
sensors

Article

Using Greedy Random Adaptive Procedure to Solve
the User Selection Problem in Mobile Crowdsourcing

Jian Yang 1 , Xiaojuan Ban 1,* and Chunxiao Xing 2

1 School of Computer and Communication Engineering, Beijing Key Laboratory of Knowledge Engineering
for Materials Science, University of Science and Technology Beijing, Beijing 100083, China

2 Research Institute of Information, Beijing National Research Center for Information Science and Technology,
Department of Computer Science and Technology, Institute of Internet Industry, Tsinghua University,
Beijing 100084, China

* Correspondence: banxj@ustb.edu.cn

Received: 24 June 2019; Accepted: 16 July 2019; Published: 18 July 2019
����������
�������

Abstract: With the rapid development of mobile networks and smart terminals, mobile crowdsourcing
has aroused the interest of relevant scholars and industries. In this paper, we propose a new solution
to the problem of user selection in mobile crowdsourcing system. The existing user selection schemes
mainly include: (1) find a subset of users to maximize crowdsourcing quality under a given budget
constraint; (2) find a subset of users to minimize cost while meeting minimum crowdsourcing quality
requirement. However, these solutions have deficiencies in selecting users to maximize the quality of
service of the task and minimize costs. Inspired by the marginalism principle in economics, we wish
to select a new user only when the marginal gain of the newly joined user is higher than the cost of
payment and the marginal cost associated with integration. We modeled the scheme as a marginalism
problem of mobile crowdsourcing user selection (MCUS-marginalism). We rigorously prove the
MCUS-marginalism problem to be NP-hard, and propose a greedy random adaptive procedure with
annealing randomness (GRASP-AR) to achieve maximize the gain and minimize the cost of the task.
The effectiveness and efficiency of our proposed approaches are clearly verified by a large scale of
experimental evaluations on both real-world and synthetic data sets.

Keywords: mobile crowdsourcing; user selection; marginalism principle; GRASP-AR

1. Introduction

With the development of mobile networks and smart terminals, mobile crowdsourcing [1,2] has
gradually evolved into a novel distributed problem-solving paradigm, which uses popular mobile
users to collect and process data beyond the past possible range and has become an important
research hotspot. The proliferation of smartphones makes mobile crowdsensing applications possible.
Newzoo’s “2018 Global Mobile Markets Report” [3] shows that the number of global smartphone users
has exceeded 3.3 billion so far. As mobile data and hardware become cheaper in the next few years,
the number of smartphone users is expected to reach 3.8 billion by 2021, which means there are a
large number of potential users in mobile crowdsourcing applications. Furthermore, smartphones are
equipped with a variety of powerful built-in sensors, such as GPS, camera, accelerometer, microphone,
etc., which enable crowdsourcing users to easily collect basic data of various applications and send
sensing data to crowdsourcing platforms.

Inspired by the current popular smart city testbeds [4,5], a typical mobile crowdsourcing platform
was proposed. As shown in Figure 1, the mobile crowdsourcing system consists of a large group
of crowdsourcing participants distributed in a specific area and a crowdsourcing platform in the
cloud, which is connected by mobile network or WiFi. Crowdsourcing participants(a.k.a, Users)

Sensors 2019, 19, 3158; doi:10.3390/s19143158 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-3518-7851
http://www.mdpi.com/1424-8220/19/14/3158?type=check_update&version=1
http://dx.doi.org/10.3390/s19143158
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 3158 2 of 19

use smart devices for road condition monitoring [6], pollution monitoring [7], location services [8],
natural disaster assessment [9], etc., and send sensing data to crowdsourcing platforms. However,
users consume their resources in performing tasks, such as batteries and computing power. Due to the
diversity of individuals and smart devices, the cost of performing tasks is not the same. So they need
to get different rewards from crowdsourcing platforms to continue their cooperation. Crowdsourcing
platform provides a centralized management platform for sensing data receipt, integration, cleaning,
analysis, and further building applications of interest, such as data mining, visualization and data
trading, etc. In addition, the crowdsourcing platform has the right to publish tasks and select users.

Managenment

Server

Data

colloection
Data storage

Data mining

Visualization

Data trading

4G/5G/Wi-Fi

Mobile
crowdsourcing

participants

Cloud-mobile
crowdsourcing

platform

Services based on
sensing data

Sensing request; User
Selection

Sending sensing data Integration, Cleaning,
Analysis, Trading

Figure 1. A mobile crowdsourcing system.

To maximize crowdsourcing quality, the crowdsourcing platform needs to select the best
subset of users available by matching the task requirements to the user’s profile, which is
not easy. Crowdsourcing quality is affected by many factors. In addition to spatial location,
existing research [10,11] has shown that user reputation, credibility, and time required to complete
a perceived task have a significant impact on the quality of crowdsourcing. However, meeting the
multi-objective constraints of mobile crowdsourcing remains a challenge. We need to consider not only
the distance between the user and the task, but also the completion time of the task, the reputation
and credibility of the users. In addition, under the above constraints, how to further select suitable
users for the existing mobile crowdsourcing tasks to maximize the quality of crowdsourcing and
minimize the incentive budget (i.e., minimum the total incentive cost of the selected users) is a major
challenge for the crowdsourcing platform, which is called the mobile crowdsourcing user selection
(MCUS) problem.

In truth, these two objectives are contradictory. If we improve one objective, the other will
be reduced accordingly. As shown in literature [12], there is no optimal solution that can improve
multi-objectives at the same time, but a set of pareto optimal solutions. To solve the problem, there are
two standard approaches to formalize the problem: one is to find a subset of users that maximizes the
crowdsourcing quality under a given budget; the other is to find a subset of users that minimizes the
budget while meeting the minimum crowdsourcing quality requirements.

However, neither of the above methods is ideal in our context, because they all have an artificial
predefined condition. Until the available users are selected, the mobile crowdsourcing platform often
does not know how well the published tasks match the users. Therefore, it is unrealistic to require the
crowdsourcing platform to predetermine a reasonable boundary to achieve a satisfactory compromise
between multi-objective. The following two examples illustrate the limitations of both approaches.

Sensors 2019, 19, 3158 3 of 19

Example 1. For simplicity, two potential users are shown in Table 1a, where Quality is the quality of service for
users and Cost is the compensation for users. Assume that the upper limit of the budget cost of the crowdsourcing
platform is pre-specified at $10. Not surprisingly, User X will be selected and not further inspect User Y.
In fact, we can increase the cost slightly to get a more substantial profit. In other words, we increase the cost
by $1, but we can get 80% of the service quality (improved by 30%). Arguably, it is worth spending some
extra resources.

