A friction identification experiment conducted by Wolf et al. [21] revealed that the friction in
joint mechanisms was a complex nonlinear system; therefore, considering calculation efficiency, we
employed a simplified friction Equation (10), where 𝑞ሶ is the motor angular velocity, 𝑘௩଴ and 𝑘௩
are the coefficients of Coulomb friction and viscous friction, respectively. These two coefficients can
be obtained through experiments. 𝐵௠ = 𝑘௩଴sgnሺ𝑞ሶ ሻ + 𝑘௩𝑞ሶ (10)

Using the simplified process, we further simplified (6) as a new motor dynamic Equation (11),
in which only dynamic inertia (𝑀௞) and gravity (𝐺௞) require kinematic model calculation; other
simplified coefficients could be obtained through experiments as shown in Table 4. Accordingly, our
simplification approach reduced calculation process and improved the efficiency of program
execution. 𝜏ௗ = ሺ𝑘௔଴ + 𝑘௔𝑀௞ሻ𝑞ሷ + 𝑘௩଴sgnሺ𝑞ሶ ሻ + 𝑘௩𝑞ሶ + 𝑘௚𝐺௞ (11)

Figure 8. Dynamic inertia calculation of kth joint (example for k = 1, i = 6).

Regarding the calculation of gravity torque, we calculate only the torque based on each link’s
center of mass projection on the motors’ rotation direction. Specifically, gravity torque was simplified
as kgGk, where kg is a gravity coefficient and Gk is the gravity torque of kth joint. In Equations (7) and

(8),
⇀
rki refers to the vector from kth joint to ith link’s center of mass, mi is the mass of ith link,

⇀
g denotes

gravitational acceleration, and
⇀
εk is the unit vector of kth joint’s rotating direction.

Gk =
7∑

i=k

(⇀
rki ×mi

⇀
g
)
·
⇀
εk (8)

According to Equation (9), Coriolis and centripetal torques are related to the partial differentials
of inertia [20]. In this study, the robot arm’s lightweight structural design produced relatively small
inertia in its links, thus minimizing the influence on the arm’s overall motion. To favor calculation
efficiency, this study disregarded the compensation for Coriolis and centripetal torques.

Ci j
(
q,

.
q
)
=

1
2

n∑
k=1

(
∂Mi j

∂θk
+
∂Mik
∂θ j

−
∂Mkj

∂θi
)

.
θk (9)

A friction identification experiment conducted by Wolf et al. [21] revealed that the friction in
joint mechanisms was a complex nonlinear system; therefore, considering calculation efficiency,
we employed a simplified friction Equation (10), where

.
q is the motor angular velocity, kv0 and kv are

the coefficients of Coulomb friction and viscous friction, respectively. These two coefficients can be
obtained through experiments.

Bm = kv0sgn
(.
q
)
+ kv

.
q (10)

Using the simplified process, we further simplified (6) as a new motor dynamic Equation (11),
in which only dynamic inertia (Mk) and gravity (Gk) require kinematic model calculation; other
simplified coefficients could be obtained through experiments as shown in Table 4. Accordingly, our
simplification approach reduced calculation process and improved the efficiency of program execution.

τd = (ka0 + kaMk)
..
q + kv0sgn

(.
q
)
+ kv

.
q + kgGk (11)

Sensors 2019, 19, 3171 9 of 20

Table 4. Coefficient definition on the dynamic equation.

Physical Coefficient

Default moment of inertia ka
Dynamic moment of inertia ka0

Viscous friction kv
Coulomb friction kv0

Gravity torque kg

3.3. Simplified Dynamic Force Compensator Design

In Equation (11), state information is represented by motor position (q), velocity (
.
q), and acceleration

(
..
q) and is usually obtained through the following two approaches.

(a) Control commands: These calculate trajectories offline in advance and generate continuous and
smooth signals [12,22]; however, they cannot reflect the real state of systems when excessively
large errors occur.

(b) Sensor feedback: This facilitates obtaining real-time state information but requires additional
high-resolution sensors, such as accelerometers [23] and high-speed communication systems.
This study employed only low-resolution position sensors, and thus approach (b) was not feasible.
Moreover, in approach (a), the low-gain controller possessed large errors on differences between
sensor feedback and command. To solve these problems, we proposed a hybrid approach (c).

(c) Hybrid approach: A trajectory generator’s control commands are used to calculate velocity and
acceleration. Position states are feedback through sensors to facilitate real-time position updates
for each motor.

We substituted state information obtained through approach (c) into (11) and obtained (12),
which yielded a Simplified Dynamic Force Compensator (SDFC), as presented in Figure 9 [13]. In this
compensator, the calculations of dynamic inertia and gravity torque (Mk and Gk) by forward kinematics,
both of which require n-joint position information, are conducted separately in the robot controller
with a period of 20 ms as the green block in Figure 9. Other compensation calculations are conducted
in a FPGA driver operating with 1-ms interrupts. Under such a control system, the servo controller’s
torque output, τc, could be considered a, which is the sum of the external disturbance torque and the
error of the compensator’s computed torques.

τd = (ka0 + kaMk)
..
qd + kv0sign

(.
qd

)
+ kv

.
qd + kgGk (12)

Sensors 2019, 19, x FOR PEER REVIEW 9 of 20

Table 4. Coefficient definition on the dynamic equation.

Physical Coefficient
Default moment of inertia 𝑘௔

Dynamic moment of inertia 𝑘௔଴
Viscous friction 𝑘௩

Coulomb friction 𝑘௩଴
Gravity torque 𝑘௚

3.3. Simplified Dynamic Force Compensator Design

In Equation (11), state information is represented by motor position (q), velocity (𝑞ሶ), and
acceleration (𝑞ሷ) and is usually obtained through the following two approaches.

(a) Control commands: These calculate trajectories offline in advance and generate continuous and
smooth signals [12,22]; however, they cannot reflect the real state of systems when excessively
large errors occur.

(b) Sensor feedback: This facilitates obtaining real-time state information but requires additional
high-resolution sensors, such as accelerometers [23] and high-speed communication systems.

This study employed only low-resolution position sensors, and thus approach (b) was not
feasible. Moreover, in approach (a), the low-gain controller possessed large errors on differences
between sensor feedback and command. To solve these problems, we proposed a hybrid approach
(c).

(c) Hybrid approach: A trajectory generator’s control commands are used to calculate velocity and
acceleration. Position states are feedback through sensors to facilitate real-time position updates
for each motor.

