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Abstract: The first professional night-time light remote sensing satellite in China, Luojia1-01, has
raised the resolution of night-time light data to 130 m, which provides a possibility for the study
of small-scale night-time light. This paper is the first research on spatial analysis and quantitative
modeling between night-time light intensity (NTLI) and community housing price (CHP) on a small
scale by using the Luojia1-01 night-time light imagery. This paper takes Wuhan as the research area,
CHP data obtained by web-crawler technology as the research object, combines Luojia1-01 data,
and carries out spatial correlation analysis and quantitative modeling on a small scale for them.
The experimental results show that there is a strong linear positive correlation between the NTLI
and CHP based on geographically weighted regression (GWR), and the CHP data in Wuhan have
obvious spatial non-stationarity. Moreover, the coupling mechanism between the NTLI and CHP is
also revealed. We can conclude that there is potential for estimating the CHP by using Luojia1-01
night-time light imagery.

Keywords: Luojia1-01; night-time light intensity (NTLI); community housing price (CHP);
geographically weighted regression (GWR); small-scale; spatial analysis; quantitative modeling;
potentiality; coupling mechanism

1. Introduction

Urban housing prices have historically been an important part of urban geography, urban sociology,
and regional economic research. Since the 21st century, the real estate industry has developed rapidly,
and its position in the national economy has become stronger and stronger [1]. Real estate prices
are related not only to the production and life of ordinary people but also to the potential of a city’s
development and the stability of the whole national economy. Many studies have shown that housing
prices are influenced by market demand, supply, capacity, and external factors [2–5], and the housing
prices among different regions are also interdependent. Taking spatial correlation as an influencing
factor in housing price research can provide a more effective basis for the spatial analysis of housing
prices within a certain region [6].

In recent years, the rise of night-time light remote sensing technology has provided a new way to
explore urban and urbanization issues [7–9]. Currently, the most widely used night-time light remote
sensing images come from Defense Meteorological Satellite Program - Operational Linescan System
(DMSP-OLS) and The Suomi National Polar-orbiting Partnership - Visible Infrared Imaging Radiometer
(NPP-VIIRS) night-time light satellites in the United States [10–12]. Their spatial resolutions are
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approximately 1000 m and 500 m, respectively. Due to the limitation of the image resolution, the
current research on night-time light is mostly on a large scale, while research on small-scale night-time
light is scarce. Currently, there is no research on quantitative modeling of night-time light data and
housing prices at a small scale in China or abroad. The first professional night-time light remote
sensing satellite in China, Luojia1-01, improves the resolution of night-time light data to 130 m, while
the area of general residential areas is at least 10,000 m2. The improvement of remote sensing image
accuracy meets the minimum area requirement of residential areas, which brings new possibilities and
opinions for the quantitative modeling of night-time light and housing prices on a small scale.

Tan et al. [13] introduced a time-aware latent hierarchical model to capture underlying
spatiotemporal interactions behind the evolution of house prices, and the proposed framework
was examined on a large-scale data set of the property transaction in Beijing. Bera et al. [14] discussed
the value of local environmental amenities based on the hedonic price model. Locally weighted hedonic
regressions were used instead of global hedonic regression. The estimation shows that environmental
and land-use attributes have location characteristics, and there is a significant correlation with housing
prices. Du et al. [15] simulated the spatial heterogeneity of housing prices and explored the spatial
discrepancy of landscape effects on the real estate value in Shenzhen, China. Combining the official
housing transaction records and housing attributes from open data on field surveys, this paper explored
the spatial change of housing prices by using the geographically weighted regression model (GWR)
and analyzed the impact of attributes on housing prices. In summary, there are few reports on the use
of comprehensive objective evaluation indicators, especially remote sensing data for spatial analysis
and quantitative modeling of housing prices on a small scale.

