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Abstract: Wearable physiological monitors have become increasingly popular, often worn during
people’s daily life, collecting data 24 hours a day, 7 days a week. In the last decade, these devices
have attracted the attention of the scientific community as they allow us to automatically extract
information about user physiology (e.g., heart rate, sleep quality and physical activity) enabling
inference on their health. However, the biggest issue about the data recorded by wearable devices is
the missing values due to motion and mechanical artifacts induced by external stimuli during data
acquisition. This missing data could negatively affect the assessment of heart rate (HR) response and
estimation of heart rate variability (HRV), that could in turn provide misleading insights concerning
the health status of the individual. In this study, we focus on healthy subjects with normal heart
activity and investigate the effects of missing variation of the timing between beats (RR-intervals)
caused by motion artifacts on HRV features estimation by randomly introducing missing values
within a five min time windows of RR-intervals obtained from the nsr2db PhysioNet dataset by using
Gilbert burst method. We then evaluate several strategies for estimating HRV in the presence of
missing values by interpolating periods of missing values, covering the range of techniques often
deployed in the literature, via linear, quadratic, cubic, and cubic spline functions. We thereby compare
the HRV features obtained by handling missing data in RR-interval time series against HRV features
obtained from the same data without missing values. Finally, we assess the difference between the use
of interpolation methods on time (i.e., the timestamp when the heartbeats happen) and on duration
(i.e., the duration of the heartbeats), in order to identify the best methodology to handle the missing
RR-intervals. The main novel finding of this study is that the interpolation of missing data on time
produces more reliable HRV estimations when compared to interpolation on duration. Hence, we can
conclude that interpolation on duration modifies the power spectrum of the RR signal, negatively
affecting the estimation of the HRV features as the amount of missing values increases. We can
conclude that interpolation in time is the optimal method among those considered for handling data
with large amounts of missing values, such as data from wearable sensors.

Keywords: heart rate; IoT wearable monitor; health

1. Introduction

In the last two decades, the interest in the variation of the timing between beats (RR-intervals) of
the cardiac cycle, called heart rate variability (HRV), has widely increased in the psycho-physiological
research field. Assessment of RR-intervals variability is possible through time and frequency domain
analyses that provide parameters able to quantify the amount of fluctuations occurring between
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consecutive beats, giving therefore an indirect index of autonomic regulation. Actually, the parameters
extracted from HRV analysis are useful to provide insight about sympathetic-parasympathetic balance
of cardiac vagal tone that was found to be an indicator of cognitive, emotional, social and health
status [1].

Thanks to the technological advancements of recent decades, it is now possible to continuously
record heart activity during peoples’ life via wrist-worn wearable devices equipped with heart
rate sensors. This innovation might have a great impact on the medical field because of the low
cost of the devices and the possibility to obtain continuous passive measurements performed in
an ecological setting, gaining an overview of the users’ health status by assessing HRV features
during their daily life [2]. These wrist-worn wearable devices, however, produce several inconsistent
RR-intervals produced not only by ectopic beats (e.g., atrial fibrillation and premature heart beat),
but mainly by motion and mechanical artifacts induced by external stimuli. The number of abnormal
RR-intervals increases from 1%—when heart beats are recorded with gold standard technology (i.e.,
electrocardiography)—[3] to more than 10%—when they are recorded with wrist-worn wearable
devices. However, standard methods for calculating HRV features from the time-series of RR-intervals
require accurate beat detection. Hence, handling the missing values became a fundamental aspect
to correctly evaluate users’ physiological response. As a matter of fact, these missing values affect
the HRV analysis producing misleading results [4]. In previous studies, the inconsistent RR-interval
data were handled by reconstructing the missing values using nearest-neighbour, linear, cubic spline
and piecewise cubic Hermite interpolation methods [4,5]. However, these methods can also introduce
changes in the reconstructed timeseries that could corrupt the signal spectrum [6], thus reducing the
ability to estimate both time or frequency domains HRV features.

