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Abstract: In recent years, surface electromyography (sEMG) signals have been increasingly used
in pattern recognition and rehabilitation. In this paper, a real-time hand gesture recognition model
using sEMG is proposed. We use an armband to acquire sEMG signals and apply a sliding window
approach to segment the data in extracting features. A feedforward artificial neural network (ANN)
is founded and trained by the training dataset. A test method is used in which the gesture will
be recognized when recognized label times reach the threshold of activation times by the ANN
classifier. In the experiment, we collected real sEMG data from twelve subjects and used a set of five
gestures from each subject to evaluate our model, with an average recognition rate of 98.7% and
an average response time of 227.76 ms, which is only one-third of the gesture time. Therefore, the
pattern recognition system might be able to recognize a gesture before the gesture is completed.

Keywords: surface electromyography; artificial neural network; real-time; gesture recognition

1. Introduction

Hand gestures are one type of communication. Gesture recognition provides a smart, natural,
and convenient human–computer interaction (HCI) approach. It is an important part of HCI and has a
wide range of applications in engineering and intelligent devices. It shows great potential in the control
of bionic hands [1], virtual game control [2], sign language translation [3], and intelligent robotics [4].

There are many sensors used in hand gesture recognition for data acquisition, including cameras
[5–8], cyber gloves [9,10], surface electromyography (sEMG) [11,12], and radio frequency [13]. Kundu et
al. [14] combined the signals of the inertial measurement unit and sEMG to infer the movement of hands
and fingers. Taylor et al. [7] proposed a new real-time hand tracking system based on a single depth
camera, which can accurately reconstruct the complex joint posture of the hand. Microsoft’s Kinect
sensor is used to obtain depth images and bone information to identify gestures in [15]. A new sensing
technology that uses miniature radar to detect touchless gesture interactions has been developed by
Google [16]. Based on the types of sensors mentioned above, the sEMG sensors can be applied for hand
gesture recognition because they are not affected by the variations of light, position, and orientation of
the hand.

Machine learning is used to solve the problem of hand gesture recognition based on sEMG signals.
The most common classifiers for hand gesture recognition include support vector machines [17,18],
k-nearest neighbors (k-NN) [11,12], decision trees [19], random forest [20], linear discriminant
analysis [21,22], artificial neural network (ANN) [23,24], convolutional neural networks [25,26],
and gated recurrent unit network [27]. The conventional features used for hand gesture recognition
are defined in the following domains: time domain, such as mean absolute value (MAV) and zero
crossing (ZC) [28]; frequency domain, such as median frequency and power spectrum ratio [29]; and
time-frequency domain, such as wavelets [30]. Models based on these classifiers and feature domains
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present high recognition accuracy. However, most of them have to wait for the completion of the
gestures and cannot be applied in a real-time system. Moreover, some researchers have investigated
the featureless approach that directly feeds the preprocessed data without feature extraction into a
classifier, a process which may reduce the computational cost [31,32]. However, extracting appropriate
features from processed data can strengthen the inherent characteristics of the sEMG signal, of which
the feature selection is the key to improve the discrimination performance. Therefore, hand gesture
recognition is still an open subject for new research.

Many applications for gesture recognition, such as prothetic limb control, often require real-time
response, which means that the total time available for signal acquisition and pattern recognition cannot
exceed 300 ms [33]. There is a challenge in designing a real-time gesture recognition system that has
both low computational cost and excellent performance. Recently, researchers have used sEMG signals
to design real-time gesture recognition systems. A real-time locomotion mode recognition method
based on a transformed correlation feature analysis is proposed in [11] which can be completed in
264.49 ms, including 256 ms required for sEMG signal collection. Lu et al. [34] proposed a myoelectric
pattern recognition scheme that uses four channels of sEMG signals to detect and identify the user’s
intentions for six different hand movements and then drives the exoskeleton to help the user complete
the desired motion. The total hysteresis of the system is approximately 250 ms. Crepin et al. [22]
proposed that the use of linear discriminant analysis to perform sEMG pattern classification and 13
hand motions can be identified with an updated prediction every 192 ms. However, in these studies,
they used fixed time intervals to detect the gesture which may not be the best values for improving the
eventual recognition accuracy. Further study of selecting preferred time intervals is required.