Example 2. Similarly, two other users are shown in Table 1b. Assuming that the lower bound of the
crowdsourcing quality is predetermined to be 80%, then User A will be selected and User B will not be further
examined. In fact, achieving a cost reduction of $6 by slightly relaxing the requirements for crowdsourcing
quality (i.e., 2%) is significantly cost effective.

Table 1. Two examples.

(a) Example 1 (b) Example 2

User Quality Cost User Quality Cost

X 50% $10 A 80% $11
Y 80% $11 B 78% $5

In practice, both of these scenarios are inevitable because we do not know the distribution of the
different solutions and may miss a more desirable solution. Therefore, we need to find all the marginal
points before we stop investigation. In other words, we will provide all the pareto-optimal solutions
for the crowdsourcing platform to make a reasonable decision.

As mentioned earlier, we can’t use the previous methods to solve the user selection problem in
mobile crowdsourcing, which is provably a NP-hard problem. To address this challenge, we have
made the following significant contributions.

• We propose a scheme inspired by the principle of marginalism in microeconomics, and the
problem of user selection in mobile crowdsourcing is formally defined in Section 3. Assuming that
the same unit can be used to measure gain and cost in a crowdsourcing platform, we wish to stop
selecting new users when the marginal gain is lower than the marginal cost. The marginal gain
here refers to the difference between the benefit after and before the selection of users.

• In Section 4, we propose various gain-cost models driven by the Quality of Service (QoS) ,
which provides a basis for evaluating the value of users’ contribution.

• We prove that user selection problem is NP-hard in Section 4.1. Then we propose a greedy random
adaptive procedure with annealing randomness (GRASP-AR) to solve the user selection problem
in Section 4.2.

• We conduct extensive experiments using real-world and synthetic data sets to evaluate our
proposed algorithms on large-scale environment. The results show the effectiveness and efficiency
of our proposed approaches in Section 5.

In addtion, we review the previous work on mobile crowdsourcing in Section 2.
Section 6 concludes the paper and lay out a research agenda.

2. Related Work

In recent years, various researches on mobile crowdsourcing data management have focused
on the following five core issues: task assignment [13,14], user selection [15], quality control [16],
incentive mechanism [17–19], and privacy protection [20,21]. This article focuses on how to select a
suitable group of users to accomplish a specific task. Therefore, the relevant research progress of the
latter three issues is not covered in this section.

Sensors 2019, 19, 3158 4 of 19

2.1. Task Assignment

In [22], they consider scheduling different sensing tasks assigned to smartphones in order
to minimize the sensing energy consumption while ensuring the Quality of Sensing (QoSS).
They proposed an integer linear programming (ILP) formula and two effective polynomial time
heuristic algorithms for the corresponding minimum energy multi-sensor task scheduling (MEMS)
problem, which has been well evaluated by extensive experimental evaluation. Zhao et al. [23] studied
a target-aware task assignment problem that determines the optimal strategy for assigning each task to
the right user to maximize the total number of completed tasks, and all users can reach their destination
before the deadline after completing the task. To solve the problem, they used tree decomposition
technology to separate the users into independent clusters and developed an efficient depth-first
search algorithm. To et al. [24] also studied the issue of maximum task assignment. They use the
spatial attributes of the problem, namely spatial distribution and user travel costs, to propose the
minimum location entropy priority and close distance priority strategies to address these challenges.
Wu et al. [25] proposed a real-time, budget-aware spatial crowdsourcing task allocation (RB-TPSC)
model, with the goal of increasing task allocation rates and maximizing the expected outcome quality
of the staff under a limited budget. The proposed RB-TPSC model can automatically make decisions on
task allocation. In addition, Miao et al. [10] proposed a budget-aware task allocation method for spatial
crowdsourcing, which is designed to help crowdsourcing platforms make task assignment decisions.
Hassan et al. [26] focus on the problem of dynamic task assignment, a distance reliability ratio (DRR)
algorithm based on combined fractional programming is proposed to maximize the reliability of the
task and minimize the travel cost. DRR maximizes reliability and reduces travel costs by 80% compared
to existing algorithms.

2.2. User Selection

Chen et al. [27] focus on the problem of how to choose suitable users to monitor environment
by a crowdsensing network, while the total rewards for all selected users is not larger than the
limited budget. To solve the problem, they first divide a big critical region into smaller regions of
different size, and select some sampling points in the smaller region. Then, they designed a greedy
algorithm to select users to cover the maximum sampling points while the total reward does not
exceed the limited budget. In addition to time and space factors, Wang et al. [28] also included the
data attributes into the mobile crowdsourcing, proposed a method of using the data attributes in the
mobile crowdsourcing to select users, and then use the greedy algorithm to select the right users group.
Finally, the effectiveness of the proposed method is proved by a large number of experiments on real
data. He et al. [29] proposed a new user selection scheme, and designed a genetic algorithm based on
greedy approximation and prediction trajectory to solve the problem that the existing user selection
strategy does not perform well in vehicle-based group perception. For the multi-user multi-task
assignment problem, Abououf et al. [11] proposed a group-based multi-task user selection model,
which aim to assign multi-task to users, while maximizing the QoS of tasks and minimizing their
completion time. Then the genetic algorithm and the tabu search algorithm were used to complete the
user selection problem.

The focus of the above work is to optimize some of the performance for the user by reasonably
assigning tasks. Some of them try to match a task to a suitable set of users (task assignment),
while others attempt to prioritize users by considering their contributions (user selection). While most
studies presuppose artificial constraints (e.g., budget constraint). As we described in the introduction,
mobile crowdsourcing platforms are often unclear about the degree of match between published tasks
and users. It is unrealistic to require crowdsourcing platform to predetermine a reasonable boundary
to achieve a satisfactory compromise between multiobjective. Therefore, we need to redefine the issue
of user selection.

Sensors 2019, 19, 3158 5 of 19

3. User Selection Driven by the Gain-Cost Models

3.1. Problem Definition

In this section, we will formalize the definition of MCUS problem. For the readers’ convenience,
the main notations used in this article are listed in Table 2.

Table 2. Main notations used throughout the paper.