In this paper, we focus on healthy subjects with normal heart activity, and investigate the effects of
interpolation on time (i.e., the timestamps when the heartbeats happen) and duration (i.e., the duration
of the heartbeats) with an increasing amount of missing values (from 0% to 70%) in order to assess
which interpolation strategy yields better results when estimating HRV features. In particular, in this
paper we show that quadratic interpolation on time is the best approach to reconstruct the missing
RR-intervals. Anyway, the main finding of this study is that the interpolation on time produce better
HRV feature estimation that the interpolation on Duration suggested by all the previous studies.

1.1. Paper Contribution

To the best of our knowledge, this work is one of the first studies investigating the effect of
high percentage of missing values (i.e., 30%, 50% and 70%) on HRV analysis. In previous studies,
the inconsistency of RR-intervals was due to a small number of ectopic beats, while wrist-worn
wearable devices introduce motion and mechanical artifacts that produce a huge quantity of abnormal
heart beats.

Moreover, to the best of our knowledge, this is the first study to analyse the effect on HRV features
of interpolation on time versus interpolation on duration. We show the difference among interpolation
methods (i.e., no-interpolation, nearest neighbor, linear, quadratic and cubic spline) on both time and
duration timeseries in order to detect which interpolation method yields lower error in HRV features
estimations. This analysis permits to provide insight about how the interpolation methods work in
quantifying the noise introduced into the timeseries.

We conclude by showing that interpolation on time is the best choice for preprocessing
RR timeseries with missing values, contradicting the approach traditionally followed, based on
durations timeseries.

1.2. Related Work

During the day, approximately 1% of beats are to be expected to be ectopic [3] when they are
recorded by using gold standard instrument (i.e., Electrocardiography). An ectopic beat is a disturbance
of the cardiac rhythm that induces premature ventricular or atrial contraction. The physiological artifact
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producing inconsistent beat seriously affects the HRV spectrum, and could result in erroneous results
during HRV analysis by introducing non-existing frequencies into the spectrum [7]. In addition to
physiological artifact, motion and mechanical artifacts induced by external stimuli introduce a large
amount of inconsistent beats when the data are recorded by using wrist-worn wearable device [4–6].
This work is one of the firsts studies that investigate the effect of huge quantities of inconsistent
beats that are not only derived from ectopic beats. Since missing data are common in the RR-interval
timeseries derived from wrist-worn wearable device, they could complicate the analysis of HRV
features making it sometimes impossible. To make reliable HRV analysis, previous studies suggested
several preprocessing methods for RR-intervals timeseries (e.g., deletion, interpolations and filtering).
However, these preprocessing methods have their own distinct effect on HRV analysis yielding
different results [7].

The simplest way of handling the inconsistent RR-intervals provided in literature is to delete
them [8]. In this approach, the abnormal RR-intervals are removed and the normal RR-intervals list
are merged together. A huge issue of the deletion approach is that it reduces the overall length of the
HRV signal. This may significantly influence HRV spectrum [8]. Other interpolation methods maintain
the original number of samples, but, by manipulating the duration of RR-intervals, they also change
the overall duration by some amount. There are several interpolation approaches useful for handling
inconsistent RR-intervals, i.e., zero degree, linear and cubic spline [9]. Zero degree replaces the
inconsistent RR-intervals with the mean of the closest normal values. Differently, linear interpolation
fits a straight line over the inconsistent RR-intervals to obtain normal values. Finally, the most
popular interpolation approach is the spline of order three (i.e., cubic spline). It fits a third degree
polynomial smooth curve through a number of data points to obtain new values. This latter approach
is recommended when there is only small number of inconsistent RR-intervals [9].

Finally, it was found that the interpolation introduces low frequency components (LF) and reduces
high-frequency components (HF) power [6]. This aspect affects frequency domain HRV features [5],
while little effect was found in time domain HRV features [4].

We were not able to find any previous work studying the effect of interpolation missing values on
the duration versus time, and the propagation of error to HRV features.

2. Materials and Methods

2.1. Dataset

In this paper, we used nsr2db (Normal Sinus Rhythm RR Interval Database) PhysioNet dataset [10].
This dataset contains beat annotations of 54 normal sinus rhythm subjects (30 men: 28–76 years;
24 women: 58–73 years) extracted from 23 h long electrocardiogram (ECG) recordings, digitized at
128 samples per second, and beat annotations obtained by automated analysis with manual review
and correction.

