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Abstract: Lane detection is an important foundation in the development of intelligent vehicles.
To address problems such as low detection accuracy of traditional methods and poor real-time
performance of deep learning-based methodologies, a lane detection algorithm for intelligent vehicles
in complex road conditions and dynamic environments was proposed. Firstly, converting the
distorted image and using the superposition threshold algorithm for edge detection, an aerial view
of the lane was obtained via region of interest extraction and inverse perspective transformation.
Secondly, the random sample consensus algorithm was adopted to fit the curves of lane lines based
on the third-order B-spline curve model, and fitting evaluation and curvature radius calculation
were then carried out on the curve. Lastly, by using the road driving video under complex road
conditions and the Tusimple dataset, simulation test experiments for lane detection algorithm were
performed. The experimental results show that the average detection accuracy based on road driving
video reached 98.49%, and the average processing time reached 21.5 ms. The average detection
accuracy based on the Tusimple dataset reached 98.42%, and the average processing time reached
22.2 ms. Compared with traditional methods and deep learning-based methodologies, this lane
detection algorithm had excellent accuracy and real-time performance, a high detection efficiency
and a strong anti-interference ability. The accurate recognition rate and average processing time were
significantly improved. The proposed algorithm is crucial in promoting the technological level of
intelligent vehicle driving assistance and conducive to the further improvement of the driving safety
of intelligent vehicles.
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1. Introduction

The annual increase in car ownerships has caused traffic safety to become an important factor
affecting the development of a city. To a large extent, the frequent occurrence of traffic accidents
is caused by subjective reasons related to the driver, such as drunk, fatigue and incorrect driving
operations. Smart cars can eliminate these human factors to a certain extent [1–3]. In recent years,
the development of smart cars has gradually attracted the attention of researchers in related fields
worldwide. Smart cars can intelligently help humans perform driving tasks based on real-time traffic
information, thereby indicating their significance in improving the safety of automobile driving and
liberating human beings from tedious driving environments [4,5]. Lane detection is an important
foundation in the course of intelligent vehicle development that directly affects the implementation of
driving behaviours. Based on the driving lane, determining an effective driving direction for the smart
car and providing the accurate position of the vehicle in the lane are possible; these features contribute
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significantly towards improving the efficiency and driving safety of automatic driving [6,7]. Therefore,
conducting an in-depth study on this is necessary.

At present, lane detection is mainly based on visual sensors. Visual sensors have essentially
become the eyes of a smart car that capture road scenes in front of vehicles through cameras. Such
sensors can work continuously for long periods of time with strong adaptability. At the same time,
visual sensors have a wide spectrum response range that can see infrared rays, which are invisible to
the naked eye; this feature remarkably enlarges the vision space of human beings [8–11]. However,
in daily natural conditions, the problems of vehicle occlusion, insufficient light, varied road twists
and turns and complex backgrounds on both sides have caused many difficulties for accurate lane
detection [12,13]. With the rapid increase of computer speed, many experts and scholars have
focused on lane detection, which is mainly divided into feature- and model-based lane detection.
The feature-based lane detection separates the lane from the actual road scene based on the edge
and colour features of the lane. Zheng et al. [14] transformed the original RGB image into the CIE
colour space and used the adaptive double threshold method to extract the effective features of the
lane in the road scene. Haselhoff et al. [15] proposed a method for detecting the left and right lanes
by using a two-dimensional linear filter which could eliminate the interference noise during the
detection process and preserve the inherent characteristics of the lane in the distant view as much
as possible. Son et al. [16] focused on the influence of light changes on lane detection. Based on the
illumination invariance of lanes, yellow and white lanes were selected as candidate lanes, and the lanes
were also detected via the clustering method from candidate lanes. Amini et al. [17] used the Gabor
filter to predict the vanishing point of the lane in the field of vision. When the confidence function
was at the maximum confidence level, the line generated below the vanishing point was the lane
boundary. In recent years, some experts and scholars have focused on unstructured road detection and
curb detection. Kong et al. [18] used vanishing point algorithm to reverse detect road boundary and
achieved good results in unstructured road detection. Hervieu et al. [19] used the angle between the
normal of the plane fitted with local point data and the ground normal to detect the road boundary,
and the Kalman filter model was used to predict the road boundary. The verification results showed
that the method was effective for road boundary detection with obstacles. Hata et al. [20] obtained
the road boundary points based on elevation jump and slope characteristics, and then discarded the
abnormal boundary points by optimization, and finally fitted the road boundary according to the
retained boundary points. The model-based lane detection first regards the lane as the corresponding
geometric model, and then fits the lane after obtaining the model parameters. Geiger et al. [21] used
the Bayesian classifier to obtain the probability generation model based on the pixel points of the road
surface and proposed the likelihood function combined with the characteristics of vehicle trajectory and
vanishing points. Lane feature recognition was discovered by obtaining the comparative divergence
parameters. Liang et al. [22] established an adaptive road geometry model that could analyse the
correlation between the road scene ahead and time; hence, the geometry of the lane could be detected
and recognised based on the model. Bosaghzadeh et al. [23] solved the problem of obtaining the view
angle of the front image by using the principal component analysis (PCA) method. According to the
rotation matrix model, lane detection was obtained, and its robustness was acceptable. Recently, deep
learning-based methodologies have been used for lane detection. He et al. [24] proposed an algorithm
for lane detection based on convolution neural network which converted the input detection image
into aerial view. The detection accuracy was high, but the image processing speed was slow and
the algorithm took too long. Badrinarayanan et al. [25] proposed SegNet, a pixel-level classification
network. Scene segmentation can not only detect lane lines, but also classify and recognize pedestrians,
trees and buildings. However, the network had a complicated structure, a large computational load
and poor real-time performance. Pan et al. [26] put forward a new neural network Spatial CNN (SCNN)
based on visual geometry group, which effectively solved the detection problem when the lane was
occluded. The results show that many research methods improved the effective recognition rate of
lane detection, but advantages and disadvantages still remain between algorithms that will be limited
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by various conditions [27,28]. The feature-based lane detection was only applicable to actual road
scenes where the lane edges were clear under simple road conditions. When the lane was damaged or
visibility was low, the detection accuracy was significantly reduced. In the study of unstructured road
detection and curb detection, the accuracy of road boundary detection was high. Nevertheless, when
road information was too complicated or there was obstacle interference, the calculation speed was
significantly reduced, which easily led to false detection [29–32]. The model-based lane detection was
only suitable for situations in which the preset model was consistent with the detection image and the
algorithm must have high complexity and a large calculation amount. In actual road scenes, real-time
performance was worse [33–35]. Deep learning-based methodologies can effectively improve the
accuracy and robustness of lane detection. However, the algorithms had higher hardware requirements,
and the training model structures were too complex, so there were still some limitations [36–39].
Therefore, further improving the lane detection algorithm is necessary.