We substituted state information obtained through approach (c) into (11) and obtained (12),
which yielded a Simplified Dynamic Force Compensator (SDFC), as presented in Figure 9 [13]. In this
compensator, the calculations of dynamic inertia and gravity torque (𝑀௞ and 𝐺௞) by forward
kinematics, both of which require n-joint position information, are conducted separately in the robot
controller with a period of 20 ms as the green block in Figure 9. Other compensation calculations are
conducted in a FPGA driver operating with 1-ms interrupts. Under such a control system, the servo
controller’s torque output, 𝜏௖, could be considered a, which is the sum of the external disturbance
torque and the error of the compensator’s computed torques. 𝜏ௗ = ሺ𝑘௔଴ + 𝑘௔𝑀௞ሻ𝑞ሷௗ + 𝑘௩଴signሺ𝑞ሶௗሻ + 𝑘௩𝑞ሶௗ + 𝑘௚𝐺௞ (12)

Figure 9. Simplified Dynamic Force Compensator (SDFC) control diagram. Figure 9. Simplified Dynamic Force Compensator (SDFC) control diagram.

Sensors 2019, 19, 3171 10 of 20

4. Simplified Dynamic Force Compensator Tuning

In the SDFC design, we simplified system models by reducing the number of system parameters;
specifically, the robot controller calculates only the dynamic inertia and gravity torque by robot posture
model, and the FPGA driver facilitates adjustments in compensation gain through experiments, which
generate results more applicable to actual systems. The following sections discuss the experimental
design used to adjust the gain parameters in the SDFC.

4.1. Simplifying the Calculations of Moment of Inertia and Gravity Torque

Equations (7) and (8) expedited our calculations of dynamic inertia and gravity torque (Mk and Gk),
but the resulting floating-point number was excessively large for real-time communication and could not
be efficiently processed in the integral calculation of DSP in the FPGA driver. Therefore, we normalized
the calculated inertia and gravity, namely multiplying the calculated results by proportional coefficients
(PM and PG) to transform these results into integers from −100 to 100. Taking the seven-axis robot
arm as an example, the maximum result of each joint and proportional coefficients are presented in
Table 5. With no-load on end-effector, there was no dynamic inertia and gravity torque on Joint 7.
Proportional errors resulting from normalization could be reduced by adjusting the gains (ka and kg)
through experiments. Finally, the dynamic inertia and gravity torque are included in real-time control
commands, such as position and velocity command, between the robot controller and FPGA drivers
for updating real-time robot status.

Table 5. Maximum dynamic inertia and gravity torque.

Joint Mk [kg·m2] PM Gk [kg·m] PG

J1 1.3790 72.52 0 0
J2 1.3795 72.50 3.3165 30.15
J3 0.2377 420.70 0.9175 108.99
J4 0.2382 419.64 0.9175 108.99
J5 0.0081 12,345.68 0.1090 917.43
J6 0.0054 18,518.52 0.0758 1,319.26

4.2. Tuning Experiment with SDFC

To adjust the compensator’s gain, this study designed three experiments to measure the currents
when dynamic forces occur. We analyzed gravity, friction, and inertia torques separately for each joint
and adjusted the gain to generate a compensatory force that approximates the actual force of real robot
systems. The experimental steps for each joint were as follows:

(a) Gravity compensator tuning: the force resulting from gravity acting upon the robot arm changes
only with its posture; therefore, we first adjusted the gravity compensator. In the experiment,
we adjusted the robot joints to a posture that yielded the greatest gravity torque and obtained
a computed gravity parameter Gk of 100. A stable motor current ig under this posture was
measured and substituted into (13), which yielded a gravity gain kg.

ig = kgGk (13)

(b) Friction compensator tuning: after adjusting the gravity compensator, a gravity torque can be
disregarded in control processes; thus, the next step is friction compensator adjustment. Because
friction only occurs during the motion of motors and is positively related to velocity, we conducted
controlled experiments with constant velocity to measure servo currents and obtained average
currents i f under different velocities as the blue dots in Figure 10. Subsequently, the results were
used to conduct a linear regression analysis, which yielded two linear equations, namely the red
lines in Figure 10. Using (14), the two friction coefficients kv and kv0 could be obtained from the

Sensors 2019, 19, 3171 11 of 20

regression line as the slope and the y-intercept, respectively. Finally, the gain coefficients of the
two directions were averaged and incorporated into this step, and this process was repeated for
further adjustment.

i f =
[
kv0sgn

(.
q
)
+ kv

.
q
]

(14)

(c) Inertia compensator tuning: inertia force occurs only during the acceleration and deceleration
stages; because these two stages usually have short durations (<1 s) and suffer from current
signal delay, accurate current values are rarely obtained. Therefore, this study used a numerical
approximation to adjust inertia gains (ka and ka0) rather than using currents to predict them.
First, we generated a trajectory for a given acceleration. Under low-inertia conditions (mainly
default inertia), ka0 was adjusted to reduce the errors of servo currents in the acceleration and
deceleration intervals; under high-inertia conditions (mainly dynamic inertia), ka was adjusted to
the same step as ka0 adjustment. These two steps facilitated the inertia calculation in (15) to more
accurately approximate real systems.

iinertia = [ka0 + kaMk]
..
q (15)

Sensors 2019, 19, x FOR PEER REVIEW 11 of 20

𝑖௙ = ሾ𝑘௩଴𝑠𝑔𝑛ሺ𝑞ሶ ሻ + 𝑘௩𝑞ሶ ሿ (14)

Figure 10. Friction identification experiment.

(c) Inertia compensator tuning: inertia force occurs only during the acceleration and deceleration
stages; because these two stages usually have short durations (<1 s) and suffer from current
signal delay, accurate current values are rarely obtained. Therefore, this study used a numerical
approximation to adjust inertia gains (𝑘௔ and 𝑘௔଴) rather than using currents to predict them.
First, we generated a trajectory for a given acceleration. Under low-inertia conditions (mainly
default inertia), 𝑘௔଴ was adjusted to reduce the errors of servo currents in the acceleration and
deceleration intervals; under high-inertia conditions (mainly dynamic inertia), 𝑘௔ was adjusted
to the same step as 𝑘௔଴ adjustment. These two steps facilitated the inertia calculation in (15) to
more accurately approximate real systems. 𝑖୧୬ୣ୰୲୧ୟ = ሾ𝑘௔଴ + 𝑘௔𝑀௞ሿ𝑞ሷ (15)

Comprehensive force compensation was achieved after the three aforementioned adjustment
steps. For example, the position control results in Joint 2 is illustrated in Figure 11, in which the red
line represents SDFC’s output current, the blue line represents the servo controller’s output current,
and the black line represents the sum of these two’s output currents. Because the SDFC provided the
needed currents for motion, the servo controller was required only to reduce position errors; this
greatly reduced servo controller current output. The tuning experiments yielded the compensation
gains for the seven-axis SDFC; these are listed in Table 6.