In order to compute HRV features, the 23 h time series of ECG recording of each user were
split into 5 min windows. Moreover, to investigate the effect of missing values on HRV analysis,
artificial missing RR-intervals (i.e., 30%, 50% and 70% of missing values) were inserted into the
5 min windows.

The missing values were created in accordance with a burst Gilbert model that simulates
burst-error with a two-state Markov chain (i.e., good as 0 and bed as 1) [11]. We define P as the
probability of transition form state 0 to the state 1 and p the probability of transition from state 1
to 0. Moreover, Q and q give the probabilities of remaining in the same states 0 or 1 (see Figure 1).
Using these parameters, it is possible to represent average bit-error rate Pe as showed in Equation (1)
and the average burst length (Llength) is set at 10.

Pe =
P

p + P
. (1)
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Given these equation, we define P, p, Q and q as showed in Equations (2)–(5), respectively.

p = 1/Lburst (2)

P =
Pchange

1− Pchange
∗ p (3)

q = 1− p (4)

Q = 1− P, (5)

where the Pchange is set in accordance with the missing values percentage that we want to add in the
time series (e.g., if we want 20% of missing values we set Pchange as 0.3). The missing values were
introduced in the time series when the state of the two-state Markov chain is equal to 1. Examples of
30%, 50% and 70% of missing values created by Gilbert model are provided in Figure 2.

倀

瀀

焀儀

Figure 1. Gilbert model simulates burst-error with a two-state Markov chain (i.e., 0 and 1).
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Figure 2. Examples of 30%, 50% and 70% of missing values created by Gilbert model. The colored lines
refer to missing beats.

2.2. Missing Values Interpolation

The missing values were then handled with six different interpolation methods:
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• No interpolation: this approach does not create interpolated values of missing RR-intervals.
Differently to the Deletion method that remove missing values merging non-consecutive beats
that induce in missing interpretation of HRV features, the no-interpolation method maintains the
missing values into the RR-intervals time series.

• Nearest neighbor: the nearest neighbor or proximate interpolation is the easiest interpolation
method [12]. This interpolation assigns the value of the closest known (existing) neighbor to the
missing- value as shows in Equation (6).

Xi =

{
xB if i < a+b

2

xA if i ≥ a+b
2

(6)

where a and b are the indexes of xA and xB. Interpolated data by this method are discontinuous
and it often yields the worst results [13]

• Linear: this method fits a straight line passing through points xA and xB [14]. Interpolated data
by the linear model are bound between xA and xB as showed in Equation (7).

Xi =
xA − xB

a− b
(i− b) + xB. (7)

Gaunck et al. [14] demonstrated that this method is efficient, and most of the time it is better
than non-linear interpolations for predicting missing values in environmental phenomena
with constant rates. In addition, they also found that in average this interpolation model
underestimated the real values but it strongly depends on the distribution of the data.

• Quadratic: differently from the linear interpolation model, the quadratic function needs three
points of interest to interpolate missing values in a time series as showed in Equation (8).

Xi = xB
(i− b)(xC − xA)

2(b− a)
+

(i− b)2(xA − 2xB + xC)

2(b− a)2 . (8)

Compared to the linear model, quadratic interpolation is found to be in general more accurate [13].
• Spline cubic: fitting datapoints using polynomials of degree higher than one leads to problems

of oscillation outside the fitted points, known as Runge’s phenomenon [15]. This problem can
be avoided by using a spline, a function defined piecewise by polynomials, using datapoints as
control points instead of forcing the fitted function to pass through the data points. Cubic spline
is a spline composed of piecewise third-order polynomials. By using third degree polynomials is
possible to ensure that the resulting curve is smooth [15], avoiding the problem of the straight
polynomial interpolation that tends to induce distortions on the edges of the polynomials, given by
the fact that, in general, the first and second derivative of the function defined by piecewise
polynomials will not be continuous at the edges of polynomials. With cubic spline, it is possible to
force the first and second derivatives of consecutive polynomials to be equal, ensuring smoothness
of the resulting curve.