Notation Description

Ti A task published by crowdsourcing platform
LTi The location of a task Ti
RTi The minimum reputation requirement of task Ti
QTi The minimum quality requirement of task Ti
RCTi The maximum range constraint of task Ti
Ui A mobile crowdsourcing task participant
LUi The location of user Ui
RUi The reputation of user Ui
DUi The maximum traveling distance constraint set by user Ui
CUi The cost of user Ui to complete the task
Gain The profit per task
Cost The total cost per task
WTP The willingness to participate of the user
QoSUi QoS provided by user Ui
QoStotal QoS provided by a group of users

Definition 1. (Multi-objective crowdsourcing task.) Let T = {T1, ..., Ti, ..., Tm}, which represents m sets of
multi-objective tasks, and each task is defined as a tuple form. T =< LTi , RTi , QTi , RCTi >, where LTi is the
current location of the task, which can be determined by latitude and longitude. RTi is the minimum reputation
requirement of the task, QTi is the minimum quality requirement of the task, and RCTi is the range constraint of
the task.

Definition 2. (Crowdsourcing participant.) Crowdsourcing participants represent users involved in
crowdsourcing task. Let U = {U1, ..., Ui, ..., Un}, which represents a set of n potential users, and each
user is defined as a tuple form. Ui =< LUi , RUi , DUi , CUi >, where LUi represents the current location of the
user, which can also be determined by latitude and longitude, and RUi is the user’s reputation score. DUi is the
maximum traveling distance, which is determined by the user. CUi represents the cost of the user to complete the
task, and is also the compensation paid by the platform to the user.

Reputation score can be obtained through the historical data of user in the crowdsourcing task.
A high reputation means that QoS of users is higher. For example, it provides more correct results,
takes less time to complete tasks, and so on. In addition, high quality of service means that users
need to be paid more, which is in line with our intuition. The detailed calculations will be shown in
Section 4.

Definition 3. (Gain for each task.) Gain is determined by the quality of service(QoS) provided by the user,
which is denoted by G(Q). The gain satisfies the principle of diminishing marginal benefit [30] in microeconomics
(i.e., increasing resources will gradually reduce the unit rate of benefit).

Definition 4. (Cost of each task.) To obtain the service provided by the user for the task Ti, the crowdsourcing
platform needs to pay for the selected users, which is also the cost that the crowdsourcing platform must pay for
the service. The cost depends on the QoS of each user, so the cost can be expressed by Cost = ∑

|u|
i C(Ui(Q)),

where |u| is the number of users selected.

Sensors 2019, 19, 3158 6 of 19

Ideally, crowdsourcing platforms wish to maximize gain while minimizing cost. However,
achieving both goals is often impossible. The traditional approach is to set constraints on one goal
while optimizing on the other. Therefore, we can define the following two optimization problems
with constraints.

Definition 5. (The MCUS_C1 problem.) Let U be a set of users, and δc be a budget on cost. The MMCUS_C1

problem finds a subset U ⊆ U that maximizes G(U) under constraint C(U) ≤ δc.

Definition 6. (The MCUS_C2 problem.) Let U be a set of users, and δg be a minimal requirement of gain.
The MMCUS_C2 problem finds a subset U ⊆ U that minimizes C(U) under constraint G(U) ≥ δg.

As shown in Examples 1 and 2, neither of these constrained optimization goals is ideal. Inspired by
the principle of marginalism [31] in microeconomics, we wish to stop selecting new users when the
marginal gain is lower than the marginal cost, which is in line with the economic interests of the
crowdsourcing platform. Therefore, the crowdsourcing platform needs to find a set of users with the
largest profit (i.e., gain-cost). Assuming that both gain and cost can be measured in the same unit,
such as dollars. Additionally, crowdsourcing platform can also apply a budget constraint, but unlike
MMCUS_C1, balancing gain and cost don’t require budget constraint. Therefore, we define another
goal that user selection.

Definition 7. (The MCUS Marginalism problem.) Let U be a set of users, U = {u1, u2, ..., un}, and δc be a
budget on cost. The MCUS Marginalism problem finds a subset U ⊆ U that maximizes G(U)− C(U) under
constraint C(U) ≤ δc, which can be described as follows:

Maximize G(U)− C(U)

s.t. =


C(U) =

|u|

∑
i=1

ci =
n

∑
i=1

cixi ≤ δc

xi = 0 or 1, i = 1, 2, . . . , n

|u| ≤ n.

(1)

where n is the total number of users in a mobile crowdsourcing system, xi denotes a binary variable: set to 1 if
a user is selected and 0 if not. The constraint condition is optional, because we can provide the pareto optimal
solution that meets the goal for the platform to make reasonable decisions according to its own constraints.

3.2. Quality of Service (QoS) for Users

In mobile crowdsourcing, the quality of service (QoS) provided by users directly determines
whether tasks can be completed. Relevant literature [10,11] show that users’ reputation and willingness
to participate(WTP) contribute to the evaluation of QoS. When any one of these factors is reduced,
the QoS of users will also be reduced, and vice versa. For instance, the higher the reputation, the more
favorable the user received in the previous task, the higher the QoS, so the higher the probability
of completing the current task. In addition, the quality of crowdsourcing is also determined by the
WTP [32] of the user. The higher the WTP, the more human resources the crowdsourcing platform
can obtain, which expands the range of users selected and thus increases access to first-rate services.
However, the lower the WTP of users, the opposite. Therefore, we consider the reputation(the situation
before the task was completed) and the willingness to participate of the users and model the product
of these two factors as the standard for QoS in Equation (2).

QoSUi = RUi ×WTPUi ∈ (0, 1) (2)

Sensors 2019, 19, 3158 7 of 19

where R is the reputation of the users. Various models [33,34] have been proposed to evaluate the
reputation. For simplicity, the popular beta reputation system (RBS) [35] is adopted. However, due to
the limitations of RBS, the model does not work well when there are malicious users. For example,
savvy users always try any solution that offers more benefits, and they may deliberately report
unconfirmed information to obtain unreasonable rewards. And their reputation has not been
significantly affected by once or twice unreasonable reporting. Without a penalty for dishonest
reporting, crowdsourcing platforms will not only lose access to high-quality information, but also
suffer serious financial losses. To avoid this situation, we have improved the RBS and calculated
as follow:

R =
T + 1

T + F + 2
∗ ξ (0 ≤ R ≤ 1, T > 0, F > 0) (3)

where T and F are the historical numbers of “correct” and “incorrect” results obtained by users when
completing the crowdsourcing task. In addition, ξ is a weight associated with malicious events,
which was calculated as follows: {

i f 0 ≤ k < K then ξ = λk

i f k ≥ K then ξ = 0
(4)

where k is the malicious event of some user in the crowdsourcing task. K is the threshold for
malicious events.