Night-time light can be linked to human activities in some regions [16–20], and night-time
light data have been widely used as an effective measure to monitor urbanization dynamics and
socio-economic activities [21–23]. Yu et al. [24] used NPP-VIIRS night-time light data and taxi GPS
tracking data for estimation of population surface enhancement. Li et al. [25] used Luojia1-01 and
VIIRS night-time light images to compare several methods of extracting urban areas. The experimental
results show that using night-time light images can greatly improve the accuracy of urban area
extraction, while Luojia1-01 data have higher resolution and more abundant spatial information and
can obtain better recognition results than previous night-time light data. Zhang et al. [26] compared
Luojia1-01 night-time light data with NPP/VIIRS data in the context of simulating socio-economic
parameters. The results show that Luojia1-01 night-time light data have a better ability to model
socio-economic parameters than NPP/VIIRS data, and the former can be used as an effective tool to
build a socio-economic parameters model. There is a significant positive correlation between the
two types of night-time light data and 10 socio-economic parameters. Li et al. [27] suggested using
night-time light data as an alternative indicator for assessing the comprehensive indicators of regional
sustainable development. As a comprehensive indicator, night-time light is more objective than
statistical data, more convenient to obtain, and has a certain periodicity. Li et al. [28] evaluated the
spatial property and change detection capability of Luojia1-01 through the preliminary investigation
of Luojia1-01 night-time light imagery. The research shows that Luojia1-01 images are effective data
sources for spatiotemporal distribution of night-time light and its associated socioeconomic attributes.

In this paper, Wuhan city is used as a research area. Community housing price (CHP) data in
Wuhan are obtained through web-crawler technology. Combining with Luojia1-01 night-time light
imagery, this paper uses the exploratory spatial data analysis (ESDA) to reveal the spatial dependence
and heterogeneity through the analysis of spatial autocorrelation, constructs a GWR for analysis at a
small scale, analyzes its spatial differentiation characteristics and its variation law, and studies the
potentiality of estimating CHP by using Luojia1-01 night-time light imagery. This study has the
following innovations and contributions:

(1) The spatial clustering analysis of small-scale housing prices using Luojia1-01 data is first proposed
to analyze whether the night-time light intensity (NTLI) and CHP in small-scale (community)
areas are spatially identical. Currently, there are few applications of Luojia1-01 data, and no
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relevant reports on the above studies have been found in previous studies of night-time light.
Luojia1-01 data contain more spatial details than traditional night-time light data. Based on
the ESDA method, the spatial dependence and heterogeneity of small-scale housing prices are
revealed through spatial autocorrelation analysis, which enriches the theory and method of
small-scale night-time light remote sensing geoscience application and makes up for the deficiency
of macro-analysis.

(2) Under the scale of residential communities, the spatial quantitative relationship between Luojia1-01
NTLI and CHP is explored, and the GWR model is first established for them.

(3) The CHP data used in this paper originate from the manual data mining of the large-scale real
estate information network in China. It has the characteristics of strong timeliness, high accuracy
and accurate spatial location. However, traditional housing price research mostly uses social
and economic statistics, often takes the administrative region as the basic statistical unit, and has
some problems such as data lag.

(4) The coupling mechanism between the NTLI and CHP is the first to be revealed and analyzed,
which is explored from the point of view of loop, central city and human activities.

2. Materials and Methods

2.1. Study Area

This paper chooses Wuhan city, Hubei Province, as the research area. Wuhan is the capital
of Hubei Province (Figure 1). It is located at 113◦41′ E~115◦05′ E, 29◦58′ N~31◦22′ N and is the
central city of central China. Wuhan has a land area of 8569.15 square kilometers, a built-up area
of 723.74 square kilometers, and a resident population of 11.081 million. It covers 15 administrative
districts, including Jiang’an, Jianghan, Qiaokou, Hanyang, Wuchang, Qingshan, Hongshan, Caidian,
Jiangxia, Huangpi, Xinzhou, Dongxihu, Hannan, East Lake High-Tech Development Zone, and the
Economic and Technological Development Zone [29].

Figure 1. Map of the administrative divisions of Wuhan city.
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There are some reasons to choose Wuhan city as the research area.

(1) Location factors. As the central city of central China, Wuhan is the center of China’s
economic geography.

(2) The economic development level of Wuhan is very representative. Wuhan’s economic
development level is on the medium to high level in the whole country, which can represent most
cities with similar levels of economic development.

(3) The Luojia1-01 satellite was developed and produced by Wuhan University. It is of special
significance to select Wuhan as the research area for Luojia1-01.