In this study, a lane detection algorithm for intelligent vehicles in complex road conditions
and dynamic environments was proposed. Firstly, converting the distorted image and using the
superposition threshold algorithm for edge detection, an aerial view of the lane was obtained by using
region of interest (ROI) extraction and inverse perspective transformation. Secondly, based on the
curve model, the random sample consensus (RANSAC) algorithm was adopted to fit the curves of
lane lines, and the fitting evaluation and the curvature radius calculation on the curve were then
carried out. Lastly, by using the road driving video under complex road conditions and the Tusimple
dataset, simulation test experiments for lane detection algorithm were carried out. By analysing the
experimental results and comparing with other algorithms, the comprehensive performance of the
algorithm was evaluated.

The rest of this paper is organised as follows: Section 2 presents the process of converting the
distorted image by camera calibration and image distortion removal. Section 3 discusses the edge
detection by using the superposition threshold algorithm, and an aerial view of the detection image
was obtained via ROI extraction and inverse perspective transformation. Section 4 explains how an
effective detection algorithm was used to detect lane lines, and the simulation test experiment based
on two datasets and algorithms performance comparison were carried out. Lastly, Section 5 outlines
the conclusions and suggests possible future work.

2. Converting of Image Distortion

The detection image was captured by a camera mounted on a smart car. Although the camera lens
enables the rapid generation of images, such images lead to distortion. In practical terms, distortion
changes the shape and size of the lane, vehicle and background in the road scene. These changes
are not conducive to judging the correct driving direction and determining the exact location of the
vehicle. Consequently, converting of image distortion is essential. In this section, converting of image
distortion includes camera calibration and image distortion removal.

2.1. Camera Calibration

Instead of focusing on the principle of aperture imaging, the vehicle-mounted camera uses a
lens that can focus a large amount of light at one time. These rays bend to varying degrees at the
edge of the camera lens and produce the distorted image with edge distortion. The actual road
scene is a three-dimensional space, but the collected detection image is a two-dimensional image.
Therefore, it was necessary to establish a geometric model between the world and image coordinates
and accomplish the camera calibration by obtaining camera characteristic parameters, so as to realize
the converting of image distortion.