In addition to reputation, the QoS will also be affected by the willingness to participate of users.
For example, user A who is far from the task location should have a lower willingness to participate
than user B who is closer to the task location, because the distance will increase the cost of usrs.
To reduce costs, crowdsourcing platform is also not worth recruiting users from far away. Based on
the above analysis, we model the user’s willingness to participate and traveling distance as the
following equation:

WTP = 1−max[0, min[logr(D(LUi , LTi)), 1]] (5)

where D(LUi , LTi) is calculated as the Euclidean distance [36] between the user coordinates and the task
coordinates. r is the range constraint of the task. As described in the literature [10], the crowdsourcing
task is usually a micro-task, and users are not willing to participate in tasks that are too far away from
them. Therefore, the crowdsourcing platform will provide the maximum range constraint of the task.
Thus, WTP is a value between 0 and 1. Within the maximum range constraint of the task, if the user is
closer to the task location, then WTP is closer to 1. If the location of the user is beyond the maximum
range constraint of the task, then WTP = 0.

Based on the above analysis, substitute ((3)–(5)) into (2), then we can evaluate the QoSUi of each
user, and a task is completed by the cooperation of multiple users. We can increase the number of
users until the marginal cost exceeds the marginal gain for the next incremental user. In other words,
MCUS Marginalism problem aims to maximize gain of each task and ensure that a group of users
is selected if adding a new user will increase the probability of the task success. This probability is
defined as the number of correct reports submitted.

After the calculation of QoSUi , the probability of at least one success of the task is calculated as
the binomial distribution of the total QoS obtained by the task. The QoStotal of the selected a group of
users is estimated as follow:

QoStotal = 1−
|u|

∏
i=1

(1−QoSUi) (6)

3.3. QoS-Based Gain-Cost Models

In this paper, we consider the effect of different gain-cost models [37,38] on user selection, take the
QoS of user in Section 3.2 as an important gain factor, and establish three gain models.

Sensors 2019, 19, 3158 8 of 19

• LinearGain assumes that the gain grows linearly with the QoS of users (For writing convenience,
record it as Q(u)) and set G(u) = 100Q(u)

• QuadGain assumes that the gain increases quadratically with Q(u) and set G(u) = 100Q2(u)
• StepGain assumes that reaching a milestone of Q(u) will significantly increase gain and set:

G(u) =


100Q(u) : 0 ≤ Q(u) < 0.2

100 + 100(Q(u)− 0.2) : 0.2 ≤ Q(u) < 0.5
150 + 100(Q(u)− 0.5) : 0.5 ≤ Q(u) < 0.8
200 + 100(Q(u)− 0.8) : 0.8 ≤ Q(u) < 1

We assign the cost of a user in [10, 40] in four ways:

• RandomCost assigns a random integer cost in [10, 40];
• LinearCost assumes that the cost grows linearly with Q(u) and set C(u) = 30Q(u) + 10;
• QuadCost assumes that the cost increases quadratically with Q(u) and set C(u) = 30Q2(u) + 10
• StepCost assumes that reaching some milestone of Q(u) will significantly increase cost and set:

C(u) =


10 : 0 ≤ Q(u) < 0.2
20 : 0.2 ≤ Q(u) < 0.5
30 : 0.5 ≤ Q(u) < 0.8
40 : 0.8 ≤ Q(u) ≤ 1

4. Optimization Algorithm

In this section, we first analyze the complexity of solving MCUS Marginalism problem, and we
rigorously prove that MCUS Marginalism problem is a NP-hard problem. Then we propose a greedy
random adaptive procedure with annealing randomness(GRASP-AR), which attempt to overcome the
limitations of deterministic algorithms (based on adding what is apparently the best element to the
partial solution), that is, our algorithms strive to ensure that the solution is globally optimal because
they explore the search space in a comprehensive way.

4.1. Complexity Analysis of MCUS Marginalism Problem

It is very important to solve the MCUS Marginalism problem with an efficient algorithm.
Unfortunately, as we will prove next, MCUS Marginalism problem is a NP-hard.

Theorem 1. MCUS Marginalism problem defined in Defintion 7 is a NP-hard Problem.

Proof. The MCUS Marginalism problem can be proved by reducing MCUS_C1 problem. Further,
we can prove that the decision version of MCUS_C1 is NP-complete. Next, we should find a known
NPC problem and then try to reduce it.

We use the knapsack problem as a known NP complete problem. The knapsack problem is
defined as follows. For an instance A of knapsack problem and a set of object K = {k1, k2, ..., kn} with
value and weight , where ki is represented by vi and wi respectively. The question is whether exists

a set K ⊆ K that maximizes the value of members from K (i.e., vmax(K)), and further ∑
|K|
i=1 wi ≤ η,

where η is upper bound of the capability.
Next, we change instance A to an instance of MCUS_C1. We construct a user instance B with

cost upper bound δ, and represent it as U = {u1, u2, ..., un}. For each ui, its gain and cost are gi and ci,
respectively. The MCUS_C1 problem is to find a set U ⊆ U to maximize the gain from the members of

U (i.e., Gmax(U)), and further ∑
|U|
i=1 ci ≤ δ. We assume that K can be used as a solution for instance A.

By trying to select |U| users in the set U, the formed U can be used as a solution for MMCUS_C1.

Sensors 2019, 19, 3158 9 of 19

With the construction approach of the solution, ∑
|U|
i=1 ci ≤ δ and a maximal gmax(U) imply

∑
|K|
i=1 ui ≤ η and a maximal vmax(K), respectively.

Then, we can simply see that the reduction from A to B ends in polynomial time, since the
knapsack problem is a NP-hard problem, so the MCUS_C1 is NP-hard. While MCUS Marginalism
problem can be reduced to MCUS_C1, so MCUS Marginalism problem is also a NP-hard problem.

4.2. GRASP with Annealing Randomness (GRASP-AR)

In the previous section, we have shown that MCUS marginalism problem is a NP-hard problem.
As the scale of users continues to expand, solving MCUS Marginalism problem is limited by both
memory and time. In practice, the number of decision variables increases exponentially as the scale of
users increases. Even if computing resources can increase indefinitely, the exact solution may not be
found in a reasonable amount of time. To address the problem, we proposed a greedy randomized
adaptive search procedure with annealing randomness as a trade-off between computation time and
quality of found solutions.