Figure 11. Current output performance for Joint 2 with an SDFC.

Figure 10. Friction identification experiment.

Comprehensive force compensation was achieved after the three aforementioned adjustment
steps. For example, the position control results in Joint 2 is illustrated in Figure 11, in which the red
line represents SDFC’s output current, the blue line represents the servo controller’s output current,
and the black line represents the sum of these two’s output currents. Because the SDFC provided
the needed currents for motion, the servo controller was required only to reduce position errors; this
greatly reduced servo controller current output. The tuning experiments yielded the compensation
gains for the seven-axis SDFC; these are listed in Table 6.

Table 6. SFDC compensation gain.

Joint kg kv kv0 ka ka0

J1 0 40 145 200 50
J2 −1250 40 180 150 100
J3 −230 50 220 150 67
J4 −230 50 200 100 100
J5 −120 10 100 10 20
J6 −50 35 80 40 50
J7 0 30 160 0 30

Sensors 2019, 19, 3171 12 of 20

Sensors 2019, 19, x FOR PEER REVIEW 11 of 20

𝑖௙ = ሾ𝑘௩଴𝑠𝑔𝑛ሺ𝑞ሶ ሻ + 𝑘௩𝑞ሶ ሿ (14)

Figure 10. Friction identification experiment.

(c) Inertia compensator tuning: inertia force occurs only during the acceleration and deceleration
stages; because these two stages usually have short durations (<1 s) and suffer from current
signal delay, accurate current values are rarely obtained. Therefore, this study used a numerical
approximation to adjust inertia gains (𝑘௔ and 𝑘௔଴) rather than using currents to predict them.
First, we generated a trajectory for a given acceleration. Under low-inertia conditions (mainly
default inertia), 𝑘௔଴ was adjusted to reduce the errors of servo currents in the acceleration and
deceleration intervals; under high-inertia conditions (mainly dynamic inertia), 𝑘௔ was adjusted
to the same step as 𝑘௔଴ adjustment. These two steps facilitated the inertia calculation in (15) to
more accurately approximate real systems. 𝑖୧୬ୣ୰୲୧ୟ = ሾ𝑘௔଴ + 𝑘௔𝑀௞ሿ𝑞ሷ (15)

Comprehensive force compensation was achieved after the three aforementioned adjustment
steps. For example, the position control results in Joint 2 is illustrated in Figure 11, in which the red
line represents SDFC’s output current, the blue line represents the servo controller’s output current,
and the black line represents the sum of these two’s output currents. Because the SDFC provided the
needed currents for motion, the servo controller was required only to reduce position errors; this
greatly reduced servo controller current output. The tuning experiments yielded the compensation
gains for the seven-axis SDFC; these are listed in Table 6.

Figure 11. Current output performance for Joint 2 with an SDFC. Figure 11. Current output performance for Joint 2 with an SDFC.

4.3. Analysis of Phase Compensation

Before the incorporation of the SDFC, the phase delay in the control signals caused by the low-gain
controller and LPFs resulted in low-accuracy position control. For example, Figure 12 presents the result
of Joint 1’s position control (velocity of 60◦/s) and reveals that the closed-loop servo control without
SDFC leads to a delay of 50 ms and position error greater than 10◦ (blue line). After incorporating
the SDFC, the force compensator reduced the dynamic error to less than 1◦ (red line). Comparing the
current output results with and without the SDFC, current response was faster with compensation;
this verified that the SDFC increased control response and reduced dynamic error.

Sensors 2019, 19, x FOR PEER REVIEW 12 of 20

Table 6. SFDC compensation gain.

Joint 𝒌𝒈 𝒌𝒗 𝒌𝒗𝟎 𝒌𝒂 𝒌𝒂𝟎
J1 0 40 145 200 50
J2 −1250 40 180 150 100
J3 −230 50 220 150 67
J4 −230 50 200 100 100
J5 −120 10 100 10 20
J6 −50 35 80 40 50
J7 0 30 160 0 30

4.3. Analysis of Phase Compensation

Before the incorporation of the SDFC, the phase delay in the control signals caused by the low-
gain controller and LPFs resulted in low-accuracy position control. For example, Figure 12 presents
the result of Joint 1’s position control (velocity of 60°/s) and reveals that the closed-loop servo control
without SDFC leads to a delay of 50 ms and position error greater than 10° (blue line). After
incorporating the SDFC, the force compensator reduced the dynamic error to less than 1° (red line).
Comparing the current output results with and without the SDFC, current response was faster with
compensation; this verified that the SDFC increased control response and reduced dynamic error.

Figure 12. Results comparison with SDFC and closed-loop servo controller.

5. Real-Time System Framework

To achieve an efficient control effect and dynamic compensations, a robot controller must
transmit control information to each motor driver in real-time. The control frequency is usually set
higher than 1 kHz, and the controllers must be equipped with a Real-Time Operating System (RTOS)
and real-time communication to avoid system delays, which could cause discontinuity and further
delays.

This study used open-source software to design a real-time robot controller prioritizing low cost
and employed the Raspberry Pi 3 Module B (Raspberry Pi Foundation, Cambridge, UK) and Linux
Ubuntu MATE system accompanied by a Linux Xenomai 3 RTOS to establish a real-time platform.
This chapter explains the real-time architecture of our controller.

Figure 12. Results comparison with SDFC and closed-loop servo controller.

5. Real-Time System Framework

To achieve an efficient control effect and dynamic compensations, a robot controller must transmit
control information to each motor driver in real-time. The control frequency is usually set higher than
1 kHz, and the controllers must be equipped with a Real-Time Operating System (RTOS) and real-time
communication to avoid system delays, which could cause discontinuity and further delays.

Sensors 2019, 19, 3171 13 of 20

This study used open-source software to design a real-time robot controller prioritizing low cost
and employed the Raspberry Pi 3 Module B (Raspberry Pi Foundation, Cambridge, UK) and Linux
Ubuntu MATE system accompanied by a Linux Xenomai 3 RTOS to establish a real-time platform.
This chapter explains the real-time architecture of our controller.

5.1. RTOS–Xenomai

Xenomai [24] is an open-source RTOS provided on the Linux platform, uses a dual kernel
structure and Adaptive Domain Environment for Operating Systems (ADEOS) to manage cokernel and
user-kernel boundaries, which have high priority, and schedules real-time and non-real-time tasks in
CPU processing. While other RTOSs [25] focused on the lowest technically feasible latencies, Xenomai
also considers clean extensibility (RTOS skins), portability, and maintainability as very important goals.