In the process of describing the geometric relationship of images in the three-dimensional visual
space, four coordinates must be defined: World Coordinate OwXwYwZw, Camera Coordinate OcXcYcZc,
Image Physical Coordinate O1xy, and Image Pixel Coordinate Oouv. Figure 1 illustrates the geometric
relationships between coordinates when the image was distorted. Point p is the projection point of
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point P on the image plane under the ideal linear model, and point d is the projection point of point P
on the image plane when image distortion occurs.

Figure 1. The geometric relationships between coordinates when the image is distorted.

The two-dimensional image captured by the vehicle-mounted camera must be sequentially
converted between the respective coordinates in turn to realise the coordinate transformation of a
certain pixel point in the image from the image pixel coordinate to the world coordinate. Figure 2
presents the conversion relationships between the coordinates.

Figure 2. The conversion relationships between the coordinates.

The transformation relationship between the world coordinates of any point P in a
three-dimensional space and the image pixel coordinates of the projection point p is presented
as follows:
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where (u0, v0) is the coordinate of point p in the Image Pixel Coordinate; dX and dY are the physical
dimensions of each pixel in the Image Pixel Coordinate; f is the focal length of the camera; R is a unit
orthogonal matrix of 3× 3 (also called a rotation matrix), which represents the angular relationship
between the coordinates; t is a translation vector representing the position relationship between the
coordinates; (Xw, Yw, Zw) is the homogeneous coordinate of point p in the World Coordinate.
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Define αx = f /dX, which represent the ratio of focal length f to the physical dimension of a pixel
in the u-axis direction. Define αy = f /dY, which represent the ratio of focal length f to the physical
dimension of a pixel in the v-axis direction. Then, the above formula can be equivalent to:
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M1 is a 3× 4 matrix determined by parameters such as αx, αy, u0 and v0. These four parameters
are related to the internal structure of the camera called the internal parameters of the camera. The
rotation matrix R and the translation vector t are determined by the orientation relationship between
the camera and the world coordinates. Therefore, M2 is called the external parameters of the camera.
The internal and external parameters of the camera were obtained through multiple experiments and
calculations, and the process of camera calibration was completed.

2.2. Image Distortion Removal

In recent years, vehicle-mounted cameras often used wide-angle lens to obtain an enlarged
field of vision, and the image distortion changes appeared remarkable. Image distortion is generally
divided into radial and tangential distortions. Compared with the actual road scene, the common
edge distortion of lanes, vehicles and backgrounds is called radial distortion. If the camera lens is not
parallel to the image plane of the visual sensor, the collected image will be tilted, thus making the lane,
vehicle and background look closer or farther than in the actual three-dimensional world. This type
of image distortion is called tangential distortion, which is more disadvantageous to reflect the real
driving environment.

The mathematical model of radial distortion is defined as follows:{
u′ = u(1 + k1r2 + k2r4 + k3r6)

v′ = v(1 + k1r2 + k2r4 + k3r6)
(3)

where, r2 = x2 + y2, (u′,v′) is the coordinate of point d in the Image Pixel Coordinate.
The mathematical model of tangential distortion is presented as follows: u′ = u +

[
2p1v + p2(r2 + 2u2)

]
v′ = v +

[
p1(r2 + 2v2) + 2p2u

] (4)

Equations (3) and (4) demonstrate that image distortion is related to five parameters—k1, k2,
k3, p1 and p2—which are collectively called distortion coefficients. By calibrating the camera and
acquiring the distortion coefficient, the distorted image can be corrected. In this study, the checkerboard
calibration plate was used to remove image distortion. The checkerboard was composed of black and
white grids with regular shapes to easily find the coordinates of corner points and observe the image
correction conveniently. After determining the coordinates of the corners, a transformation matrix was
created to map the distorted points to the undistorted points, and image distortion was removed by
using coordinate transformation. Figure 3 shows the correction of the distorted image, in which the
left and right halves are the original and undistorted images, respectively.
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Figure 3. The correction of the distorted image.

3. Edge Detection and Inverse Perspective Transformation

Edge information is an important feature of the detection image. A suitable edge detection
algorithm that can remove a large amount of useless data is beneficial to determine the basic outline
of the lane. The inverse perspective transformation converts the detected image into the aerial view
to recognise the lane at the optimal visual angle. Therefore, edge detection and inverse perspective
transformation are crucial parts in image processing.

3.1. Edge Detection

Commonly used edge detection algorithms include global extraction methods based on energy
minimisation criterion (such as fuzzy theory and neural networks) and edge derivative methods
that use differential operators (such as Canny, Prewitt, LOG and Robert operators). However, the
traditional single-edge detection algorithm has many problems, including a too-wide detection range,
poor antinoise interference and prolonged calculation time [40–42]. Meeting the target requirements of
lane detection is difficult. To overcome the shortcomings of the algorithms listed above, this study
adopted the edge detection algorithm, which superimposes the threshold of the Sobel operator and
HSL colour space.