We applied each of the interpolation methods listed above to heartbeats expressed as a sequence
of durations and as a sequence timestamps, then analyzed the error in HRV features estimations,
in order to identify the best approach.

The on-duration approach is the one mostly used in literature to handle missing values.
The data used as input to the interpolation methods was the sequence of durations of the heartbeats
(the RR-intervals), obtained by subtracting the timestamp of each heartbeat from the timestamp of the
subsequent heartbeat in the sequence of heartbeats.

Differently, we propose the the on-time approach whereby interpolation methods are applied to
the sequence of timestamps of the heartbeats, postponing the differentiation preprocessing step that
transforms timestamps into durations to after the interpolation step.
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As shown in Figure 3 the difference between the on-time and on-duration approaches is the order
of the processing steps: in the on-duration approach the timestamps are converted to durations as the
first processing step; in the on-time approach this step is performed after interpolation is performed.

timestamps to
durations

interpolation 
method

HRV features
calculation

timestamps to
durations

interpolation 
method

HRV features
calculation

On-duration approach
processing steps

On-time approach
processing steps

Figure 3. Processing steps in the on-time and in the on-duration approaches.

To better illustrate the differences between interpolation on time and duration, we simulated
100 heartbeats and then we randomly generated 10% of missing RR-intervals in this artificial timeseries
by using Gilbert burst approach. The length of the RR-intervals timeseries changes when we
interpolate the missing values on duration, while it remains the same when we interpolate on time
(Table 1). This result suggests that the interpolation on duration moves beats away from their original
position in time, introducing changes to the spectrum, while interpolation on time preserves the
position on time of retained heartbeats. In particular, Table 1 shows that the low RR-intervals error
(i.e., average difference between heartbeats duration) is obtained with linear interpolation on time.
The nearest interpolation on time was not performed because interpolating with this approach is
useless, as the interpolated values introduced into the timeseries would have the same time as the
closest beat, creating physiologically impossible data.

Table 1. Difference between duration and time interpolation by using different approach (i.e.,
no-missing values, nearest neighbor, linear, quadratic, and cubic spline).

Window Time (s) RMSE (s) RE (%)

Interpolation Time Duration Time Duration Time Duration

No-missing values 90.11 — —
Nearest — 91.95 — 0.096 — 5.11
Linear 90.11 91.83 0.075 0.090 3.70 4.86

Quadratic 90.11 92.13 0.084 0.107 4.35 5.83
Cubic spline 90.11 92.24 0.085 0.109 3.46 6.63

Figure 4 provide more detailed analyses of the difference between linear interpolation on both
duration and time. The cumulative error when the missing values are interpolated on duration
increases as the time series goes by because it creates RR-intervals in accordance with the closest interval
values (i.e., the higher is the number of missing values, the higher is the cumulative error) depending
on the interpolation type used (e.g., linear, quadratic and cubic spline). Differently, time interpolation
did not introduce change in time series length due to the fact that this approach estimates intermediate
values between the time when two observed beats happen in accordance with interpolation type.
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Figure 4. Difference between linear interpolation on time and duration. Red solid line refers to
real variation of the timing between beats (RR-intervals) time series, green dashed line refers to the
on-duration approach, and green dot dash line refers to the on-time approach.

2.3. Feature Engineering

To obtain HRV features, we analyzed real (i.e., without missing values values), non-interpolated,
and interpolated (i.e., with different percentage of artificial missing values values) 5 min ECG time
series. We analyze time domain HRV features, frequency, and non-linear domains. Time domain
analysis usually contains various statistical variables of the duration time series. The frequency domain
analysis investigates the power spectrum of RR-intervals time series in order to assess the cardiac
autonomic balance (i.e., sympathetic and parasympathetic nervous systems activity). Additionally,
non-linear HRV features try to capture the non-periodic behaviour of the HRV and the complexity that
exists inside the RR-interval dynamics. The variables that we incude in our analysis, in both time and
frequency domain, are defined as:

• Time domain:

– HR mean: mean values of heart rate (HR) computed as showed in Equation (9).