Compared with a previous version, Xenomai 2.6, Xenomai 3 has improved performance of the
Cobalt kernel, which reduces latency to 10 µs on a CPU-stressed setup. It provides more skins and
classifies different application programming interface libraries according to their applications; it enables
users to select different skins according to their needs and simplify and expedite program design.
Regarding this study’s real-time controller, we used the Xenomai’s Native skin to design a real-time
motion control program. To facilitate real-time communication, we used the Real-time Drive Model
(RTDM) skin [26] to design a real-time communication architecture.

5.2. Real-Time Communication

A standard CANopen system (an industrial control network) [27] is equipped with two real-time
communications, namely CANbus and EtherCAT. In particular, CANbus exhibits low cost and high
anti-interference but has a short data length of 16 bytes; therefore, it is not suitable for real-time
multi-node control. EtherCAT demonstrates the advantage of high information throughput, indicating
its suitability for real-time multi-node control, but is costly in its hardware and communication chips.

Considering the aforementioned factors and attempting to build controllers and drivers into
the robot arm to reduce communication distance, we applied a Serial Peripheral Interface (SPI) bus
between a robot controller and FPGA drivers, designed a communication system, and simplified
transmitted data packets that contained synchronous and asynchronous transmissions such as each’s
position, velocity, and current.

Regarding SPI driver design, Linux provides SPI bus libraries; however, as a non-real-time
operating system, Linux resulted in an SPI communication frequency at 1 kHz, a jitter longer than
10,000 µs, and an average latency of 10 µs (Figure 13 [top]). The Linux drivers exhibited excessively long
latency and thus were not appropriate for robot systems requiring 1-ms control response. To achieve
real-time control, this study used Xenomai’s RTDM skin to design a real-time SPI driver, which had
a jitter shorter than 100 µs and an average latency of 0.5 µs (Figure 13 [bottom]). These features
indicated the SPI driver was appropriate for application in the communication architecture of a
real-time controller.

5.3. Real-Time Program Architecture

Focusing on controllers’ processing efficiency, we have separated their program tasks according
to their level of priority of real-time control. The non-real-time Linux kernel was responsible for
low priority tasks such as kinematic calculations, trajectory generation, and user interface display.
The Xenomai kernel was responsible for real-time SPI bus communications, control command
transmission, state information feedback, and synchronization of each joint’s motor state with the
drivers with a control period of 1 ms.

A bridge program between the two kernels was designed to facilitate inter-process communication;
namely, programs in the two kernels could operate independently during different periods, and their
program design could be developed independently. An FPGA-based DSP control system was used to
conduct 1-ms servo control and dynamic force compensation. In the first joint, SPI communication was

Sensors 2019, 19, 3171 14 of 20

used between its driver and the robot controller, and RS485 serial communication was used between
its driver and other joints’ drivers. The overall communication and control architecture is illustrated
in Figure 14.

Sensors 2019, 19, x FOR PEER REVIEW 13 of 20

5.1. RTOS–Xenomai

Xenomai [24] is an open-source RTOS provided on the Linux platform, uses a dual kernel
structure and Adaptive Domain Environment for Operating Systems (ADEOS) to manage cokernel
and user-kernel boundaries, which have high priority, and schedules real-time and non-real-time
tasks in CPU processing. While other RTOSs [25] focused on the lowest technically feasible latencies,
Xenomai also considers clean extensibility (RTOS skins), portability, and maintainability as very
important goals.

Compared with a previous version, Xenomai 2.6, Xenomai 3 has improved performance of the
Cobalt kernel, which reduces latency to 10 μs on a CPU-stressed setup. It provides more skins and
classifies different application programming interface libraries according to their applications; it
enables users to select different skins according to their needs and simplify and expedite program
design. Regarding this study’s real-time controller, we used the Xenomai’s Native skin to design a
real-time motion control program. To facilitate real-time communication, we used the Real-time
Drive Model (RTDM) skin [26] to design a real-time communication architecture.

5.2. Real-Time Communication

A standard CANopen system (an industrial control network) [27] is equipped with two real-
time communications, namely CANbus and EtherCAT. In particular, CANbus exhibits low cost and
high anti-interference but has a short data length of 16 bytes; therefore, it is not suitable for real-time
multi-node control. EtherCAT demonstrates the advantage of high information throughput,
indicating its suitability for real-time multi-node control, but is costly in its hardware and
communication chips.

Considering the aforementioned factors and attempting to build controllers and drivers into the
robot arm to reduce communication distance, we applied a Serial Peripheral Interface (SPI) bus
between a robot controller and FPGA drivers, designed a communication system, and simplified
transmitted data packets that contained synchronous and asynchronous transmissions such as each’s
position, velocity, and current.

Regarding SPI driver design, Linux provides SPI bus libraries; however, as a non-real-time
operating system, Linux resulted in an SPI communication frequency at 1 kHz, a jitter longer than
10,000 μs, and an average latency of 10 μs (Figure 13 [top]). The Linux drivers exhibited excessively
long latency and thus were not appropriate for robot systems requiring 1-ms control response. To
achieve real-time control, this study used Xenomai’s RTDM skin to design a real-time SPI driver,
which had a jitter shorter than 100 μs and an average latency of 0.5 μs (Figure 13 [bottom]). These
features indicated the SPI driver was appropriate for application in the communication architecture
of a real-time controller.

Figure 13. Latency performances of Serial Peripheral Interface (SPI) driver. Figure 13. Latency performances of Serial Peripheral Interface (SPI) driver.

Sensors 2019, 19, x FOR PEER REVIEW 14 of 20

5.3. Real-Time Program Architecture

Focusing on controllers’ processing efficiency, we have separated their program tasks according

to their level of priority of real-time control. The non-real-time Linux kernel was responsible for low

priority tasks such as kinematic calculations, trajectory generation, and user interface display. The

Xenomai kernel was responsible for real-time SPI bus communications, control command

transmission, state information feedback, and synchronization of each joint’s motor state with the

drivers with a control period of 1 ms.

A bridge program between the two kernels was designed to facilitate inter-process

communication; namely, programs in the two kernels could operate independently during different

periods, and their program design could be developed independently. An FPGA-based DSP control

system was used to conduct 1-ms servo control and dynamic force compensation. In the first joint,

SPI communication was used between its driver and the robot controller, and RS485 serial

communication was used between its driver and other joints’ drivers. The overall communication

and control architecture is illustrated in Figure 14.