The Sobel operator is a type of discrete first-order difference operator. The influence of adjacent
points in the neighbourhood is different for the current pixel point. Greyscale weighting and differential
operations were performed on neighbourhood pixels to obtain the gradient and normal vectors of the
pixel point that can be used to calculate the approximate value of the image brightness function.

The Sobel operator performs edge detection on the detected image from the horizontal and vertical
directions and can sufficiently filter the interference noise with the improved image processing effect.
However, if only the Sobel operator is used for edge detection, then problems such as low detection
accuracy and rough edges easily occur. These issues must be solved effectively.

Figure 4 shows the HSL colour space, which can be converted from the common RGB colour
space. In this figure, H, S and L denote the hue, saturation and lightness, respectively. H represents
the colour change of the image. The position of the spectral colour is represented by the angle, and
different colour values correspond to different angles. S refers to the colour degree of the image colour
used to describe the similarity between the actual and standard colours. When S is the minimum value
of 0, the image becomes a greyscale image and H is undefined. When S is the maximum value of 1, the
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image colour and its complementary colour are fully saturated. L indicates the lightness degree of the
image colour, which gradually changes along the direction of the axis. The maximum and minimum
values are 1 and 0 in white and black, respectively.

Figure 4. The HSL colour space.

Compared with the RGB colour space, the HSL colour space can better reflect the visual field
perception characteristics of the naked eye. Each colour channel in the HSL colour space can be
processed independently and separately. Among them, the component image with S channel performs
best and is beneficial to reducing the workload of image processing remarkably and significantly
improving the target recognition rate of the detected image.

Gradient threshold segmentation based on the Sobel operator and colour threshold segmentation
based on the HSL colour space have advantages and disadvantages. The gradient threshold of the
Sobel operator in the x direction is superimposed with the colour threshold of the HSL colour space S
channel, and the superposition result is shown in Figure 5.

Figure 5. Gradient threshold and colour threshold superposition result.
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Figure 5a illustrates a threshold superimposition image. To observe the edge detection effects of
the two threshold methods intuitively, the gradient threshold segmentation result of the Sobel operator
in the x direction and the colour threshold segmentation result of the HSL colour space S channel
are represented by green and blue, respectively. Figure 5b presents a threshold superimposition
binarisation image. By binarising the image, useless interference information can be removed to speed
up the operation of the detection algorithm. This figure shows that the edge detection algorithm with
threshold superposition achieved good results of complementary advantages and superiorities. These
findings are conducive to accurate lane recognition in the detection image and also facilitate the next
reverse perspective transformation.

3.2. Inverse Perspective Transformation

After edge detection, substantial redundant information, such as the sky, trees and vehicles, still
remain in the image. The two-lane lines that appear near-wide and far-narrow gradually meet and
make it difficult to detect the lane at a later stage. Therefore, performing ROI extraction and inverse
perspective transformation on the detected image is necessary.

3.2.1. ROI Extraction

Given that the vehicle-mounted camera was installed in the middle of the roof of the smart car at
a certain depression angle, the detection image contained useless background information, such as the
sky, trees and hillsides, on both sides of the road. The effective detection portion, such as the lane, can
account for approximately two-thirds of the area of the detected image called ROI. ROI extraction of
the detected image can reduce the unnecessary computation and shorten the consumption time of the
subsequent image processing step. Figure 6 depicts the extracted ROI.

Figure 6. The extracted ROI.

3.2.2. Inverse Perspective Transformation

Perspective is the phenomenon of images. The closer you get to the camera, the bigger it
looks and vice versa. Parallel lane lines merge into a point in the distant field of vision called the
vanishing point. The distance between the adjacent lanes near the vanishing point decreases gradually,
which is detrimental to effective lane detection. Inverse perspective transformation is based on the
inverse coordinate transformation from the world coordinate to the image coordinate that transforms
the perspective image into the aerial view and restores the parallel relationship between the lane
lines [43,44].

Section 2.1 shows that camera calibration was completed, and the internal and external parameters
of the camera were obtained. The internal parameters included focal length and optical centre, whereas
the specific external parameters included elevation angle, yaw angle and height of the camera relative to
the ground. The inverse coordinate transformation from the world coordinate to the image coordinate
was obtained by using Equation (1). Compared with image distortion removal, inverse perspective
transformation mapped the position points in the detected image to the new position points in the
overlooking perspective to obtain the aerial view of the road image. Figure 7 presents the aerial view
of the lane obtained from inverse perspective transformation.
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Figure 7. The aerial view of the lane.