HRmean =
1

N − 1

N−1

∑
i=1

60/(Ri+1 − Ri), (9)

where N is the number of beats and R is the time when the beats happened.
– RMSSD: root mean square of the successive RR-intervals differences (Equation (10))

represents the strength of the autonomic nervous system (specifically the parasympathetic
branch) at a given time.
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RMSSD =

√√√√ 1
N − 1

N−1

∑
i=1

[(Ri+1 − Ri)− (Ri − Ri−1)]2, (10)

where N is the number of beats and R is the time when the beats happened.
– SDNN: standard deviation of RR-intervals (Equation (11)). It reflects the cyclic components

responsible for variability in the RR-intervals time series. The SDNN is the “gold standard”
for medical stratification of both morbidity and mortality [16].

SDNN =

√√√√ 1
N − 1

N

∑
i=1

(RRi − RR)2, (11)

where N is the number of beats and RR is the intervals between two consecutive R and RR is
the mean of RR-intervals in the time series.

– PNN50: the ratio between NN50 (i.e., number of pairs of successive RR intervals that differ
by more than 50 ms) and the total number of RR-intervals (Equation (12)).

PNN50 =
NN50count

NRR−intervals
(12)

• Frequency domain:

– Power spectral density (PSD): describes the distribution of power into frequency components
composing that signal. The Lomb–Scargle periodogram for PSD estimation was found
to be the most appropriate method to analyze RR-interval data [5,6]. VLF (power in
very-low-frequency ranges, i.e., ≤0.04 Hz), LF (power in low-frequency ranges, i.e., 0.04–0.15
Hz), HF (Power in high-frequency ranges, i.e., 0.15, 0.4 Hz), LF/HF ratio (ratio between LF
and HF expressed as ms2), and total power (Power in all the frequency ranges, i.e., ≤0.4)
were obtained by the sum of the power in the relevant frequency range in the spectrum.

• Non-linear HRV features:

– Poincaré plot: it is a type of recurrence plot used to quantify self-similarity in processes.
A Poincaré plot is a graph of RR interval (RRn) against the previous one (RRn − 1).
From this scatter plot, it is possible to quantitatively analyze the variance of two consecutive
RR-intervals by fitting an ellipse to the plotted shape. SD1 is the standard deviation of
Poincaré plot perpendicular to the line-of-identity, while SD2 is the standard deviation of the
Poincaré plot along the line-of-identity.

2.4. Success Metrics

We assessed the difference of HRV variables computed on real time series and the ones with
missing values by the root mean squared error (RMSE). Additionally, the relative errors (REs,
see Equation (13)) were used to assess the effects of the missing data on the HRV features compared
with the parameters calculated from the RR-intervals timeseries without missing data.

RE =
|xreal − xk|

xreal
∗ 100, (13)

where xreal refers to the HRV features computed from RR-intervals timeseries without missing values,
while xk refers to the values obtained from interpolated timeseries.
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3. Results and Discussions

3.1. Results Summary

We analyzed 15,359 RR-intervals timeseries of 5 min in this study. Table 2 shows the descriptive
statistic of the HRV features extracted from all users in the dataset. In particular, the users shows an
average heart rate of about 75 ± 14 beats per minute.

Table 2. Descriptive statistic of hart rate variability (HRV) features. Mean and 95% coefficient intervals
(CI) are provided for all the feature.

HRV Features Mean 95% CI

IBI (s) 0.78 [0.54, 1.11]
PNN50 (n) 8 [4, 16]
RMSSD (s) 0.039 [0.017, 0.36]
SD1 (s) 0.027 [0.012, 0.26]
SD2 (s) 0.077 [0.040, 0.25]
SDNN (s) 0.059 [0.017, 0.25]
VLF (s2) 0.87 [0.22, 4.15]
LF (s2) 0.477 [0.12, 5.57]
HF (s2) 0.28 [0.050, 3.024]
total power (s2) 1.91 [0.53, 21.44]
LF/HF (s2) 2.9 [1.2, 10.2]