2.2. Data

2.2.1. Luojia1-01 Data

The Luojia1-01 satellite, launched on 2 June 2018, is the world’s first professional night-time light
remote sensing satellite. It has an imaging capability with 130 m resolution and a 250 km-wide field.
It provides an objective basis for the study of socio-economic parameter estimation and ecological
environmental disaster monitoring. These data can be downloaded free of charge from the High
Resolution Earth Observation System of Hubei Data and Application Center [30]. Since the radiation
calibration of the Luojia1-01 image is still being improved, digital values (DN) are used for analysis
in this experiment. In this paper, 11 night-time light images covering the whole city of Wuhan are
selected from the Luojia1-01 satellite images (Figure 2). The acquisition time of the images includes
June, September, and October.

Figure 2. Luojia1-01 night-time light imagery (NTLI) of Wuhan in 2018.

2.2.2. CHP Data

(1) CHP data used in this paper are derived from the manual data mining of the second-hand housing
sales platforms in small- and medium-sized districts of the large-scale real estate information
network “Lianjia” website [31] and “Anjuke” website [32]. The second-hand housing sales data
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platform of Lianjia and Anjuke are one of the most important real estate information platforms in
China. These data cover a wide range of areas and have high timeliness.

First, web-crawler technology is used to crawl the name of the community in the real estate
information network, the unit price of all the second-hand houses in the community, and the latitude
and longitude information of the community. The average value of the unit price of the second-hand
houses sold in the same month in each community is taken as the average housing price of the
community. For the same community, if there are differences in housing prices between the Lianjia and
Anjuke platforms, the average is taken; if only one platform has data, the data of that platform is taken
as the criterion. These housing price data mainly focus on the listing price of the third-class real estate
market (second-hand housing transactions), which can more realistically reflect the actual situation of
housing prices in this community.

(2) The community vector data set includes 2349 data points from 15 districts (Figure 3). The vector
data set contains location information, community name and its boundary. For crawler data and
community vector data, community name and location are their common attributes.

Figure 3. Community vector data set.

2.3. Method

The technical roadmap for this article is shown in Figure 4.

(1) First, web-crawler technology is used on the real estate information network to crawl the property
data of housing prices in Wuhan communities. The crawled data are cleaned to obtain the
community attribute table. The community attribute table is imported into the community vector
data, and the community vector data set with crawled data is obtained.

(2) The community vector data are superimposed with Luojia1-01 images to obtain the NTLI of each
community. For each community, the average value of 11 night-time night images is taken as
their NTLI.

(3) The method of global spatial autocorrelation is used to explore the spatial distribution and
aggregation degree of the NTLI and CHP, respectively. The method of local autocorrelation
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is used to further judge the aggregation state of the local areas and measure the local spatial
correlation and spatial difference between each area and adjacent areas.

(4) Hotspot analysis of the CHP and NTLI is carried out. Overlay analysis is carried out to identify
the common clustering space of the two.

(5) GWR is used to address spatial non-stationarity and to analyze the spatial distribution of
housing prices.

Figure 4. Technology roadmap.

2.3.1. Data Pre-Processing

(1) Luojia1-01 Data Processing: Since the radiometric calibration of Luojia1-01 imagery is still under
improvement, the numerical value (DN) is used for analysis in this study [25].

(2) CHP data processing: By means of web-crawler technology, information such as community
name, longitude and latitude, housing price, and the area to which they belong is crawled on
the Lianjia website and the Anjuke website. The average unit price of second-hand houses
sold in each district in the same month is taken as the average house price of the community.
For the same community, if there are differences in housing prices between the Lianjia and Anjuke



Sensors 2019, 19, 3167 7 of 20

platforms, the average is taken; if only one platform has data, the data of that platform is taken as
the criterion.

(3) After crawled housing price data are acquired, these data are cleaned and corrected, including
collinear data processing, merging, and repetitive deletion, to remove outliers.

(4) Through the same field (community name) in the housing price data and the community vector
data set, the crawled CHP data are added to the attribute table of the community vector data set.
The community vector data set with the crawled CHP is obtained.

(5) The community vector data are overlaid with night-time light images to obtain the night-time light
values of the different communities. For each community, the average value of the 11 night-time
light images is taken as their NTLI.