Figure 14. Real-time control architecture.

6. Experiment and Results

This study used a self-developed seven-axis robot arm, which exhibited concise design with low-

functionality components, to conduct experiments to verify the validity of this study. The

specifications and prices of the main components used in the robot arm’s joints are listed in Table 7.

Table 7. Prices and specifications of the main joint components.

Item Type Source Unit Price

Motor 3-phase BLDC motor China 35 USD

Reduction gear Harmonic driver Taiwan 400 USD

Driver FPGA build-in DSP Taiwan 100 USD

Total price for 7 axis robot arm 5000 USD

6.1. Joint Position Accuracy Analysis

Different motors and reduction ratios used in the joints resulted in their various minimum

resolutions (Table 2), with each of the joints achieving a position resolution of less than 0.2°. To verify

the control effectiveness of the SDFC, we conducted experiments to test both single-axis and multiple-

axis position accuracy.

Figure 14. Real-time control architecture.

6. Experiment and Results

This study used a self-developed seven-axis robot arm, which exhibited concise design
with low-functionality components, to conduct experiments to verify the validity of this study.
The specifications and prices of the main components used in the robot arm’s joints are listed in Table 7.

Table 7. Prices and specifications of the main joint components.

Item Type Source Unit Price

Motor 3-phase BLDC motor China 35 USD
Reduction gear Harmonic driver Taiwan 400 USD

Driver FPGA build-in DSP Taiwan 100 USD
Total price for 7 axis robot arm 5000 USD

Sensors 2019, 19, 3171 15 of 20

6.1. Joint Position Accuracy Analysis

Different motors and reduction ratios used in the joints resulted in their various minimum
resolutions (Table 2), with each of the joints achieving a position resolution of less than 0.2◦. To verify the
control effectiveness of the SDFC, we conducted experiments to test both single-axis and multiple-axis
position accuracy.

6.1.1. Experiment 1: Single-Axis Repeatability Accuracy

Within each joint’s working range (Table 8), we conducted position control by randomly generating
20 positions under an acceleration duration of 0.5 s, deceleration duration of 1 s, and speed range of
20–100% (an interval of 10% and maximum angular velocity of 60◦/s). Figure 15 depicts the position
errors of each joint, and Table 8 presents the mean absolute errors (MAE) and standard deviations (SD)
of each joint.

Table 8. Results of experiment 1 and experiment 2.

Work Range Experiment 1 Experiment 2

Joint Min. Max. MAE SD MAE SD

J1 −90◦ 90◦ 0.11◦ 0.12◦ 0.06◦ 0.06◦

J2 −30◦ 90◦ 0.23◦ 0.33◦ 0.23◦ 0.24◦

J3 −90◦ 90◦ 0.09◦ 0.10◦ 0.08◦ 0.07◦

J4 −90◦ 90◦ 0.11◦ 0.10◦ 0.20◦ 0.07◦

J5 −90◦ −90◦ 0.08◦ 0.09◦ 0.12◦ 0.20◦

J6 −90◦ 90◦ 0.08◦ 0.09◦ 0.08◦ 0.06◦

J7 −360◦ 360◦ 0.08◦ 0.10◦ 0.09◦ 0.17◦

MAE = Mean Absolute Error. SD = Standard Deviation.

Sensors 2019, 19, x FOR PEER REVIEW 15 of 20

6.1.1. Experiment 1: Single-Axis Repeatability Accuracy

Within each joint’s working range (Table 8), we conducted position control by randomly
generating 20 positions under an acceleration duration of 0.5 s, deceleration duration of 1 s, and speed
range of 20–100% (an interval of 10% and maximum angular velocity of 60°/s). Figure 15 depicts the
position errors of each joint, and Table 8 presents the mean absolute errors (MAE) and standard
deviations (SD) of each joint.

Figure 15. Position error results of experiment 1.

6.1.2. Experiment 2: Multiple-Axis Repeatable Accuracy

The following four positions with different loads were selected:

P1 = [0°, −30°, 0°, −60°, 0°, −90°, 0°]
P2 = [30°, −60°, 30°, −60°, 30°, −60°, 60°]
P3 = [0°, −90°, 0°, 0°, 0°, 0°, 0°]
P4 = [60°, −60°, 30°, −90°, −45°, −40°, −60°]

Figure 16 shows these four positions’ resulting robot arm postures (P1 to P4). This study used
linear interpolation to generate each joint’s trajectories, according to which we posed the robot arm
in the four positions under a maximum velocity of 60°/s and recorded the steady-state position errors.
The process of position control and recording of steady-state position errors has been repeated for
100 cycles. Figure 17 demonstrates mean absolute errors of each position; Table 8 shows the mean
absolute errors and standard deviations of each joint.

(P1) (P2) (P3) (P4)

Figure 16. Robot arm postures using multiple-axis control.

Figure 15. Position error results of experiment 1.

Sensors 2019, 19, 3171 16 of 20

6.1.2. Experiment 2: Multiple-Axis Repeatable Accuracy

The following four positions with different loads were selected:
P1 = [0◦, −30◦, 0◦, −60◦, 0◦, −90◦, 0◦]
P2 = [30◦, −60◦, 30◦, −60◦, 30◦, −60◦, 60◦]
P3 = [0◦, −90◦, 0◦, 0◦, 0◦, 0◦, 0◦]
P4 = [60◦, −60◦, 30◦, −90◦, −45◦, −40◦, −60◦]

Figure 16 shows these four positions’ resulting robot arm postures (P1 to P4). This study used
linear interpolation to generate each joint’s trajectories, according to which we posed the robot arm in
the four positions under a maximum velocity of 60◦/s and recorded the steady-state position errors.
The process of position control and recording of steady-state position errors has been repeated for
100 cycles. Figure 17 demonstrates mean absolute errors of each position; Table 8 shows the mean
absolute errors and standard deviations of each joint.

Sensors 2019, 19, x FOR PEER REVIEW 15 of 20

6.1.1. Experiment 1: Single-Axis Repeatability Accuracy

Within each joint’s working range (Table 8), we conducted position control by randomly
generating 20 positions under an acceleration duration of 0.5 s, deceleration duration of 1 s, and speed
range of 20–100% (an interval of 10% and maximum angular velocity of 60°/s). Figure 15 depicts the
position errors of each joint, and Table 8 presents the mean absolute errors (MAE) and standard
deviations (SD) of each joint.

Figure 15. Position error results of experiment 1.