Table 3 shows that the on-time approach (i.e., interpolation on the timestamp of heartbeats)
produces more reliable HRV feature estimations compared to the on-duration approach (i.e.,
interpolation on interval duration between two consecutive heartbeats). In this table we provide
the results of the best interpolation approach for each HRV feature and for all the percentages of
missing values. The RE and RMSE values provided in this table refer to the error induced by missing
values when we compare HRV features obtained from the real RR-intervals timeseries versus the ones
obtained from interpolated timeseries. The best interpolation methods provided in Table 3 refer to the
ones with lower RE. For all of the HRV features, the highest was the percentage of missing RR-intervals,
and also the parameters estimation errors. This was due to the fact that the power spectrum of the
RR-intervals signal changes with the number of missing values. The choice of the interpolation method
also added different types of noise to the signal. As shown in Table 1, the interpolation on time, or not
interpolation at all, produces more reliable HRV features compared to interpolating on duration.

Table 3. Best performing interpolation approach (i.e., with low RE) for each HRV feature in each
percentage of missing values evaluated. The error in estimating HRV features is reported using RE
and root mean squared error (RMSE).

Interpolation
Missing Values (%) HRV How Method RE (%) RMSE

30

RMSSD (s) No-interpolation 14.65 0.38
SDNN (s) Time quadratic 9.42 0.34
PNN50 (n) No-interpolation 24.37 1.51

SD1 (s) No-interpolation 14.68 0.27
SD2 (s) Time quadratic 8.57 0.47

VLF (s2) Time quadratic 14.50 0.82
LF (s2) Time quadratic 26.87 2.01
HF (s2) Time quadratic 32.18 4.48

LF/HF (s2) Time cubic 41.39 1.73
total power (s2) Time quadratic 17.16 6.26
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Table 3. Cont.

Interpolation
Missing Values (%) HRV How Method RE (%) RMSE

50

RMSSD (ms) No-interpolation 23.13 0.76
SDNN (s) Time quadratic 15.47 0.41
PNN50 (n) No-interpolation 39.01 2.35

SD1 (s) No-interpolation 23.18 0.54
SD2 (s) Time quadratic 13.49 0.49

VLF (s2) Time quadratic 23.72 0.40
LF (s2) Time quadratic 42.42 1.12
HF (s2) Time quadratic 52.56 2.48

LF/HF (s2) Time cubic 58.07 2.26
total power (s2) Time quadratic 27.59 3.96

70

RMSSD (s) No-interpolation 34.37 0.91
SDNN (s) Time quadratic 22.76 0.47
PNN50 (n) Time linear 63.90 3.88

SD1 (s) No-interpolation 34.46 0.59
SD2 (s) Time quadratic 19.19 0.51

VLF (s2) Time quadratic 29.73 0.52
LF (s2) Time quadratic 56.41 1.45
HF (s2) Time quadratic 72.98 3.34

LF/HF (s2) Time cubic 72.07 2.80
total power (s2) Time quadratic 72.07 5.27

The lowest errors on HRV features estimation with missing RR-intervals are obtained using
the no-interpolation or the interpolation on time approaches, while the interpolation on duration
approach consistently yields the worst results (Table 3). Even if low timeseries difference were
detected in simulated linear interpolation on time (Figure 4 and Table 1), Table 3 suggests that the best
interpolation method depends of the HRV features that we want to assess. Moreover, this table also
shows that, as suspected, the higher is the percentage of missing values, the higher is also the HRV
feature estimation error (i.e., RE and RMSE).

3.2. HRV Features

3.2.1. Time Domain

RMSSD and PNN50 do not require any interpolation to obtain reliable estimations for all the
percentages of missing values, while SDNN need quadratic interpolation on time (see Table 3).
A possible explanation of this result is that RMSSD and PNN50 capture fast changes in heart activity,
i.e., high spectrum frequencies, and SDNN captures slow changes, i.e., very low spectrum frequencies.
Moreover, interpolation methods, especially interpolation on duration, act as low pass filters,
affecting the signal measured by the HRV features (Figure 5). No interpolation changed the spectrum,
but did not introduce fictuous durations, thus minimizing the impact on successive differences of
durations, that were the first computation step of both RMSSD and PNN50.