2.3.2. Spatial Clustering Analysis

ESDA is one of the most commonly used methods in spatial clustering analysis. ESDA aims
to detect spatial attributes of data and reveal spatial dependence and heterogeneity through spatial
autocorrelation analysis. There are two kinds of spatial data exploratory analysis methods: Global
statistics, which mainly explores the distribution characteristics of an attribute in a region, and local
statistics. Through the analysis of information in sub-regions, we can determine whether there is
heterogeneity in regional information.

(1) Global spatial autocorrelation analysis

Global spatial autocorrelation analysis can measure the degree of spatial correlation and spatial
difference among regions as a whole. Global Moran’s I statistic is a commonly used measure of global
spatial autocorrelation. Its expression is as follows [33]:

I =
N

N∑
i=1

N∑
j=1

W(i, j)

N∑
i=1

N∑
j=1

W(i, j)(Xi −X)(X j −X)

N∑
i=1

(Xi −X)
2
i

(1)

where I is the global spatial autocorrelation index, N is the number of communities, and Xi is the
observation value of community i. In the experiment, the NTLI and CHP are used as the observation
values to calculate the global spatial autocorrelation index. X is the mean value of Xi and W(i, j) is the
spatial weight matrix between communities i and j, which can be constructed based on the adjacency
criterion or distance criterion [34]. Among them, W(i, i) = 0.

The spatial connection matrix is generally expressed as an N-dimensional matrix W(n× n). In this
study, a weight matrix is constructed based on the spatial distance criterion. For the distance matrix,
an appropriate threshold D is selected and determined by default value of ArcGIS. The weight matrix
is defined as follows [34]:

Wd(i, j) =

1 di j ≤ D

0 di j ≥ D
(2)

The value range of I is between [-1, 1]. If I < 0, it means a negative spatial correlation; if I > 0,
it means a positive spatial correlation; if I = 0, it means that there is no spatial correlation. Moran’s I
results were tested by the Z test [33]:

z(I) = (I − E(I))/
√

var(I) (3)

Among them, E(I) is the expectation of the autocorrelation of observation variables, and var(I)
represents the variance deviation. If |z| is greater than 2.58, the significance level is less than 1%, which
means that the observed values are very significantly clustered in space; if |z| is greater than 1.96, the
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significance level is less than 5%, which means that the observed values are significantly clustered in
space; if |z| is less than 1.96, the significance level is more than 5%, which means that the observed
values are randomly distributed in space.

(2) Local spatial autocorrelation analysis

Global autocorrelation analysis measures the dependence of the NTLI on the spatial location of
housing prices in Wuhan as a whole, but it cannot identify the specific spatial location of clustering or
outliers. Therefore, Local Moran’s I is used for further analysis between the NTLI and CHP to reflect the
similarity and difference of the distribution of the NTLI and CHP.

In essence, Local Moran’s I decomposes Moran’s I into regional units. Anselin called it local
indicators of spatial association (LISA) [35]. Its expression is [35]:

Ii =
Xi−X

S2
i

N∑
j=1, j,i

W(i, j)(X j −X), S2
i =

N∑
j=1, j,i

(X j −X)
2
/(N − 1) (4)

In the formula, the meanings of N, Xi, X, W (i, j) are the same as those in Equation (1). The Z test
of LISA is the same as Equation (2).

(3) Hotspot analysis

Hotspot analysis can accurately focus on the center and locate the “hot spot” and “cold spot” areas.
Hotspot detection is performed by the local Getis-Ord G∗i statistic, and then its local autocorrelation is
analyzed. The G∗i index can well reflect hot and cold spots in the local space. In the experiment, the
hotspot analysis is used to detect hot and cold spots of the NTLI and CHP as observation values. The
calculation formula can be expressed as follows [35]:

G∗i =

 n∑
j=1

Wi jx j −X
n∑

j=1

Wi j


/
s

√√√√
(n

n∑
j=1

Wi j2 − (
n∑

j=1

Wi j)