4. Lane Detection

Lane detection in complex road conditions is susceptible to external environmental factors, such
as lack of light, road tortuosity and vehicle obstruction. The previous image processing was based
on a single detection image. However, effective lane detection must be applied in dynamic driving
environments while maintaining a recognition rate with sufficiently high accuracy. In this section,
the mask operation of the lane was firstly carried out. Then, on the basis of the third-order B-spline
curve model, the RANSAC algorithm was used to achieve accurate fitting and curvature calculation
of the lane. Lastly, simulation test experiments were performed based on road driving video and
the Tusimple datasets, the experimental results were analysed, and the performances of algorithms
were compared.

4.1. Mask Operation

In the aerial view of the lane, useless interfering pixels still existed. Such interference prolongs
not only the image processing time but also easily causes false detection in the next lane detection.
Therefore, before lane detection, masking the detected image was necessary. Mask operation essentially
filtered the pixel points to highlight the target lane in the detected image.

The mask operation formula is defined as follows:

I(i, j) = 5× I(i, j) − [I(i− 1, j) + I(i + 1, j) + I(i, j− 1) + I(i, j + 1)] (5)

where I(i, j) is the target pixel point, and I(i − 1, j), I(i + 1, j), I(i, j − 1) and I(i, j + 1) are four pixel
points around the target pixel.

Mask operation clearly shows the target pixel point by weighting and averaging the pixels around
the target pixel that contributes to sharpening the detection image. Figure 8 shows the detection image
after mask operation.

Figure 8. The detection image after mask operation.
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4.2. Lane Detection Algorithm

4.2.1. Third-Order B-Spline Curve Model

An n-order B-spline curve is defined as

p(t) =
n∑

i=0
piBi,n(t) (0 ≤ t ≤ 1) (6)

where pi(i = 0, 1, 2, . . . , n) is the position vector of the vertex, and Bi,n(t) is the n-order basis function
presented as follows:

Bi,n(t) =
n!

i!(n− 1)!
ti(1− t)n−i (7)

In the actual road scene, considering that the lane under complicated road conditions tend to
be tortuous and variable, the third-order B-spline curve model was used to fit the lane lines. The
mathematical expression corresponding to the third-order B-spline curve is as follows:

p(t) = p0B0,3(t) + p1B1,3(t) + p2B2,3(t) + p3B3,3(t) (8)

By substituting i = 0, 1, 2, 3 into Equation (7) separately, the above equation is converted to

p(t) = (1− 3t + 3t2
− t3)p0 + (3t− 6t2 + 3t3)p1 + (3t2

− 3t3)p2 + t3p3 (9)

This equation is then expressed as the following matrix:

p(t) =
[

t3 t2 t 1
]
−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0




p0

p1

p2

p3

 (0 ≤ t ≤ 1) (10)

where p0, p1, p2 and p3 correspond to the four control points of the third-order B-spline curve, which
can be adjusted accordingly based on real-time road conditions.

4.2.2. Lane Line Fitting Based on RANSAC Algorithm

The RANSAC algorithm is a type of random sampling consistency algorithm. Firstly, random
points were obtained from a large number of observation data, and the valid points that met the
hypothesis requirements were reserved. The invalid points that failed to meet the hypothesis
requirements were discarded. Secondly, the valid points were used to estimate the corresponding
models, and the optimal parameters of the estimated model were obtained through continuous iteration.
Lastly, the estimation model was accurately fitted based on the obtained effective parameters [45,46].

Figure 9 shows the flow chart for the fitting lane line using RANSAC algorithm.
As can be seen from the above figure, the basic steps for lane line fitting via the RANSAC algorithm

are as follows:

(1) Search for the pixel points whose grey value is not equal to 0 in the image to be detected, and the
data point set S required by the algorithm is obtained.

(2) According to the third-order B-spline curve model, randomly select four points as the initial
valid points of curve fitting in the data point set S, and then an initial third-order B-spline curve
is obtained.

(3) Calculate the relative distance between the remaining data points and the initial third-order
B-spline curve. Data points that do not exceed the distance threshold d are close to the fitting
curve, and then the points are added to the valid point set Q as new valid points.
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(4) When the number of data points in the valid point set Q reaches the threshold number n of the
valid points in the preset curve model, step (5) is executed. Otherwise, steps (2) and (3) are
repeated until the number of valid points meets the requirements or the upper limit k of iteration
times is reached.

(5) The third-order B-spline curve is refitted by using the data points in the current valid point set Q,
and the best curve fitting result is preserved. When the upper limit k of iteration times is reached,
the algorithm terminates.