3.2.2. Frequency Domain

Figure 5 shows the Lomb–Scargle spectral analysis for different percentages of missing values and
for each interpolation method on both time and duration. This figure shows that different interpolation
methods introduce different deformations in the resulting power spectra. It is interesting to notice that
performing no interpolation results in a flatter spectrum, more similar to a white noise.

In the frequency domain, the interpolation method that produces the least error is the
quadratic on time (see Table 3). This figure shows that, as the amount of missing values increases,
the no-interpolation approach tends to flatten the HRV spectrum, making it similar to the spectrum
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of white noise. Figure 5 also shows that cubic spline interpolation on time tends to dampen low
frequencies while enhancing high frequencies; that cubic spline interpolation on duration tends to
dampen all frequencies; and that quadratic interpolation on duration tends to enhance all frequencies.
Finally, Figure 5 also shows that linear and quadratic interpolations on time and that nearest
neighbour and linear interpolation on duration have minimal impact on both low and high frequencies,
with quadratic interpolation on time having the least effect on all frequencies.
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Figure 5. Frequency analysis of a user’s RR-intervals timeseries recorded in 5 min with different
percentages of missing values (i.e., 0%, 30%, 50% and 70%) handled with different interpolation
methods (i.e., nearest neighbor, linear, quadratic and cubic spline) on both time and duration.

3.2.3. Non-Linear Domain

SD1 does not require any interpolation to handle missing values, while SD2 needs quadratic
interpolation on time to obtain reliable result (see Table 3). To give an explanation of these results,
in Figure 6 we provide an example of the relationship between RR− intervaln and RR− intervaln+1

(i.e., Poincaré plot) where SD1 and SD2 are extracted. This figure shows Poincaré plots obtained after
interpolating missing RR-intervals by using different interpolation method on both time and duration.
This figure shows that when the missing values were interpolated on time, the variability of SD1
reduced as the percentage of missing values increased, while the SD2 remain constant. Differently,
the interpolation on duration introduce error on both SD1 and SD2 increasing their variability as
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the missing values increase. Finally, in this figure it can be seen that no-interpolation and quadratic
interpolation on time introduced less error compared to the other method on SD1 and SD2, respectively.
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Figure 6. Poincaré plot of a user’s RR-intervals timeseries recorded in 5 min with different percentage
of missing values (i.e., 0%, 30%, 50% and 70%) handled with different interpolation methods (i.e.,
nearest neighbor, linear, quadratic and cubic spline) on both time and duration.

4. Conclusions

In this work we quantify the expected error propagation of missing values in RR-intervals
timeseries to HRV features, as a function of preprocessing interpolation approach, and amount of
missing data. The main findings of this study is that the interpolation of missing values in RR-intervals
timeseries on time (i.e., the heartbeats timestamps) produces more reliable HRV features estimations
compared to interpolation on duration.



Sensors 2019, 19, 3163 13 of 14

By using this preprocessing approach, the quantification of the expected error on HRV features
caused by a huge amount of missing values (e.g., motion artifacts on a wrist-worn wearable device)
can support better estimations of users’ well-being, by assessing their HRV features. This enables
continuous passive monitoring of users’ cardiovascular activity in a non-obtrusive way, collecting data
during their daily activities that could enable further research on preventative health.

A limitation of this study is the fact that we limited our focus on healthy subjects with normal
heart activity, limiting the analysis to large amounts of missing values induced by motion artifacts,
ignoring physiological phenomena such as ectopic beats.

Future studies will be useful for researcher and companies, which give insight into heart rate
variability recorded by wrist worn IoT wearable devices, in order to better understand the potentiality
of the data extracted from these devices to make inference about people heath status. Future work is
needed to assess the influence of missing values simulated in accordance with motion and mechanical
artifacts induced by external stimuli during data acquisition by using wrist worn IoT wearable devices.
Finally, future works will also include the investigating the influence of missing values on HRV features
on short timeseries (e.g., 2 min, 1 min and 30 s) and the identification of the shortest time required to
obtain accurate estimation of users’ HRV features.
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