2

)/(n− 1) (5)

where xj is the attribute value of community j, which is the NTLI and CHP, Wij is the spatial weight
between community i and j (this study builds the weight matrix based on the distance criterion) and
the same as W(i, j), n is the total number of communities, S is the standard deviation of the NTLI or
CHP in Wuhan, X is the average value of the NTLI or CHP and G∗i itself is a test statistic that identifies
the hot and cold spots of statistical significance. Generally, standardized Z values are used to test the
significance of the Getis-Ord G∗i statistics. The G∗i statistics are Z-scores, so no further calculations are
needed. When the Z value is positive and greater than 1.96, it indicates that the night-time light value
or housing price around community i is higher than the weighted mean value in the threshold range.
It belongs to the high-value spatial agglomeration area, which is called the “hot spot” area. Conversely,
it is a “cold spot” area. Near zero Z-score means that there is no spatial clustering. The greater the
absolute value of the G∗i index, the higher the degree of aggregation in the study area.

(4) Overlay analysis

The hotspot analysis results of the CHP and NTLI are superimposed. The common hot and cold
spot areas are extracted for the next quantitative analysis of the GWR.

2.3.3. Spatial Quantitative Analysis

Since urban housing prices are closely related to spatial location and have spatial autocorrelation
characteristics, the GWR model is often used to quantitatively analyze the spatial distribution of the
various influencing factors of housing prices.
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The GWR model is a spatial analysis model proposed by Fotheringham et al. [36], which can
quantitatively describe the relationship between multiple spatial variables. The model considers
spatial factors and effects on the basis of the general linear regression model [37–41]. It is a local spatial
regression method used to address spatial heterogeneity. The general form of the GWR model is as
follows [36,38,42]:

yi = β0(ui, vi) +

p∑
k=1

βk(ui, vi)xik + εi, i = 1, 2, . . . , n (6)

where yi is the observation value, (ui, vi) is the geographical location coordinate of community i,
β0(ui, vi) is the regression constant of i, βk(ui, vi) is the k regression parameter of community i, which is
the function of geographical location, p is the number of communities, xik is the value of independent
variable xk at i, and εi is the random error.

In the above model, an observational value is weighted by the nearest neighbor to position i.
Therefore, the weighting of an observational value does not remain constant during the calculation
process but changes with i. The estimation of βk(ui, vi) can be expressed as [42]:

β̂(ui, vi) = (XTW(ui, vi)X)
−1

XTW(ui, vi)Y (7)

where X is an independent variable matrix and is related to NTLI, XT is its transpose matrix, Y is a
dependent variable vector and is related to CHP.

In practice, the weight function is usually determined by the Gauss function, which is expressed
as follows [41]:

Wi j = exp
(
−d2

i j/b2
)

(8)

where b is the bandwidth. The establishment of the bandwidth is very important for the GWR
model. The size of the bandwidth directly affects the spatial change of the GWR model. If the data
of community i are observed, the weights of other points will decrease with increasing distance di j
according to the Gauss curve.

To obtain the best bandwidth, Brunsdon and Fotheringham et al. [43] further applied the Akaike
information criterion (AIC) to weight function bandwidth selection in the GWR analysis according
to the results of Hurvich et al. [44]. When the AIC of the GWR model is the smallest and the best
bandwidth b is acquired, its formula is:

AICc = 2n ln(σ̂) + n ln(2π) + n[(n + tr(S))/(n− 2− tr(S))] (9)

S = X(XTWX)
−1

XTW (10)

where S is the hat matrix. Subscript c is the estimated value of the revised AIC, n is the number of
communities, σ̂ is the standard deviation of the error estimation, tr(S) is the trace of the S matrix of the
GWR and a function of bandwidth.

In spatial analysis, observation data are generally sampled according to a given geographical
location as a sampling unit. With the change in geographical location, the relationship or structure of
the variables will change, which is called “spatial non-stationarity” in geographic information systems
(GIS). This spatial non-stationarity generally exists in spatial data. It is difficult to obtain satisfactory
results if the traditional linear regression model is used to analyze spatial data. However, the GWR
model is used to address this property of spatial data itself by establishing a local regression equation
at each point in the spatial range. It explores the spatial variation relationship between variables and
its future results. There are obvious advantages in the process of forecasting.