GRASP [39,40] is a multi-start meta-heuristic algorithm, which consists of two phases:
construction phase and local search phase. In the construction phase, the iterative constructs a
feasible solution, one element at a time. The greedy randomized algorithm is first used to select the
top-k candidates from the generated profits, and the best solution is selected from multiple iterations.
The algorithm is adaptive and provides a good initial solution while maintaining a certain degree of
diversification to avoid convergence toward local optima. In the local search phase, we introduce a
simulated annealing (SA) [41] meta-heuristic, whose effectiveness depends on the fact that it accepts
a non-improved solution within a certain probability. In other words, it can accept a solution that is
worse than the best solution found at the time. The probability of this solution depends on the degree
to which the new solution differs from the optimal solution and a further parameter, the synthesis
temperature excited by the metallurgical annealing process. As the value of the parameter decreases
gradually, the randomness of the method also gradually decreases (the lower the value, the lower the
randomness). Because SA can search for feasible solutions in a larger range, making it possible for the
algorithm to jump out of the local optimal solution and find a global optimal solution.

Algorithm 1: GRASP-AR(U, λ, k).
Input :U: users for selection; λ: the number of iterations;

k: finding top-k candidates
Output :U: selected users

1 Ubest ← ∅; Ph ← ∅; \\ records the highest gain;
2 for i← 1 to λ do
3 (U, G, C)← BuildSolution(U, ∅, 0, 0, k);
4 (U, G, C)← LocalSearch(U, U, G, C, k);
5 if G− C > Ph then
6 Ubest ← U; Ph ← G− C;

7 return Ubest;

Algorithm 1 introduces the main processing phases of GRASP-AR. The algorithm ensures that a
subset of users with the largest marginal gain is found. The algorithm performs λ iterations. In each
iteration, the construction phase constructs an initial solution U, then the local search phase uses a
simulated annealing strategy to further find a viable solution in the U neighborhood. Finally, it returns
the best solution from all iterations.

The construction process of greedy randomized is given in Algorithm 2. First, a given set of
candidate users is initialized and a group of users is added iteratively in a greedy randomized. In each
iteration (Step. 2–14), we select the user with the maximum incremental gain from the remaining user
set U \U (Step. 5). In other words, we check one by one whether the maximum gain achieved by the

Sensors 2019, 19, 3158 10 of 19

remaining users can exceed the current best solution, and skips the user if not. Next, Step. 6 evaluates
the difference between the marginal gain and marginal cost of the selected users. The top-k user sets
are selected in this way (Step. 7–10). Finally, Step. 12–15 choose subset of users with the highest gain.

Algorithm 2: Procedure BuildSolution(U, U, G, C, k).
Input :U: users for selection; U: already selected users;

G: gain for U; C: cost for U; k: finding top-k candidates
Output : (Ubest, G, C): the newly selected users and their gain and cost

1 Ubest ← U; Ph ← G− C; // Initialize the best solution as the input
2 for i← 1 to |U| − |U| do
3 Optimal← ∅; A← ∅; Store the top-k candidates
4 foreach u ∈ U \U do
5 if Gtotal − C− c(u) > Ph then
6 P← G(Q(U ∪ u)) -C -c(u);
7 k← rank of P in A;
8 if k ≤ k then
9 Optimal ← Optimal ∪U;

10 A← A∪ P;
11 Update a set of users(Optimal)

12 // Randomly choose Pr from A
13 if Pr > Ph then
14 Ph ← Pr;
15 Ubest ← U;

16 return (Ubest, G(Ubest), C(Ubest));

Algorithm 3: Procedure LocalSearch(U, U, G, C, k).
Input :U: users for selection; U: already selected users;

G: gain for U; C: cost for U; k: finding top-k candidates
Output : (Ubest, G, C): the newly selected users and their gain and cost

1 while T > Tlow do
2 foreach u ∈ U do
3 U0 ← U\u;
4 C0 ← C− c(u);
5 G0 ← G(Q(U0));
6 (U0, G0, C0)← BuildSolution(U, U0, G0, C0, k);
7 ∆ = (G0 − C0)− (G− C)
8 if ∆ > 0 then
9 // always accept better solution as current one update the better found

solution so far
10 U ← U0; G = G0; C = C0;

11 else if exp(∆/αT) > Random(0, 1) then
12 // accept the worse solution as a current one with probability given by above

formula
13 U ← U0; G = G0; C = C0;

14 T = α ∗ T

15 return U, G, C;

The local search phase takes the initial solution as input and iteratively explores its neighborhood
for a better solution. In this work, we introduce SA meta heuristic method. SA is a general
probability algorithm. Its starting point is based on the annealing process of solid materials in

Sensors 2019, 19, 3158 11 of 19

metallurgical processes. It is initialized with a parameter called temperature, denoted T, which accepts
a non-improved solution within a certain probability. According to the cooling rate factor α,
the temperature slowly drops during execution. The lower the temperature, the lower the probability
of choosing a worse solution in the next iteration.

The proposed SA is given in Algorithm 3. First, it takes the construction phase of the solution
as input, which is the best solution found so far. Next, in each iteration, it compares the current
solution with (1) the solution of removing u (2) the candidate solution with the remaining user subset
replacement u, and represents the difference between them as ∆. If the candidate solution is better,
consider it as the current solution and update the best solution found. If the candidate solution is worse,
it is accepted as the new current solution with the probability exp(∆/αT). Finally, the temperature
decreases with the cooling factor until the preset minimum temperature stops.

5. Experimental Evaluation

The purpose of this section is to examine the performance of our algorithm using both real-world
and synthetic datasets. We compare GRASP-AR with three baseline approaches on a series of mobile
crowdsourcing tasks. First, we describe our experimental design, then we analyze the results under
various experimental settings.

All experiments were coded in Python under Windows 10 for Education platform on an Intel
Core i7 2.8 GHz processor with 16 GB of RAM.