6.1.2. Experiment 2: Multiple-Axis Repeatable Accuracy

The following four positions with different loads were selected:

P1 = [0°, −30°, 0°, −60°, 0°, −90°, 0°]
P2 = [30°, −60°, 30°, −60°, 30°, −60°, 60°]
P3 = [0°, −90°, 0°, 0°, 0°, 0°, 0°]
P4 = [60°, −60°, 30°, −90°, −45°, −40°, −60°]

Figure 16 shows these four positions’ resulting robot arm postures (P1 to P4). This study used
linear interpolation to generate each joint’s trajectories, according to which we posed the robot arm
in the four positions under a maximum velocity of 60°/s and recorded the steady-state position errors.
The process of position control and recording of steady-state position errors has been repeated for
100 cycles. Figure 17 demonstrates mean absolute errors of each position; Table 8 shows the mean
absolute

(P1) (P2) (P3) (P4)

Figure 16. Robot arm postures using multiple-axis control. Figure 16. Robot arm postures using multiple-axis control.
Sensors 2019, 19, x FOR PEER REVIEW 16 of 20

Figure 17. Position error results of experiment 2.

Table 8. Results of experiment 1 and experiment 2.

 Work Range Experiment 1 Experiment 2
Joint Min. Max. MAE SD MAE SD

J1 −90° 90° 0.11° 0.12° 0.06° 0.06°
J2 −30° 90° 0.23° 0.33° 0.23° 0.24°
J3 −90° 90° 0.09° 0.10° 0.08° 0.07°
J4 −90° 90° 0.11° 0.10° 0.20° 0.07°
J5 −90° −90° 0.08° 0.09° 0.12° 0.20°
J6 −90° 90° 0.08° 0.09° 0.08° 0.06°
J7 −360° 360° 0.08° 0.10° 0.09° 0.17°

MAE = Mean Absolute Error. SD = Standard Deviation.

According to Experiment 1, Joint 2 exhibited the lowest accuracy and had an error of 0.23°, which
was larger than the minimum resolution (0.1875°). This is because, of all joints, Joint 2 had the highest
load, which impeded its fine movements and position convergence, thus failing to effectively
eliminate steady-state errors. All joints other than Joint 2 had errors of approximately 0.1°, which was
smaller than the minimum resolution under different velocity controls.

In Experiment 2, because the inertia and gravity in each joint changed concurrently, mutual force
between them occurred, and thus the position errors were larger than those of single-axis control. In
particular, Joints 2 and 4 had the largest steady-state errors; this result is because the two joints carried
the largest loads of all. According to the standard deviations in Table 8, all joint position errors were
within 0.5° (about 95% of data fall within two standard deviations of the mean), equal to 1~2 times
the minimum resolution. The results of two experiments verified that the SDFC helped the low-gain
controllers reduce dynamic error under different motor speeds and loads.

6.2. Compensator Efficiency Analysis

According to the study’s control structure, the motor actual current output was the sum of servo
controllers’ and the SDFC’s torque, as shown in Figure 6. High similarity between a compensator’s
calculated dynamic force and the actual force received indicates a reduced servo control output
current produced by errors. Therefore, the servo control current can be seen in the SDFC
compensating for error; a low proportion of servo current in the total output current (16) indicated

Figure 17. Position error results of experiment 2.

According to Experiment 1, Joint 2 exhibited the lowest accuracy and had an error of 0.23◦, which
was larger than the minimum resolution (0.1875◦). This is because, of all joints, Joint 2 had the highest
load, which impeded its fine movements and position convergence, thus failing to effectively eliminate
steady-state errors. All joints other than Joint 2 had errors of approximately 0.1◦, which was smaller
than the minimum resolution under different velocity controls.

In Experiment 2, because the inertia and gravity in each joint changed concurrently, mutual force
between them occurred, and thus the position errors were larger than those of single-axis control.
In particular, Joints 2 and 4 had the largest steady-state errors; this result is because the two joints
carried the largest loads of all. According to the standard deviations in Table 8, all joint position errors
were within 0.5◦ (about 95% of data fall within two standard deviations of the mean), equal to 1~2

Sensors 2019, 19, 3171 17 of 20

times the minimum resolution. The results of two experiments verified that the SDFC helped the
low-gain controllers reduce dynamic error under different motor speeds and loads.

6.2. Compensator Efficiency Analysis

According to the study’s control structure, the motor actual current output was the sum of servo
controllers’ and the SDFC’s torque, as shown in Figure 6. High similarity between a compensator’s
calculated dynamic force and the actual force received indicates a reduced servo control output current
produced by errors. Therefore, the servo control current can be seen in the SDFC compensating for
error; a low proportion of servo current in the total output current (16) indicated high accuracy of the
SDFC, where E is current error rate, Iservo is the servo controller current, and Iout is the total motor
output current.

E =

∣∣∣∣∣ Iservo

Iout

∣∣∣∣∣× 100% (16)

Experiment 3: Compensator Efficiency Analysis

This experiment separated the motion process into acceleration, period I; constant velocity, period
II; and deceleration, period III (Figure 18). The acceleration period involved friction, gravity, and inertia
torque; the constant velocity involved only friction and gravity torque. The current error rate (E) in the
three periods were used to analyze the accuracy of compensators’ force calculation relative to actual
force received.

Sensors 2019, 19, x FOR PEER REVIEW 17 of 20

high accuracy of the SDFC, where E is current error rate, 𝐼ୱୣ୰୴୭ is the servo controller current, and 𝐼୭୳୲ is the total motor output current. 𝐸 = ฬ𝐼ୱୣ୰୴୭𝐼୭୳୲ ฬ × 100% (16)

Experiment 3: Compensator Efficiency Analysis

This experiment separated the motion process into acceleration, period I; constant velocity,
period II; and deceleration, period III (Figure 18). The acceleration period involved friction, gravity,
and inertia torque; the constant velocity involved only friction and gravity torque. The current error
rate (E) in the three periods were used to analyze the accuracy of compensators’ force calculation
relative to actual force received.

Figure 18. Dynamic current performance for Joint 2.

The test condition for each joint comprised a velocity of 60°/s and a position control range of 0°
to 90°. During the experiments, we recorded each joint’s total output current, the SDFC’s currents,
and the servo controllers’ currents; subsequently, we calculated the current error rate (E) from (16)
and average currents in the three motion periods to evaluate the efficiency of the compensator. Table
9 presents the experimental results.

According to the results of Experiment 3, Joint 2 had a relatively large servo current output in
the constant velocity period and exhibited a current error (E) of approximately 40%. This is because
the controlled current crossed the zero point during period II (Figure 18), which produced large
oscillations in current control. Accordingly, improving current control in the zero-crossing point can
possibly reduce such control errors.