3. Results and Discussion

The experimental design of this paper is as follows:
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(1) In spatial clustering analysis, the spatial autocorrelation index is used to study the correlation
between the attributes of Wuhan community (i.e., CHP and NTLI) in its spatial location and to
test whether the attributes of the residential district are significantly correlated with the attributes
of neighboring spatial points. If the correlation is positive, it shows that the change trend of the
attribute value of a community is the same as that of its adjacent spatial units, while the negative
correlation is the opposite.

(2) In spatial quantitative analysis, the specific idea of using the GWR to quantitatively study the
spatial heterogeneity of the CHP and NTLI is as follows: First, the spatial structure characteristics
of the CHP data are tested. Second, the Gauss function is selected as the weight function, and the
AIC method is selected to determine the optimal bandwidth. Then, the GWR model of the CHP
in Wuhan is constructed to simulate. Based on this, the model results are tested: Whether the
NTLI significantly indicates spatial non-stationarity. Finally, the simulation and test results are
analyzed, discussed, and summarized.

3.1. Spatial Clustering Analysis

The sample point distribution of this paper is shown in Figure 5.

Figure 5. Sample point distribution.
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The Global Moran’s I is used to measure spatial autocorrelation for the CHP and NTLI in Wuhan.
INVERSE_DISTANCE is used in spatial relations because the adjacent elements have a greater
impact on the calculation of target elements than the distant ones. EUCLIDEAN_DISTANCE, the
straight-line distance between two points, is used to calculate the distance between each element and
its adjacent elements.

The Global Moran’s I statistics of the NTLI and CHP in Wuhan are calculated. The results are
shown in Table 1.

Table 1. Global Moran’s I summary.

Variable CHP NTLI

Moran’s I index 0.254795 0.244385
Expectation index −0.000426 −0.00426
Variance 0.000001 0.000001
Z score 208.965341 200.756958
p value * 0.000000 0.000000

* In ArcGIS, the p value can only be given to six decimal places. When the p value is too small, it is approximated
to zero.

The calculation results in Table 1 show that both Moran’s I index of the CHP and NTLI are greater
than 0, both Z scores are greater than 2.58 and both p values are less than 0.01. Thus, the following
results can be obtained: 1) Moran’s I index of both the CHP and NTLI are positive, indicating that both
are positively correlated in space, and that the value of the data set used for analysis is proportional
to the degree of spatial aggregation. 2) Both p values are less than 0.01, so the probability of random
generation of both data is only 1% (99% confidence level). 3) Both Z scores are more than 2.58, which
indicates that both data present obvious clustering characteristics. In general, the p value represents
the reliability of the data source, and the Z score and Moran’s I index indicate that the data have
obvious regularity.

The clustering degree of high or low values can be measured by the Getis-Ord General G statistics.
The results are shown in Table 2.

Table 2. General G summary.

Variable CHP NTLI

Observation value of General G 0.208858 0.271641
Expected value of General G 0.169386 0.169386
Variance 0.000002 0.000001
Z score 28.090046 32.110155
p value 0.000000 0.000000

The global exponent only tells us whether there are agglomerations or outliers in space, but it
does not tell us where. In other words, Global Moran’s I only answers yes or no; if global autocorrelation
occurs, then local autocorrelation occurs; Local Moran’s I tells us where outliers occur or where
agglomerations occur, which is a tool to answer where. In the experiment, Anselin Local Moran’s I is
used to analyze clustering and outliers (Figures 6–9).
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Figure 6. Clustering and outlier analysis of the community housing price (CHP).

Figure 7. Clustering and outlier type of the CHP.
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Figure 8. Clustering and outlier analysis of the NTLI.

Figure 9. Clustering and outlier type of the NTLI.
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High-high cluster (HH) indicates that the area with high CHP (or NTLI) is surrounded by other
areas with high CHP (or NTLI) or that the level of the CHP (or NTLI) in this area is higher, and the
spatial difference of the CHP (or NTLI) in this area is smaller.

Low-high outlier (LH) means that the area with low CHP (or NTLI) is surrounded by other areas
with high CHP (or NTLI). In other words, the level of the CHP (or NTLI) in this area is low, and the
spatial difference of the CHP (or NTLI) in this area is large.