In this paper, we propose a new gesture recognition model based on ANN and sEMG signals
to achieve real-time response. For data acquisition, we use the sEMG signal measured by an MYO
armband to identify a set of five gestures. For preprocessing, we use a low pass filter to remove
noise and smooth the signal. For feature extraction, we use the preprocessed signals in the sliding
window and five time-domain features to form the feature vector. For classification, we apply an ANN
algorithm to label the observation of each sliding window, and then adopt the trained classifier to give
the recognition result during the action of the gesture.

The main contributions are as follows:

(1) The proposed method is a gesture recognition method which can not only recognize the gesture
in real time, but also has high recognition accuracy.

(2) The main parameters, such as sliding window size and threshold of activation times, are analyzed.

The rest of this article is organized as follows. Section 2 describes the sensor used in this work and
the process of data acquisition. Section 3 introduces the proposed method in detail. Section 4 presents
the experimental results and analysis. In addition, Section 5 summarizes the paper.

2. Sensors and Data Acquisition

To facilitate real-time processing, we use the MYO armband (Thalmic Labs, Waterloo, Canada) to
acquisition of sEMG data [32]. The MYO armband is composed of eight sEMG dry sensors (as shown
in Figure 1). These sensors measure the electrical activity of the muscles of the forearm at a sampling
rate of 200 Hz with 8 bits of resolution for each sensor. Data from all of these sensors is transmitted to
the computer via Bluetooth. Additionally, the armband is also capable of measuring angular velocity,
acceleration, and orientation of input axes by means of a built-in inertial measurement unit. In this
study, we merely take advantage of the sEMG portion.
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Figure 1. The armband for data acquisition. 
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experiment, each subject sat in a comfortable chair and relaxed his/her arm. Then they were asked to 

naturally perform five gestures with randomized order: Fist, Wave In, Wave Out, Fingers Spread, 

and Double Tap (as shown in Figure 2). In the training set, there were five repetitions of the five 

gestures recorded during two seconds. In the testing set, there were 30 repetitions recorded during 
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3. Method 

3.1. Overview 

In this section, we describe the structure of the proposed model. The original signal (as shown 

in Figure 3) is preprocessed for rectification and filtered to remove the noise at first. Then, the 

representative time domain features are extracted. An ANN classification approach combining all 

the features is proposed. The algorithms of the training and testing in our model are presented 

separately in detail. 

Figure 1. The armband for data acquisition.

A total of 12 healthy subjects (eight males and four females, aged from 22 to 26, all right-handed)
volunteered for this study. Subjects were not trained before the test. At the beginning of the experiment,
each subject sat in a comfortable chair and relaxed his/her arm. Then they were asked to naturally
perform five gestures with randomized order: Fist, Wave In, Wave Out, Fingers Spread, and Double
Tap (as shown in Figure 2). In the training set, there were five repetitions of the five gestures recorded
during two seconds. In the testing set, there were 30 repetitions recorded during five seconds of the
five gestures. For every repetition, the subject started with his/her arm relaxed, then performs the
gesture, and then returns the arm to the relaxed position until the end of the recording.
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Figure 2. Five gestures.

3. Method

3.1. Overview

In this section, we describe the structure of the proposed model. The original signal (as shown
in Figure 3) is preprocessed for rectification and filtered to remove the noise at first. Then, the
representative time domain features are extracted. An ANN classification approach combining all the
features is proposed. The algorithms of the training and testing in our model are presented separately
in detail.



Sensors 2019, 19, 3170 4 of 15
Sensors 2019, 19, 3170 4 of 16 

 

 

Figure 3. Original surface electromyography (sEMG) signals recorded by the MYO armband. 