5.1. Experiment Design

5.1.1. Datasets

Real-world data: To evaluate the performance of the GRASP-AR algorithm, we used a task
assignment data set [42] published by the China Society for Industrial and Applied Mathematics,
which contains 835 tasks and 1877 users from four Chinese cities (i.e., Guangzhou, Foshan,
Shenzhen and Dongguan). The distribution of task locations and user locations are shown in Figure 2.
In the experiment, we set the parameter RCTi = 50 km. In addition, the dataset also provides the
reputation of all users, which is scaled to a range of (0, 1). The dataset parameter settings are
summarized in Table 3.

Figure 2. A real-world data set of task allocation.

Sensors 2019, 19, 3158 12 of 19

Synthetic data: We follow the existing methods [43,44] to generate synthetic data. Assuming that
the location of tasks and users are distributed in a 1 km × 1 km 2D space, then longitude and latitude
are uniformly distributed in (0, 1). In addition, each user has a reputation score R that reflects the
completion of tasks in the past. For simplicity, the reputation of users is randomly selected from the
range of (0, 1). The n users and m tasks are selected from {100, 200, 300, 400, 500, 600, 700, 800, 900}
and {100, 200, 300, 400, 500, 600, 800} respectively. We use Euclidean distance to quantify the traveling
distance between tasks and users. The synthetic data parameter settings are summarized in Table 4,
where default values are highlighted in bold.

Table 3. The real-world data parameters and their values.

Parameter Description Value

m Number of crowdsourcing tasks 835
n Number of users 1877

RCTi Range constraints for each task 50 km
R Reputation of user (0, 1)

Table 4. The synthetic data parameters and their values.

Parameter Description Range of Values

n Number of users {100, 200, 300, 400, 500, 600, 700, 800, 900}
R Range of the reputation of a user [0, 1]
m Number of crowdsourcing tasks {100, 200, 300, 400, 500, 600, 700, 800}
g Grid size 1 km × 1 km squares

5.1.2. Baseline Algorithms

To evaluate our GRASP-AR algorithm, we introduce three other algorithms. One is Particle
Swam Optimization (PSO) algorithm as in [45]. PSO is an optimization method based on Swarm
Intelligence, which originated from the research on predation behavior of birds. Compared with other
modern optimization methods, PSO is featured by few parameters to be adjusted, simple operation
and fast convergence, which has become a hotspot in the field of modern optimization methods.
We have set the size of the swarm to 30, the inertia weight linearly varied between 0.9 to 0.4, and the
acceleration coefficients to 2. Also, we compare our GRASP-AR algorithm with its two simplified
versions, namely Greedy Randomized Algorithm (GRA) and Simulated Annealing (SA). The former
one invokes BuildSolution with k = 1 (see Algorithm 2). The latter one essentially invokes LocalSolution
(see Algorithm 3). The difference is that the initial solution for SA is generated randomly.

Additionally, we adjust parameters separately and incrementally, i.e., when a parameter is tuned,
others are set to the default values. While next parameters are investigated, previous ones are
taking the best value found so far. Table 5 lists the range of parameter values and default value for
GRASP-AR algorithm.

Table 5. The GRASP-AR algorithm parameters and their values.

Parameter Description Range of Values Default Value

k Top-k candidates {5, 15, 30, 50, 75} 15
λ Number of repetitions {10, 30, 60, 100, 150, 210} 150
α Cooling rete factor {0.990, 0.995, 0.999, 0.9995, 0.9999} 0.995
T Initial temperature {200, 400, 600, 800, 1000} 400

Tlow Termination temperature 0.1 0.1

Sensors 2019, 19, 3158 13 of 19

5.2. Evaluation Results

5.2.1. Comparison of Three Selection Schemes under Different Gain-Cost Models Using Real Dataset

We considered three user selection schemes mentioned in Section 3.1: (1) MCUS_C1 with δc = G(1)
2

(G(1) corresponds to the maximum gain), (2) MCUS_C2 with δg = G(0.8), and (3) MCUS Marginalism
with δc = ∞. We use the default experimental parameters in Table 3 for each scheme.

To compare the effects of different gain-cost models on user selection, we used LinearGain,
QuadGain, StepGain and various cost models on the real-world dataset. As shown in
Figure 3, different gain models show the same patterns. Specifically, the user selection scheme
(MCUS Marginalism) we proposed achieved the highest gain in most cases. Taking Figure 3a as an
example to illustrate, MCUS Marginalism is nearly 32% higher than MCUS_C1 and 9.6% higher than
MCUS_C2 in terms of average gain. This is because MCUS_C1 costs a lot, and MCUS_C2 always
stops at a fairly low gain. This difference is more obvious in the StepGain model.

R a n d o m C o s t L i n e a r C o s t Q u a d C o s t S t e p C o s t
0

2

4

6

8

1 0
�M C U S M a r g i n a l i s m �M C U S _ C 1 �M C U S _ C 2

Ga
in

×104

(a)

R a n d o m C o s t L i n e a r C o s t Q u a d C o s t S t e p C o s t
0

1

2

3

4

5

6 ×104

�M C U S M a r g i n a l i s m �M C U S _ C 1 �M C U S _ C 2

Ga
in

(b)

R a n d o m C o s t L i n e a r C o s t Q u a d C o s t S t e p C o s t
0

3

6

9

1 2

1 5

1 8
�M C U S M a r g i n a l i s m �M C U S _ C 1 �M C U S _ C 2

×104

Ga
in

(c)

Figure 3. Comparison of three selection schemes. (a) LinearGain; (b) QuadGain; (c) StepGain.

5.2.2. Performance Comparison of Four Algorithms under Different Gain-Cost Models Using
Real Dataset

We used real-world dataset and generated a total of six instances based on different gain-cost
models. GRASP-AR, PSO, GRA, SA were used to obtain the best value, the worst value, the mean
value, and the standard deviation (S.D) for solving each instance 20 times independently.

Table 6 shows the results of RandomCost and LinearCost. Firstly, in terms of the results of best
value, we observed that GRASP-AR achieved 5 best results in 6 instances, SA achieved the best results

Sensors 2019, 19, 3158 14 of 19

in only one instance, while others did not. Secondly, the performance of various StepGain models is
poor, which may be due to the discontinuity of the gain with the increase of QoS.

Table 6. Performance Comparison of GRASP-AR, PSO, GRA and SA.