Table 9. Results of experiment 3.

 Current Error Rate E [%] Current [A]
Joint I II III Servo Total

J1 8.56 2.01 2.18 0.07 1.67
J2 10.67 39.68 6.08 0.17 1.51
J3 10.64 8.12 4.48 0.16 2.32
J4 12.12 4.49 4.99 0.13 1.88
J5 7.26 1.51 6.49 0.05 0.91
J6 11.80 4.34 3.71 0.06 1.07

Figure 18. Dynamic current performance for Joint 2.

The test condition for each joint comprised a velocity of 60◦/s and a position control range of 0◦

to 90◦. During the experiments, we recorded each joint’s total output current, the SDFC’s currents,
and the servo controllers’ currents; subsequently, we calculated the current error rate (E) from (16) and
average currents in the three motion periods to evaluate the efficiency of the compensator. Table 9
presents the experimental results.

According to the results of Experiment 3, Joint 2 had a relatively large servo current output in the
constant velocity period and exhibited a current error (E) of approximately 40%. This is because the
controlled current crossed the zero point during period II (Figure 18), which produced large oscillations
in current control. Accordingly, improving current control in the zero-crossing point can possibly
reduce such control errors.

Sensors 2019, 19, 3171 18 of 20

Table 9. Results of experiment 3.

Current Error Rate E [%] Current [A]

Joint I II III Servo Total

J1 8.56 2.01 2.18 0.07 1.67
J2 10.67 39.68 6.08 0.17 1.51
J3 10.64 8.12 4.48 0.16 2.32
J4 12.12 4.49 4.99 0.13 1.88
J5 7.26 1.51 6.49 0.05 0.91
J6 11.80 4.34 3.71 0.06 1.07
J7 8.22 4.00 3.99 0.08 1.41

Among the three motion periods, Period I demonstrated the highest current error rate (>10%)
because the static friction must be overcome to activate the motor, and the friction compensator as
(10) cannot accurately calculate the static friction for motor starting; therefore, a large control error
occurred. The remaining periods all exhibited a current error rate of less than 10%, indicating that
the accuracy of SDFC in force calculation relative to the actual forces received was higher than 90%;
therefore, the SDFC had adequate resolution for robot arm dynamic control.

According to the result in Table 9, all joints’ average servo currents were smaller than 0.2 A, which
is less than 10% of the total current output. The result verified that the force compensation provided by
the SDFC in dynamic control could correct more than 90% of all errors, whereas other errors, such as
calculation errors and system model errors, could be corrected using closed-loop servo controllers.
The integrated use of a dynamic force compensator and servo controllers provided favorable control
effectiveness without the use of a high-precision system model.

7. Conclusions

This study used sensorless drivers and SDFCs to design and control a seven-axis robot arm.
Through open-loop current compensation, we solved the servo controllers’ delay problem caused by
an insufficient number of sensors and the problems of insufficient force and slow response caused by
low-gain control. The SDFC was designed by simplifying calculations and conducting experiments to
obtain the needed parameters without the high-precision system model, which overcame problems
occurring when using only Hall-effect sensors, and simplified the dynamic control calculation steps to
achieve more programmable calculation with the use of low-cost processors. Moreover, because the
compensator is separate from the servo controllers, it can be applied to various servo systems and robot
arms with only some modifications in the system model parameters, thus exhibiting high flexibility of
use and wide applicability. The compensator could also reduce the system loads of servo control as
well as the performance requirements of a motor driver and sensor, thus reducing the development
cost of robot arms. The results presented 0.2◦ accuracy of joint position control and 90% real-time
current compensation from SDFCs; these performances were good enough for service application.
In addition, motors with many poles, such as Maxon Motor’s flat motors with 11 poles, can be used to
increase position resolution from the 0.188◦ achieved by this study to approximately 0.068◦. Overall,
this study verified the safe and accurate control of the proposed sensorless, low-gain driver and thus
its applicability in service robots.

Author Contributions: Conceptualization, C.-Y.L. and Y.-C.L.; methodology, S.-H.Y. and P.-C.T.; software, S.-H.Y.
and P.-C.T.; validation, S.-H.Y.; formal analysis, S.-H.Y. and P.-C.T.; investigation, S.-H.Y. and Y.-C.L.; resources,
P.-C.T. and Y.-C.L.; data curation, S.-H.Y.; writing—original draft preparation, S.-H.Y.; writing—review and editing,
C.-Y.L. and Y.-C.L.; supervision, C.-Y.L. and Y.-C.L.; project administration, Y.-C.L.; funding acquisition, C.-Y.L.
and Y.-C.L.

Funding: This work was financially supported by both the Taiwan Building Technology Center and the Center for
Cyber-Physical System Innovation from the Featured Areas Research Center Program within the framework of
the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan. Additionally, this work was
also financially supported by Ubiqelife Technology Corporation in Taiwan.

Sensors 2019, 19, 3171 19 of 20

Conflicts of Interest: The authors declare no conflict of interest.

References

1. IFR International Federation of Robotics. Executive Summary World Robotics 2018 Service Robots. 2018.
Available online: https://ifr.org/downloads/press2018/Executive_Summary_WR_Service_Robots_2018.pdf
(accessed on 1 June 2019).

2. Vinod, B.; Wood, L. Service Robots: The Next Big Productivity Platform. PwC Technology Forecast. 2016.
Available online: http://usblogs.pwc.com/emerging-technology/service-robots-the-next-big-productivity-
platform (accessed on 1 June 2019).

3. Albu-Schäffer, A.; Haddadin, S.; Ott, C.; Stwmmwe, A.; Wimböck, T.; Hirzinger, G. The DLR lightweight
robot: Design and control concepts for robots in human environments. Ind. Robot Int. J. 2007, 34, 376–385.
[CrossRef]

4. Albu-Schäffer, A.; Haddadin, S.; Ott, C. A Unified Passivity-based Control Framework for Position, Torque
and Impedance Control of Flexible Joint Robots. Int. J. Robot. Res. 2007, 26, 23–39. [CrossRef]

5. Knežević, J.M. Low-cost low-resolution sensorless positioning of dc motor drives for vehicle auxiliary
applications. IEEE Trans. Veh. Technol. 2013, 62, 4328–4335. [CrossRef]

6. Haines, G.; Ertugrul, N. Wide speed range sensorless operation of brushless permanent-magnet motor using
flux linkage increment. IEEE Trans. Ind. Electron. 2016, 63, 4052–4060. [CrossRef]

7. Chen, S.; Zhou, X.; Bai, G.; Wang, K.; Zhu, L. Adaptive commutation error compensation strategy based on a flux
linkage function for sensorless brushless DC motor drives in a wide speed range. IEEE Trans. Power Electron. 2017,
33, 3752–3764. [CrossRef]

8. Song, X.; Han, B.; Zheng, S.; Fang, J. High-precision sensorless drive for high-speed BLDC motors based on
the virtual third harmonic back-EMF. IEEE Trans. Power Electron. 2017, 33, 1528–1540. [CrossRef]

9. Li, T.; Zhou, J. High-Stability Position-Sensorless Control Method for Brushless DC Motors at Low Speed.
IEEE Trans. Power Electron. 2018, 34, 4895–7903. [CrossRef]

10. Fryman, J.; Matthias, B. Safety of industrial robots: From conventional to collaborative applications.
In Proceedings of the ROBOTIK 7th German Conference, Munich, Germany, 21–22 May 2012; pp. 1–5.