3.2. Training Part 

3.2.1. Preprocessing 

The purpose of the preprocessing is to denoise the acquired signal and make it easy to extract 

features. The original signal has some additional noise that can generate invalid features and interfere 

with the classification. For training, the observed signals are normalized at first, with each element 

of each matrix =( 1, 2 8)T T TT  being in the range [−1, 1]. The original signal in each channel is then 

rectified using an absolute value function. In order to smooth the signal and reduce the noise, we 

design the filter by analyzing the signal frequency component and noise. Using the Fourier transform, 

we can find that the cut-off frequency set at 5 Hz is reasonable, as shown in Figure 4. Thus, we use 

the 4th order digital Butterworth filter whose cut-off frequency is 5 Hz.  

Then, we use the muscle detection function described in [14] to remove the head and tail that 
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Figure 3. Original surface electromyography (sEMG) signals recorded by the MYO armband.

3.2. Training Part

3.2.1. Preprocessing

The purpose of the preprocessing is to denoise the acquired signal and make it easy to extract
features. The original signal has some additional noise that can generate invalid features and interfere
with the classification. For training, the observed signals are normalized at first, with each element of
each matrix T = (T1, T2 · · ·T8) being in the range [−1, 1]. The original signal in each channel is then
rectified using an absolute value function. In order to smooth the signal and reduce the noise, we
design the filter by analyzing the signal frequency component and noise. Using the Fourier transform,
we can find that the cut-off frequency set at 5 Hz is reasonable, as shown in Figure 4. Thus, we use the
4th order digital Butterworth filter whose cut-off frequency is 5 Hz.

Then, we use the muscle detection function described in [14] to remove the head and tail that refer
to the relaxed position for extracting the muscle activity range of every repetition in the training set.
Meanwhile, we attempt to determine the muscle activity region by computing the spectrum energy
from filtered data, and all the spectrum energy points according to sampling interval greater than a
certain predefined empirical threshold (20 dB/Hz) can be extracted. Thus, we can detect the time area
of muscle activity.
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3.2.2. Feature Extraction

We use the sliding window technique for feature extraction in the proposed model. The data set is
divided into data segments. We use the length l sliding window to divide the data as shown in Figure 5.
For high precision in real time, the stride size of the two consecutive sliding windows is set to one
point (5 ms). In the process of extracting features in the sliding window, to reduce the computational
cost, we select five features in the time domain: MAV, slope sign change (SSC), waveform length (WL),
root mean square (RMS), and Hjorth parameter (HP) [34].
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a. MAV

The MAV is one of the most commonly used values in sEMG signal analysis. The MAV feature
is the average of the absolute values of the amplitude of the sEMG signal in the sliding window. It
provides information about the muscle contraction level. s(k) is the kth amplitude sample, N is the
sample size. MAV can be calculated as M:

M =
1
N

N∑
k=1

∣∣∣s(k)∣∣∣ (1)

b. RMS

RMS represents the mean power of the sEMG signal, which reflects the activity of muscles. It is
defined as R in Equation (2).

R =

√√√
1
N

N∑
k=1

s(k)2 (2)

c. SSC

SSC is another method of indicating the frequency information of the sEMG signal. It is defined
as S in Equation (3) and represents the number of slope sign changes in the sliding window.

S =
N−1∑
k=2

∣∣∣(s(k) − s(k− 1)) × (s(k) − s(k + 1))
∣∣∣ (3)

d. WL
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WL is the cumulative length of the sEMG signal waveform, which is related to waveform
amplitude, frequency, and time and can be used to measure signal complexity. It is defined as W in
Equation (4).

W =
N∑

k=2

∣∣∣s(k) − s(k− 1)
∣∣∣ (4)

e. HP

HP was first used to analyze electroencephalographic signal in the time domain. It is composed
of three parameters (activity, mobility, and complexity) based on variance calculation.