Index Gain Cost Algorithm Best Mean Worst S.D

1

Linear

Random

GRASP-AR 72,768 71,395 68,742 112.56
PSO 69,128 63,746 55,221 437.24
GRA 70,153 66,712 58.968 314.78
SA 70,994 67,475 61,827 294.28

2 Linear

GRASP-AR 75,245 72,847 70,328 146.15
PSO 71,824 64,723 58,863 398.16
GRA 73,080 68,451 62,058 295.14
SA 72,993 69,418 64,862 278.35

3

Quad

Random

GRASP-AR 41,582 38,358 35,210 125.85
PSO 38,692 34,917 31,026 358.14
GRA 39,822 37,132 34,328 158.86
SA 40,217 36,258 33,461 198.53

4 Linear

GRASP-AR 43,158 41,062 38,894 140.85
PSO 40,558 38,258 34,016 342.10
GRA 41,139 38,153 35,927 194.85
SA 41,056 36,534 33,635 221.52

5

Step

Random

GRASP-AR 115,816 105,848 97,451 296.43
PSO 104,487 88,945 80,032 578.82
GRA 109,922 92,628 85,396 372.52
SA 116,132 99,863 84,150 606.21

6 Linear

GRASP-AR 124,136 116,980 109,628 152.18
PSO 105,662 96,463 86,916 428.47
GRA 115,132 103,558 90,284 265.37
SA 113,472 100,824 88,153 416.85

In addition, we used GAP to evaluate the statistical characteristics of the average performance of
all algorithms. The calculation of GAP is the same as [38], which is measured by the relative difference
between the best value and the average value:

GAP =
|best−mean|

best
× 100% (7)

Then, we can compare the average performance of all algorithms by GAP fitting curve. The closer
the gap fitting curve is to the abscissa axis, the better the average performance of the algorithm.
The fitting curves of each algorithm are given in Figure 4. It can be seen that the performance of
GRASP-AR is the best among the four algorithms, because the gap fitting curve is the closest to the
abscissa axis.

1 2 3 4 5 6
2
4
6
8

1 0
1 2
1 4
1 6

Per
cen

tag
e o

f G
AP

(%
)

T h e i n d e x o f 6 i n s t a n c e s

�G R A S P - A R
�P S O
�G R A
�S A

Figure 4. GAP fitting curve of real-world dataset under different gain-cost models.

Sensors 2019, 19, 3158 15 of 19

Moreover, we plot the histogram according to S.D and evaluate the stability of the four algorithms
by the distribution of the columns. As shown in Figure 5, the stability of GRASP-AR is much higher
than the other three algorithms.

1 2 3 4 5 6
0

1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0

The
 va

lue
 of

S.D

T h e i n d e x o f i n s t a n c e s

�G R A S P - A R
�P S O
�G R A
�S A

Figure 5. Standard deviation (S.D) histogram of real-world dataset under different gain-cost models.

5.2.3. Performance Comparison of Various Parameter Combinations for GRASP-AR Using
Synthetic Dataset

We used LinearGain and RandomCost to find the best selection percentage and running time
for different combinations of λ and k. Figure 6 shows the results of our experiment. We have three
conclusions. First, there is no doubt that the more iterations, the longer the time, but the more iterations,
the better the results. Second, better results are often obtained when k = 15. This is because if the value
of k is too low, the best solution may not be found, and if the value of k is too high, it is close to random
search, which will reduce the quality of the results. Finally, when k increases gradually, the running
time increases, while k exceeds 50, the running time decreases. This is because when k is large, it is
less likely to find a better solution in the construction phase, so there are fewer iterations in the local
search phase.

1 0 3 0 6 0 1 0 0 1 5 0 2 1 0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

Per
cen

tag
e o

f b
est

 se
lec

tion
s(%

)

N u m b e r o f i t e r a t i o n s

�T o p - 5
�T o p - 1 5
�T o p - 3 0
�T o p - 5 0
�T o p - 7 5

(a)

1 0 3 0 6 0 1 0 0 1 5 0 2 1 0
0

1 0

2 0

3 0

4 0

5 0

6 0
�T o p - 5
�T o p - 1 5
�T o p - 3 0
�T o p - 5 0
�T o p - 7 5

Ex
ecu

tion
 tim

e(m
in)

N u m b e r o f i t e r a t i o n s
(b)

Figure 6. Effectiveness and efficiency of various parameter combinations for GRASP-AR.
(a) Percentage of Best Selections; (b) Execution Time.

Sensors 2019, 19, 3158 16 of 19

5.2.4. Performance Comparison of Four Algorithms under Different Number of Tasks Using
Synthetic Dataset

The experiment in this section aims to evaluate the performance of the algorithm according
to the number and location of different tasks when determining the number and location of users.
We consider 200 users and gradually increase the number of tasks from 100 to 1000. Moreover, we use
LinearGain and RandomCost models.

As shown in Figure 7a,b, while all algorithms aim to maximize the gain of the task, GRASP-AR
achieves the maximum (total) gain of all tasks and the average gain of each task, respectively.
Specifically, GRASP-AR performs approximately 32%, 17% and 14% better than PSO and GRA and
SA, respectively. It is no surprise that GRASP-AR provides a good starting point and maintains a
variety of solutions in the construction phase, which provides a good foundation for the final user
selection. Secondly, the local search phase explores the neighborhood of the solution and further
improves the solution. Furthermore, we can see that the SA cannot be extended over a large number
of tasks, which significantly reduces the task gain.

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
1

2

3

4

5

6

7

8

Tot
al g

ain

N u m b e r o f t a s k s

�G R A S P - A R
�P S O
�G R A
�S A

× 1 0 4

(a)

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
4 5

5 0

5 5

6 0

6 5

7 0

7 5

8 0
Av

era
ge

gai
n p

er t
ask

N u m b e r o f t a s k s

�G R A S P - A R
�P S O
�G R A
�S A

(b)

Figure 7. Effectiveness and efficiency of various parameter combinations for GRASP-AR. (a) The total
gain achieved for all tasks vs. the number of tasks available. (b) The average gain achieved per task vs.
the number of tasks available.

5.2.5. Performance Comparison of Four Algorithms under Different Number of Users Using
Synthetic Dataset

The experiment in this section aims to evaluate the performance of various algorithms according
to different number of users when determining the number and location of tasks. We considered
50 tasks and gradually increased the number of users from 100 to 800. Similarly, we use the linear gain
and random cost models.

Figure 8 shows the effect of available users on the total gain of 50 tasks. It can be seen that with
the increase of the number of potential users, the contribution of the four algorithms to the total gain
of 50 tasks is increasing, and their fitting curves are getting closer. This is because the more users
in the search space, the more potential users to provide high-quality service, and a better subset of
users can be found for the task. It is worth noting that the performance of GRASP is still higher than
other algorithms. It is 15.8%, 14.3% and 8.7% higher than SA, PSO and GRA, respectively, in terms of
average gain.