High-low outlier (HL) means that the area with high CHP (or NTLI) is surrounded by other areas
with low CHP (or NTLI) or that the level of the CHP (or NTLI) in this area is high, and the spatial
difference of the CHP (or NTLI) in this area is large.

Low-low cluster (LL) indicates that the area with low CHP (or NTLI) is surrounded by other areas
with low CHP (or NTLI). In other words, the level of the CHP (or NTLI) in this area is low, and the
spatial difference of the CHP (or NTLI) in this area is small.

According to the results of the clustering and outlier analysis of the CHP and NTLI, both their
HH clusters occur in the central area, while the LL cluster occurs in the periphery of the city.

In the hotspot analysis, FIXED_DISTANCE_BAND is selected to analyze each element in the
adjacent factor environment. The adjacent elements within the specified critical distance will assign a
weight of 1, which will have a significant impact on the calculation of the target elements. The adjacent
elements outside the specified critical distance will assign weights of zero and will not have any effect
on the calculation of the target elements. EUCLIDEAN_DISTANCE is used to calculate the distance
between each element and its adjacent elements.

Hotspot analysis of the NTLI and CHP in Wuhan is carried out, and the results are shown in
Figures 10 and 11. From the hotspot analysis, it can be seen that the hot spots of both the NTLI and
CHP are concentrated in the city center, the cold spots are concentrated in the periphery of the city, and
the transitional zone between the city center and the suburbs is not significant.

Overlay analyses of the NTLI and CHP in Wuhan are carried out, and the results are shown in
Figure 12. From the overlay analysis, it can be seen that the common cold spots and hot spots of the
NTLI and CHP are concentrated in the urban center and periphery.

Figure 10. Hotspot analysis of the CHP.
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Figure 11. Hotspot analysis of the NTLI.

Figure 12. Results of the overlay analysis.
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The results of the spatial clustering analysis show the following:

(1) There is a significant positive spatial autocorrelation in the CHP in Wuhan.
(2) There is a significant positive spatial autocorrelation of the NTLI in Wuhan communities.
(3) There is a strong linear positive correlation between the CHP and NTLI in Wuhan.
(4) The HH cluster of both the CHP and NTLI occurs in the central area, and both their LL clusters

occur in the periphery of the city.

The CHP in the study area basically conforms to the normal distribution and generally presents
the pattern of spatial agglomeration. There is spatial autocorrelation between the CHP and NTLI in
Wuhan, which passes the 1% significance test. The CHP in Wuhan decreases from the city center along
the traffic ring to the suburbs, forming a circle-like spatial pattern. The NTLI also shows a pattern of
spatial agglomeration.

3.2. Spatial Quantitative Analysis

The results of GWR and OLS are shown in Table 3.

Table 3. Results of Geographically weighted regression (GWR) and Ordinary least square (OLS).

Variable GWR Value OLS Value

Bandwidth 0.114996 -
ResidualSquares 2.07E+10 -
Sigma 4230.55 -
AICC 22738.6 23098.122853
R2 0.518962 0.281875
R2 Adjusted 0.516875 0.280009
Trace_of_Smatrix 52.6018 -
F-Stat - 150.988220
Wald - 243.623832
Wald-Prob - 0
K(BP) - 28.721512
K(BP)-Prob - 0
JB - 1983.028524
JB-Prob - 0
Sigma2 - 26788093.986300

For the GWR method, its R2 and R2 adjusted values are above 0.518, which confirms that under
certain conditions, the NTLI can reflect the housing price of a district, and there is a significant positive
correlation between them. The R2 and R2 adjusted values of the OLS are less than 0.28. The AICc

value of the GWR is smaller than that of the OLS, which means that the GWR is more suitable for
regression fitting of the NTLI and CHP. Comparing the GWR and OLS results, we find that the GWR
model considering the influence of geographical location on equation fitting is better than the OLS
model in fitting the experimental data.

Through an interactive validity test, the optimal bandwidth of the GWR model is 0.114.
The experimental results show that the NTLI in Wuhan has obvious spatial non-stationarity through
the GWR to predict the housing price.