The RANSAC algorithm can reduce the interference of invalid points in curve fitting, and the
curve model can be re-estimated by the continuous accumulation of valid points. With the increasing
number of iterations, the obtained fitting curve gradually tends to be the best and minimises the error
between the fitting curve and the real lane line. The RANSAC algorithm based on the third-order
B-spline curve model was used to fit the lane lines. This algorithm can describe lane lines with different
shapes and has good adaptability and robustness.

Figure 9. Flow chart for fitting lane line using the random sample consensus (RANSAC) algorithm.
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Figure 10 presents the lane line fitting result.

Figure 10. The lane line fitting result.

4.2.3. Lane Line Fitting Evaluation and Curvature Radius Calculation

The RANSAC algorithm uses the continuous iterative method to obtain the optimal fit curve.
Therefore, determining an effective evaluation criterion for lane line fitting is necessary. The comparison
of the error rate magnitude between the fitting curve and the real lane line determines the best lane
line fitting result.

When the distance from all valid points in the area around the fitting curve to the fitting curve
was the smallest, the error between the fitting curve and the real lane line was minimised, and the lane
line fitting evaluation score was the highest. The following evaluation score (Score) is defined as the
reciprocal of the mean of the relative distance between all data points in the valid point set Q and the
fitting curve:

Score =
n

n∑
i=1

∣∣∣(xt)i − (xsp)i

∣∣∣ (11)

where i = 0, 1, 2, . . . , n, and n is the number of all data points in the valid point set Q.
The curvature of the current lane line was used to express its curve degree. The reciprocal of the

curvature is the curvature radius, which was used in this study to represent the curvature (in m). The
curvature calculation of the third-order B-spline curve is more complicated than that of the simple
curve. In this study, the original curve was reduced in order, the first and second derivative curves
re-obtained by first- and second-order reduction, respectively. In the two-dimensional plane, let the
coordinate corresponding to the first derivative be (x′, y′) and the coordinate corresponding to the
second derivative be (x′′ , y′′ ). The curvature of the lane line is defined as follows:

K =
x′y′′ − y′x′′[

(x′)2 + (y′)2
]3/2

(12)

Figure 11 illustrates the lane line detection result of the detected image. The left and right lane
lines were detected, and the corresponding evaluation scores were obtained based on their valid points.
The curvature and average curvature radii of the left and right lane lines were calculated (the specified
curve is positive and negative in the clockwise and counterclockwise directions, respectively).
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Figure 11. The lane line detection result.

4.3. Simulation Test Experiment

4.3.1. Test Environment

Software environment: Windows 10 64-bit operating system, Python 3.7.0 64-bit, OpenCV 4.1.0,
FFMPEG 1.4.

Hardware environment: Intel (R) Core (TM) i5-6500 CPU@3.20GHz processor, 8.00 GB memory,
2 TB mechanical hard disk.

4.3.2. Lane Detection Based on Road Driving Video

To verify the recognition performance of the lane detection algorithm in complex working
conditions and dynamic environments, road driving videos were used to carry out the simulation
test experiment in this work. Such videos in the experiment were collected by using a real-time
vehicle-mounted camera, and the lane lines were detected for different road conditions, such as
highway, mountain road and tunnel road.

Furthermore, the classical sliding window search method was utilised to test the lane detection
algorithm dynamically in the simulation test experiment. Firstly, a pixel histogram was generated by
the pixels whose grey value was not equal to 0, and the peak value in the pixel point set was obtained
(the area where the lane line exists). Secondly, the sliding window was used to accumulate from bottom
to top. When the number of pixels in the window exceeded the set threshold number, the mean value
was taken as the centre of the next sliding window. In addition, by using the sliding window search
method, the offset of the vehicle relative to the centre position of the road could be estimated.

Figure 12, Figure 13, and Figure 14 illustrate the lane line detection results under complex road
conditions respectively.

Figure 12 shows the test result of a typical detected frame in the highway driving video. The figure
intuitively demonstrates that the proposed algorithm could still accurately detect the left and right
lane lines although the speed of the vehicle on the highway is fast. Compared with other road
conditions, the curve degree of the lane line was the smallest, the curvature radius was the largest
and the corresponding sliding window offset was the smallest. Figure 13 shows the test result of a
typical detected frame in the tunnel road driving video. The figure intuitively shows that the proposed
algorithm could still accurately detect the left and right lane lines although the lighting conditions
on the tunnel road were poor. Compared with highway conditions, the curve degree of the lane
line was larger, the curvature radius was smaller and the corresponding sliding window offset was
larger. Figure 14 depicts the test result of a typical detected frame in the mountain road driving video.
The figure intuitively presents that the proposed algorithm could still accurately detect the left and
right lane lines although the mountain road was tortuous and changeable with many trees on both sides
of the road. Compared with other road conditions, the curve degree of the lane line was the largest,
the curvature radius was the smallest and the corresponding sliding window offset was the largest.
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Figure 12. The test result of a typical detected frame in the highway driving video.