11. Plooij, M.; Wolfslag, W.; Wisse, M. The effect of the choice of feedforward controllers on the accuracy of low
gain controlled robots. In Proceedings of the 2015 EEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 4090–4097.

12. Gaz, C.; Flacco, F.; De Luca, A. Identifying the dynamic model used by the KUKA LWR: A reverse engineering
approach. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA),
Hong Kong, China, 31 May–5 June 2014; pp. 1386–1392.

13. Cano, R.V. Towards a Model-Based Motion Control Design for a 7-axis Robotic Arm LWA4D by Schunk.
Master’s Thesis, UMEA University, Umea, Sweden, 2016.

14. Yen, S.H.; Tang, P.C.; Lin, Y.C.; Lin, C.Y. Development of a virtual force sensor for a low-cost collaborative
robot and applications to safety control. Sensors 2019, 19, 2603. [CrossRef] [PubMed]

15. Cham, C.L.; Samad, Z.B. Brushless dc motor electromagnetic torque estimation with single-phase current
sensing. J. Elect. Eng. Technol. 2014, 9, 866–872. [CrossRef]

16. Khalil, W.; Dombre, E. Modeling, Identification and Control of Robots, 3rd ed.; Taylor and Francis Group:
New York, NY, USA, 2002; pp. 191–194.

17. Ridwan, M.; Yuniarto, M.N. Electrical equivalent circuit based modeling and analysis of brushless direct
current (BLDC) motor. In Proceedings of the 2016 IEEE International Seminar on Intelligent Technology and
Its Applications (ISITIA), Lombok, Indonesia, 28–30 July 2016; pp. 471–478.

18. Ding, L.; Wu, H.; Yao, Y.; Yang, Y. Dynamic model identification for 6-DOF industrial robots. J. Robot. 2015, 471478.
[CrossRef]

19. Chitta, S.; Sucan, I.; Cousins, S. Moveit! [ROS topics]. IEEE Robot. Autom. Mag. 2012, 19, 18–19. [CrossRef]
20. Spong, M.W.; Hutchinson, S.; Vidyasagar, M. Robot Modeling and Control; Wiley: New York, NY, USA, 2006;

Volume 3.
21. Wolf, S.; Iskandar, M. Extending a dynamic friction model with nonlinear viscous and thermal dependency

for a motor and harmonic drive gear. In Proceedings of the 2018 IEEE International Conference on Robotics
and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 783–790.

https://ifr.org/downloads/press2018/Executive_Summary_WR_Service_Robots_2018.pdf
http://usblogs.pwc.com/emerging-technology/service-robots-the-next-big-productivity-platform
http://usblogs.pwc.com/emerging-technology/service-robots-the-next-big-productivity-platform
http://dx.doi.org/10.1108/01439910710774386
http://dx.doi.org/10.1177/0278364907073776
http://dx.doi.org/10.1109/TVT.2013.2268716
http://dx.doi.org/10.1109/TIE.2016.2544250
http://dx.doi.org/10.1109/TPEL.2017.2765355
http://dx.doi.org/10.1109/TPEL.2017.2688478
http://dx.doi.org/10.1109/TPEL.2018.2863735
http://dx.doi.org/10.3390/s19112603
http://www.ncbi.nlm.nih.gov/pubmed/31181701
http://dx.doi.org/10.5370/JEET.2014.9.3.866
http://dx.doi.org/10.1155/2015/471478
http://dx.doi.org/10.1109/MRA.2011.2181749

Sensors 2019, 19, 3171 20 of 20

22. Verdonck, W.; Swevers, J. Improving the dynamic accuracy of industrial robots by trajectory pre-compensation.
In Proceedings of the 2002 IEEE International Conference on Robotics and Automation (ICRA), Washington,
DC, USA, 11–15 May 2002; pp. 3423–3428.

23. Yabuki, A.; Ohishi, K.; Miyazaki, T.; Yokokura, Y. Force control including contact process using
acceleration-sensor-based instantaneous state observer for high-stiffness gear drive. In Proceedings of the
2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), Santa Clara, CA, USA, 8–10 June
2016; pp. 651–656.

24. Huang, C.C.; Lin, C.H.; Wu, C.K. Performance evaluation of Xenomai 3. In Proceedings of the 17th Real-Time
Linux Workshop (RTLWS), Graz, Austria, 21–22 October 2015.

25. Hambarde, P.; Varma, R.; Jha, S. The survey of real time operating system: RTOS. In Proceedings of the 2014
International Conference on Electronic Systems, Signal Processing and Computing Technologies, Nagpur,
India, 9–11 January 2014; pp. 34–39.

26. Kiszka, J. The real-time driver model and first applications. In Proceedings of the 7th Real-Time Linux
Workshop, Lille, France, 3–4 November 2005.

27. Boterenbrood, H. CANopen High-Level Protocol for CAN-Bus; Nikhef: Amsterdam, The Netherlands, 2005.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Sensorless Control Problems
	Low-Speed Control with Low-Pass Filter
	Phase Delay Problem

	Simplified Robot Dynamic Compensator
	Robot Dynamic Model
	Simplified Robot Dynamic Model
	Simplified Dynamic Force Compensator Design

	Simplified Dynamic Force Compensator Tuning
	Simplifying the Calculations of Moment of Inertia and Gravity Torque
	Tuning Experiment with SDFC
	Analysis of Phase Compensation

	Real-Time System Framework
	RTOS–Xenomai
	Real-Time Communication
	Real-Time Program Architecture

	Experiment and Results
	Joint Position Accuracy Analysis
	Experiment 1: Single-Axis Repeatability Accuracy
	Experiment 2: Multiple-Axis Repeatable Accuracy

	Compensator Efficiency Analysis

	Conclusions
	References