The activity parameter can indicate the surface of the power spectrum in the frequency domain. It
can be calculated as Ahp by:

Ahp = VAR(s(k)) =
1

N − 1

N∑
k−1

s(k)2 (5)

The estimate of the average frequency of the signal is usually expressed by the mobility parameter.
It is calculated as Mhp:

Mhp =

√√√√
VAR

(
ds(k)

dk

)
VAR(s(k))

(6)

The complexity parameter is the ratio of the mobility of the signal derivative to the mobility of the
signal itself. The more similar the signal shape is to the pure sine wave, the closer the value is to 1. It is
calculated as Chp:

Chp =
Mobility

(
ds(k)

dk

)
Mobility(s(k))

(7)

To improve the accuracy of the classification, in addition to using the feature parameters described
above, we also extract the preprocessed signals through the sliding windows, and put them together to
form the feature matrix for the classifier.

3.2.3. Classifier

In this work, we use a forward neural network which has three layers: the input layer, the hidden
layer, and the output layer. The number of hidden layer nodes is taken to be half of the length of the
feature vector. The output layer has six cells corresponding to the number of predicted gestures. The
model uses a sigmoid transfer function. It is trained by using full batch gradient descent, with a cross
entropy cost function.

3.2.4. The ANN Classifier Training Algorithm

Based on the criteria above, the training algorithm (Algorithm 1) is described as follows.
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Algorithm 1

Input: Standardized raw training data
T = (T1, T2 · · ·T8) ∈ [−1, 1]N×8

Gesture labels
yi ∈ {0, 1, 2 · · · c− 1}

Output:
Trained ANN Classifier

Step 1 Preprocessing
For each user’s data T

Do
Φ(T) ∈ [−1, 1]m×8

4muscle detection function Φ
abs[Φ(T)] ∈ [0, 1]l×8

4 absolute value function.
M = (M1, M2 · · ·M8) = Γ[abs[Φ(T)]] ∈ [0, 1]l×8

4 4th Butterworth filter Γ
End

End
Step 2 Feature extraction

For each user’s data T
Do

W j =
(
M, R, S, W, Ahp, Mhp, Chp

)T
∈ R7×1

W = (W1, W2 · · ·W8) ∈ R7×8

End
D = (W, M) ∈ R(l+7)×8

4 Feature vector D
End

Step 3 Classification
For one user’s data T

Train the ANN Classifier with Features D and Gesture labels yi
End

3.3. Testing Part

3.3.1. Preprocessing and Feature Extraction

For the test set, we still use the absolute value function and the fourth-order Butterworth filter.
In the feature extraction process, the five time-domain features (MAV, RMS, SSC, WL, HP) and
preprocessed data are put together to form feature vectors.

We use the sliding window with the same length as in the training step to extract the feature vectors.

3.3.2. Testing

In the process of testing, we obtain a vector of labels, where each label corresponds to the feature
vector of a sliding window observation by the trained ANN classifier. Here, we apply an answering
racer algorithm to assign a label to the test gesture.

For real-time processing, we define the classifier as Ψ(Zi). The return gesture yi ∈ {0, 1, 2 · · · c− 1}
is labeled by the ANN classifier from each observation window, where c denotes the number of gestures
to recognize. Here, the label 0 represents the class “No-Gesture”. We define the classifier Ψ : yi → Zi
in such a way that, we count the labels of each class returned separately, Nt := Nt + 1, that starts with
Nt = 0. the classifier is formulated as follows

Ψ(Zi) =

{
t, max{N0, N1, · · ·Nc−1} > τ
0, max{N0, N1, · · ·Nc−1} < τ

(8)
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where t ∈ {0, 1, 2 · · · c− 1} denotes the recognized gesture. When meeting the condition that Nt must be
equal to or greater than the threshold τ, we think that the gesture is recognized, Ψ(Zi) = t. Otherwise,
we define Ψ(Zi) = 0, which means that the classifier Ψ assigns Zi to the class “No-Gesture”.

3.3.3. Feature Extraction & Classification Algorithm

Based on the criteria above, the testing algorithm (Algorithm 2) is described as follows.