3.3. Discussion

The coupling mechanism between the NTLI and CHP is analyzed from two aspects as follows:

(1) From the perspective of the spatial clustering analysis:

The NTLI in Wuhan shows a pattern of spatial agglomeration, and the NTLI decreases from the
city center to the suburbs. That is, the activities of people in the city center are more concentrated, and
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the night lighting facilities in the city center are more widespread and perfect than those in the suburbs.
Overall, the NTLI shows a downward trend from the central area to the peripheral area. The CHP in
Wuhan decreases from the city center along the traffic ring to the suburbs, forming a circle-like spatial
pattern. That is, the closer a city is to the city center, the higher the level of living consumption. In
addition, in the outer edge of the city, housing prices tend to show a downward trend from the center
to the outside. Therefore, there is a strong linear positive correlation between the CHP and NTLI
in Wuhan.

There are some outliers both in the CHP and the NTLI, mostly between the HH cluster and LL
Cluster. This is because there is a wide gap between the rich and poor China. High-price communities
tend to be concentrated in the city center, while suburban housing prices are generally lower. In the
transitional zone between the urban centers and suburbs, the communities with high prices and those
with low prices are interlaced.

(2) From the perspective of the spatial quantitative analysis:

(a) Comparing the results of the GWR with the OLS estimation, it is found that the fitting
effect of the GWR estimation is better than that of the traditional OLS estimation. This
is because the OLS estimation does not consider the factors of spatial distance, and the
results only describe the effect of night-time light on housing prices in general. It is a
global estimation that cannot reflect the heterogeneity of parameters in space. The GWR
model reveals the information that cannot be explained by the OLS to reflect changes in
the CHP.

(b) There is a significant spatial heterogeneity in the NTLI in Wuhan, which is reflected in the
obvious spatial difference between the NTLI and CHP.

(c) The GWR model provides technical support for the quantitative measurement of structural
changes in spatial variables. It can measure the variation in influencing factors in local
geographic space. It has a prospect of wide application in studying the non-stationarity of
the influencing factors of housing prices.

4. Conclusions

This paper uses Wuhan as the research area and CHP data as the research object, combined
with Luojia1-01 night-time light imagery, and carried out small-scale spatial correlation analysis and
modeling. The experimental results show that there is a strong linear positive correlation between the
NTLI and CHP, the CHP data in Wuhan has obvious spatial non-stationarity, and there is potentiality
of estimating the CHP by using Luojia1-01 night-time light imagery

Through the spatial analysis of the CHP and NTLI in Wuhan, we can find the intrinsic relationship
between them and simultaneously fill the gap in the research field of small-scale night-time light
to a certain extent. The experimental results show that this study has certain theoretical and
practical significance.

In terms of theoretical significance, since the launch of the Luojia1-01 satellite in June 2018, many
scholars have made use of the image data of the Luojia1-01 satellite to carry out relevant research, but
generally speaking, there is too little research on the Luojia1-01 data. This paper is the first to use the
Luojia1-01 night-time light data to carry out small-scale housing price research, which is an extension
of the application of the Luojia1-01 data.

In terms of practical significance, this study contributes to revealing the coupling mechanism
between the CHP and NTLI. The ability to predict and analyze the impact of the NTLI on CHP is not
only an important issue of concern to residents, developers, and government departments but also
plays an important role in real estate market policy-making and urbanization development. Through
the prediction of the CHP and the analysis of the influence of the NTLI in Wuhan, this paper can
provide guidance for consumers to purchase housing to a certain extent, provide some reference for
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developers and investors, provide reference for relevant government departments, help strengthen the
management of real estate, and contribute to the development of urbanization.

However, there are still some shortcomings in this study, and there are still some aspects that need
to be improved.

(1) As a new generation of night-time light images, Luojia1-01 provides higher spatial resolution,
a wider radiation measurement range, and richer urban dynamic information than previous
night-time light data. However, the lack of multi-temporal images limits its application in time
series. By integrating Luojia1-01 with other high-resolution night-time light images, we can find
a solution to this problem. Considering spatial non-stationarity and temporal non-stationarity
will be one of the next research priorities of this method.

(2) The experimental results show that there is a strong linear positive correlation between the NTLI
and CHP. How to quantitatively evaluate the explanatory power of the NTLI to CHP is also a
problem to be discussed in this paper.
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