Figure 13. The test result of a typical detected frame in the tunnel road driving video.

Figure 14. The test result of a typical detected frame in the mountain road driving video.
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Table 1 lists the lane detection results based on road driving video under complex road conditions.

Table 1. The lane detection results based on road driving video under complex road conditions.

Video
Sequence
Number

Complex Road
Conditions

Total
Frames

Detected
Frames

Misdetected
and Missed

Frames

Accurate
Recognition

Rate (%)

Average
Processing Time

(ms)/ Frame

1 Highway 1535 1522 13 99.15 20.8
2 Tunnel Road 1763 1736 27 98.47 21.6
3 Mountain Road 1470 1438 32 97.82 22.1

Total - 4768 4696 72 98.49 21.5

In the lane detection test experiment, the accurate recognition rate under highway condition
reached 99.15%, and the average processing time per frame was 20.8 ms, thereby indicating that the
lane detection algorithm had good real-time performance and accuracy. The accurate recognition rate
under tunnel road condition reached 98.47%, and the average processing time per frame was 21.6 ms,
thereby indicating that the lane detection algorithm still had good adaptability in case of insufficient
light. The accurate recognition rate under mountain road condition reached 97.82%, and the average
processing time per frame was 22.1 ms, thus indicating that the lane detection algorithm still had good
robustness and antijamming ability in the case of road tortuosity and background interference.

By sorting and analysing false or missed detection images, the majority of these images were
caused by motion blur, vehicle occlusion, insufficient light and excessive road bending. In the future,
improving the lane detection algorithm will be necessary to enhance its complexity and efficiency.
Collecting road traffic videos with varied road conditions will also be important to improve the
inclusiveness and robustness of the lane detection algorithm continuously.

4.3.3. Lane Detection Based on the Tusimple Dataset

In order to further test the comprehensive performance of the proposed algorithm under a variety
of complex road conditions, in addition to the road driving videos for simulation test experiments, the
Tusimple dataset (general-purpose benchmark dataset) was also used for lane detection. The Tusimple
dataset consists of 3626 training images and 2782 testing images, and each sequence image comprising
20 consecutive frames taken in 1s, of which the first 19 frames are unmarked and the 20th frame is
labelled with lane ground truth. The images in the dataset can be roughly divided into four conditions,
including different weather conditions, daytime, lanes number (2 lanes/3 lanes/4 lanes or more), and
traffic environments [47,48]. 150 images representing different conditions were randomly extracted
from the Tusimple dataset separately in this work, and the lane detection experiments were carried out
using the proposed algorithm.

Figure 15 shows the lane detection results under different typical conditions.
Table 2 lists the lane detection results under different conditions in the Tusimple dataset.

Table 2. The lane detection results under different conditions in the Tusimple dataset.

Sequence
Number Condition Type Lanes Total

Number

Correct
Recognition

Number

False and Missed
Recognition

Number

Accurate
Recognition

Rate (%)

Average
Processing Time

(ms)/ Frame

1 Weather 573 561 12 97.91 21.9
2 Daytime 561 555 6 98.93 21.7
3 Lanes Number 578 573 5 99.13 22.8
4 Traffic Environment 566 553 13 97.70 22.5

Total - 2278 2242 36 98.42 22.2
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Figure 15. The lane detection results under different typical conditions.
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It can be seen from Figure 15 and Table 2 that the proposed algorithm worked well under different
conditions in the Tusimple dataset. In the statistics of lane detection results in four different conditions,
the test accuracy was the highest under different lanes number conditions, the accurate recognition rate
was 99.13%, and the average processing time per frame was 22.8 ms. The test accuracy was the lowest
under different traffic environment conditions, but the accurate recognition rate also reached 97.70%,
and the average processing time per frame was 22.5 ms. In total, the average accurate recognition
rate under four different conditions reached 98.42%, and the average processing time per frame was
22.2 ms. Compared with the results of lane detection in the road driving video, the average accurate
recognition rate was slightly reduced, and the average processing time per frame was also slightly
extended. However, the proposed algorithm still has good comprehensive recognition performance in
the Tusimple dataset, thus indicating desirable accuracy and adaptability.

4.4. Algorithms Performance Comparison

To verify the performance of the lane detection algorithm, the proposed algorithm was
compared with other algorithms used in the literature. Table 3 lists the comparison of statistics
in algorithms performance.