Algorithm 2

Input: Standardized raw testing data
T = (T1, T2 · · ·T8) ∈ [−1, 1]N×8

Output: Final output gesture
Zi = t ∈ {0, 1, 2 · · · c− 1}

Step 1 Preprocessing
For each user’s data T

Do
Φ(T) ∈ [−1, 1]m×8

4muscle detection function Φ
abs[Φ(T)] ∈ [0, 1]l×8

4 absolute value function.
M = (M1, M2 · · ·M8) = Γ[abs[Φ(T)]] ∈ [0, 1]l×8

4 4th Butterworth filter Γ
End

End
Step 2 Feature extraction

For each user’s data T
Do

W j =
(
M, R, S, W, Ahp, Mhp, Chp

)T
∈ R7×1

W = (W1, W2 · · ·W8) ∈ R7×8

End
D = (W, M) ∈ R(l+7)×8

4 Feature vector D
End

Step 3 Classification
For each user’s data T

Using ANN classifier return gesture labels yi
the classifier Ψ : yi → Zi , Nt ∈ {N0, N1, · · ·Nc−1}

While Nt ≤ τ

Do Nt := Nt + 1
End

Ψ(Zi) =

{
t, max{N0, N1, · · ·Nc−1} > τ

0, max{N0, N1, · · ·Nc−1} < τ

End

4. Experimental Results

In this section, our proposed method is evaluated on the real data from the MYO sensor. The
data sets and the source codes are publicly available at the following link: https://github.com/

yangkuoshu/https-github.com-yangkuoshu-Real-time-gesture-recognition-using-myo.git. The results
are represented and compared with the results of other methods. At the same time, more detailed
information is given to illustrate our approach.

4.1. Recognition Accuracy

The confusion matrix for the proposed model is illustrated in Figure 6. This confusion matrix
shows an overall recognition accuracy of 98.7%. The gesture “Wave In” is the one with the highest
sensitivity (100%). The gestures “Fingers Spread” and “Double Tap” are both with the lowest (97.2%).
Regarding precision, the gesture “Double Tap” has a near perfect result (99.7%) and the gesture “Wave

https://github.com/yang kuoshu/https-github.com-yangkuoshu-Real-time-gesture-recognition-using-myo.git
https://github.com/yang kuoshu/https-github.com-yangkuoshu-Real-time-gesture-recognition-using-myo.git
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Out” is the lowest (97.5%). Therefore, the proposed method easily mistakes the gesture “Fingers
Spread” as the gesture “Wave Out”. Additionally, there is one repetition which is predicted as “No
Gesture” because it cannot pass the threshold for preprocessing or postprocessing.Sensors 2019, 19, 3170 10 of 16 
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4.2. Real Time Pattern Recognition

As mentioned above, a method that is suitable for some applications requires not only high
recognition accuracy but also real-time response. In reality, most pattern recognition methods start
timing after the gesture is completed. Unlike other methods, our method starts timing at the beginning
of the gesture. Figure 7 shows the average response times for each gesture (orange color). All response
times are below 300 ms. Figure 7 also shows the response times of our method vs. the action times of
all the gestures. Obviously, the response times are much smaller than action times, which means that
the gesture can be recognized soon after the gesture begins.
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Table 1 shows the response times and recognition accuracies of all subjects. From the table, the
recognition accuracy of all subjects except subject 9 can reach 98% or more. There are four subjects
whose recognition accuracy can reach 100%. The average response times of all the subjects range
from 187 ms to 293 ms. It shows that the proposed method has high recognition accuracy and short
response time.

Table 1. Recognition rate and response time of all subjects.