Table 3. The comparison of statistics in algorithms performance.

Method Algorithm

Average
Detection
Accuracy

(%)

Average
Processing
Time (ms)/

Frame

FP FN System Environment

Traditional

Spatial Ray Features [49] 94.40 45.0 - - NVIDIA GeForce GTX
580, GPU

Improved Hough
Transform [50] 95.70 65.4 - - Intel Core i7-6700K

CPU @ 4 GHz

Deep
Learning

FastDraw Resnet [51] 95.00 65.3 0.065 0.048 NVIDIA GeForce GTX
1080, GPU

ConvLSTM [52] 97.25 42.0 0.042 0.0185

Intel Core Xeon
E5-2630 @ 2.3 GHz,

GeForce GTX
TITAN-X GPU

Proposed Ours 98.42 22.2 - -
Intel(R) Core(TM)

i5-6500 CPU
@ 3.20 GHz

In this paper, the proposed algorithm was compared with traditional detection methods and deep
learning-based methodologies. In particular, the proposed algorithm and reference [51] and [52] all
carried out relevant lane detection test experiments based on the Tusimple dataset. In reference [49],
the feature-based lane detection method was adopted. Compared with other algorithms, although the
average processing time was relatively short, the average detection accuracy was the lowest and more
likely to cause false or missed detection in actual road scenes. In Reference [50], the model-based lane
detection method was adopted. Compared with literature [49], although the average detection accuracy
did improved, the average processing time was too long. When this algorithm was applied to actual
road scene, the problem of poor real-time performance existed. In Reference [51], the lane structure
was predicted relevantly by training FastDraw Resnet, and the proposed method was tested effectively
based on the CVPR 2017 Tusimple lane marking challenge, difficult CULane datasets. Compared with
traditional detection methods, this method achieved higher recognition accuracy, and the values of
FP and FN were kept at a lower level, reflecting the competitive advantage of deep learning-based
methodologies. In Reference [52], lane detection was performed using the ConvLSTM network
model based on the Tusimple dataset and their own lane datasets. Compared with literature [51], the
recognition accuracy was further improved, the average processing time was further shortened, and the
values of FP and FN were significantly reduced, thus reflecting good robustness and stability. However,
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due to the complex structure of the training model and the large calculation amount of the algorithm,
deep learning-based methodologies were prone to problems such as too long training time and poor
real-time performance, and there is still room for further improvement. Compared with literature [51]
and [52], the proposed algorithm achieved the best overall performance with the same data set, the
average accurate recognition rate reached 98.42%, and the average processing time per frame was
22.2 ms. In terms of performance improvement, it had obvious advantages. The fully improved lane
recognition accuracy was conducive to greatly enhancing the driving safety of intelligent vehicles
in the actual driving environments, and the fully shortened average processing time was conducive
to effectively meeting the real-time target requirements of intelligent vehicles in the actual driving
environments, and stable detection under complex working conditions and dynamic environments
was conducive to improving the anti-interference ability and environmental adaptability of intelligent
vehicles as a whole, thus contributing to further improving the technical level of intelligent vehicle
driving assistance.

5. Conclusions

This study proposed a lane detection algorithm for intelligent vehicles in complex road conditions
and dynamic environments. Firstly, converting the distorted image and using the superposition
threshold algorithm based on the Sobel operator and HSL colour space for edge detection, an aerial
view of the lane was obtained by using ROI extraction and inverse perspective transformation.
Secondly, the RANSAC algorithm was adopted to fit the curves of the lane lines on the basis of the
third-order B-spline curve model, and the fitting evaluation and the curvature radius calculation on the
curve were carried out next. Lastly, by using the road driving video under complex road conditions
and the Tusimple dataset, simulation test experiments for lane detection algorithm were performed.
The experimental results show that the average detection accuracy based on road driving video reached
98.49%, and the average processing time reached 21.5 ms. The average detection accuracy based on
the Tusimple dataset reached 98.42%, and the average processing time reached 22.2 ms. Compared
with traditional methods and deep learning-based methodologies, this lane detection algorithm had
excellent accuracy and real-time performance, high detection efficiency and strong anti-interference
ability. The accurate recognition rate and average processing time were significantly improved.

In terms of lane detection accuracy and algorithm time-consuming, the proposed lane detection
algorithm had clear advantages. It was conducive to greatly enhancing the driving safety of intelligent
vehicles in the actual driving environments and effectively meeting the real-time target requirements
of smart cars and played an important role in intelligent vehicle driving assistance. In the future,
the inclusiveness and anti-error detection of the lane detection algorithm can be further optimised and
improved to exploit the overall performance of the algorithm.
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