Subject Accuracy (%) Response (ms)

Subject 1 98.67 214.73
Subject 2 100.00 212.40
Subject 3 98.00 205.43
Subject 4 100.00 291.10
Subject 5 100.00 292.20
Subject 6 100.00 244.40
Subject 7 99.33 215.73
Subject 8 99.33 193.23
Subject 9 93.33 233.37
Subject 10 98.00 232.40
Subject 11 98.00 210.87
Subject 12 99.33 187.23

4.3. Sliding Windows Size

To evaluate the effect of sliding window sizes in our method, we use different sliding window
sizes in the process of gesture feature extraction for Subject 1. We test values of the window size from
100 ms to 500 ms (the step is 50 ms) as shown in Figure 8. It can be seen that the recognition rate has
almost no increase when the window size is increased from 100 ms to 400 ms, and the recognition rate
will decrease when the window size exceeds 400 ms.
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To further determine an appropriate sliding window size, we used t-distributed stochastic neighbor
embedding (t-SNE) to visualize how the feature vectors from each gesture class are clustered in the
feature space [35]. The results from the t-SNE are shown in Figure 9. We can note that as the length
of the sliding window increases, the projected feature vectors of each class get closer to each other.
However, if the length of the sliding window increases beyond a certain level (here, this is 400 ms), it
will result in the recognition method tending to overfit because the amount of feature vectors from
a repetition is reduced and the length of the feature vector increases. Therefore, we set the sliding
window size to 400 ms in our method.
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4.4. Threshold of Activation Times

We also evaluated the effect of different classification thresholds of the activation times for Subject
1. As shown in Figure 10, when the threshold changes from 10 to 50, the recognition accuracy is
rapidly increased. When the threshold is greater than 50, the recognition accuracy starts to decrease,
and approaches 0.9 when the threshold increases to 100. If the threshold is too small, it will lead to
misclassification. If the threshold is too large, it will cause the classifier to classify the gesture as “no
gesture”, resulting in misclassification. In our approach, the smaller the threshold, the shorter the time
required by our classifier; therefore, choosing an appropriately small threshold while maintaining
accuracy could reduce the response time. Here, we set the activation time threshold to 40.
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4.5. Comparison with Other Methods

Table 2 shows that the proposed model, which uses both types of features (the preprocessed signal
values and the results from the bag of functions), has the best accuracy compared to the other models.
The model that uses only the preprocessed signal values responds slower than the model that uses only
the results from the bag of functions, but its recognition accuracy is higher. Table 2 also shows that the
proposed model responds in 227.76 ms, which is lower than the real-time limit (300 ms). A comparison
with other researchers’ methods in terms of response time and accuracy is presented, some of which
are not real-time recognition models, so only their accuracy is shown here. It can be seen that, while
guaranteeing real-time response, our proposed model has lower response time and higher accuracy.

Table 2. The proposed model compared with other models.

Model Accuracy (%) Response (ms)

Evaluated models:

Proposed model 98.7 227.76
Model using only the preprocessed signals values 96.0 238.03
Model only using only the results from the bag of functions 86.0 227.63

Other methods with MYO armband sensors

MYO armband method [24] 83.1 X
Model using k-NN with DTW [11,24] 89.5, 90.54 X
Model using SVM [11,36] 92, 93.99 X
Model using ANN [24] 90.7 X
Model using Discriminant Analysis [37] 94.54 X
Model using Naive Bayes [37] 81.76 X
Model using Random Forest [37] 89.92 X
Model using deep learning [38] 98.31 X

Furthermore, compared with the existing hand gesture recognition models based on the ANN
algorithm [24,39] which do not include the gesture duration in the eventual system response time, our
proposed ANN pattern recognition system is not only capable of sharply reducing the total response
time, but also lowers the computational load for the classifier by using the threshold of activation times.

5. Conclusions

In this paper, we have presented a real-time hand gesture recognition model based on sEMG
signals. We use the MYO armband to acquire sEMG signals and apply a sliding window approach to
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segment the data for extracting features. A feedforward artificial neural network is founded and trained
by the training dataset. A test method is used that the gesture will be recognized when recognized label
times reach the threshold of activation times by the ANN classifier. The model responds in 227.76 ms
from the beginning of the gesture, which is lower than the limit defined for real time (300 ms). At the
same time, the model shows a recognition accuracy of 98.7%, which is higher than the state-of-the-art.
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