Sensors 2019, 19, 3158 17 of 19

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0

2 4 0 0

2 8 0 0

3 2 0 0

3 6 0 0

4 0 0 0

To
tal

gai
n f

or
50

tas
ks

N u m b e r o f u s e r s

�G R A S P - A R
�P S O
�G R A
�S A

Figure 8. The total gain achieved for 50 tasks vs. the number of users available.

6. Conclusions and Future Work

This paper studies the problem of user selection in mobile crowdsourcing. We propose a
marginalism problem of user selection to achieve maximize the quality of service of task while
minimizing the total incentive cost. In addition, in order to estimate the contribution of users to
task, we construct various gain-cost models driven by willingness to participate and reputation of
the users. To address user selection marginalism problem, we develop a greedy random adaptive
procedure with annealing randomness that can efficiently retrieve the potential user selection solution
feasible space. Experimental results show the effectiveness of our algorithms on both real-world and
synthetic datasets.

There are many opportunities to extend this work for full-fledged user selection for moblie
crowdsourcing. We next lay out a research agenda by describing several future research directions.

• User contribution measures: In addition to the user’s willingness to participate and reputation,
there are a variety of indicators to evaluate the user’s contribution to the task, such as credibility,
task completion time, etc. Future work includes efficiently estimating user contribution and
selecting user given these new measures.

• Improved gain and cost models: When we have multi-dimensional user contribution measures,
the gain model can be much more complex. Similarly, the cost model may be more complex
based on some specific pricing strategies [46,47]. Future work includes designing more complex
gain-cost models and studying their effect on user selection.

Author Contributions: Conceived and designed the experiments, J.Y. and X.B; methodology, J.Y. and X.B.;
Performed the experiments/Wrote the paper, J.Y.; Supervision, X.B. and C.X.; funding acquisition, X.B. and C.X.

Funding: This research was supported in part by National Nature Science Foundation of China (Grant No.
61873299, 61702036, 91646202), National Key Research and Development Program of China (Grant No.
2016YFB1001404, 2018YFB1404400, 2018YFB1402700).

Acknowledgments: The authors are deeply thankful to the editor and reviewers for their valuable suggestions to
improve the quality of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Guo, B.I.N.; Wang, Z.H.U.; Yu, Z.; Wang, Y.U.; Yen, N.Y.; Huang, R.; Zhou, X. Mobile Crowd Sensing Survey.
ACM Comput. Surv. 2015, 48, 31. [CrossRef]

2. Boubiche, D.E.; Imran, M.; Maqsood, A.; Shoaib, M. Mobile Crowd Sensing—Taxonomy, Applications,
Challenges, and Solutions. Comput. Hum. Behav. 2018. [CrossRef]

http://dx.doi.org/10.1145/2794400
http://dx.doi.org/10.1016/j.chb.2018.10.028

Sensors 2019, 19, 3158 18 of 19

3. Global Mobile Markets Report. 2018. Available online: https://newzoo.com/insights/trend-reports/
newzoo-global-mobile-market-report-2018-light-version/ (accessed on 5 June 2019).

4. Amaxilatis, D.; Mylonas, G.; Diez, L.; Theodoridis, E.; Gutiérrez, V.; Muñoz, L. Managing Pervasive Sensing
Campaigns via an Experimentation-as-a-Service Platform for Smart Cities. Sensors 2018, 18, 2125. [CrossRef]

5. Choque, J.; Diez, L.; Medela, A.; Muñoz, L. Experimentation Management in the Co-Created Smart-City:
Incentivization and Citizen Engagement. Sensors 2019, 19, 411. [CrossRef]

6. Khan, S.Z.; Rahuman, W.M.A.; Dey, S.; Anwar, T.; Kayes, A.S.M. RoadCrowd: An Approach to Road
Traffic Forecasting at Junctions Using Crowd-Sourcing and Bayesian Model. In Proceedings of the 2017
International Conference on Research and Innovation in Information Systems (ICRIIS), Langkawi, Malaysia,
16–17 July 2017; pp. 1–6.

7. Yi, L.; Deng, X.; Wang, M.; Ding, D.; Wang, Y. Localized Confident Information Coverage Hole Detection in
Internet of Things for Radioactive Pollution Monitoring. IEEE Access 2017, 5, 18665–18674. [CrossRef]

8. Yuan, N.J.; Zheng, Y.; Zhang, L.; Xie, X. T-Finder: A Recommender System for Finding Passengers and
Vacant Taxis. IEEE Trans. Knowl. Data Eng. 2013, 25, 2390–2403. [CrossRef]

9. Abu-Elkheir, M.; Hassanein, H.S.; Oteafy, S.M.A. Enhancing Emergency Response Systems through
Leveraging Crowdsensing and Heterogeneous Data. In Proceedings of the 2016 International Wireless
Communications and Mobile Computing Conference (IWCMC), Paphos, Cyprus, 5–9 September 2016;
pp. 188–193.

10. Miao, C.; Yu, H.; Shen, Z.; Leung, C. Balancing Quality and Budget Considerations in Mobile Crowdsourcing.
Decis. Support Syst. 2016, 90, 56–64. [CrossRef]

11. Abououf, M.; Mizouni, R.; Singh, S.; Otrok, H.; Ouali, A. Multi-Worker Multi-Task Selection Framework in
Mobile Crowd Sourcing. J. Netw. Comput. Appl. 2019, 130, 52–62. [CrossRef]

12. Wang, L.; Yu, Z.; Han, Q.; Guo, B.; Xiong, H. Multi-Objective Optimization Based Allocation of
Heterogeneous Spatial Crowdsourcing Tasks. IEEE Trans. Mob. Comput. 2018, 17, 1637–1650. [CrossRef]

13. Wang, J.; Wang, L.; Wang, Y.; Zhang, D.; Kong, L. Task Allocation in Mobile Crowd Sensing: State-of-the-Art
and Future Opportunities. IEEE Internet Things J. 2018, 5, 3747–3757. [CrossRef]

14. Bellavista, P.; Corradi, A.; Foschini, L.; Ianniello, R. Scalable and Cost-Effective Assignment of Mobile
Crowdsensing Tasks Based on Profiling Trends and Prediction: The ParticipAct Living Lab Experience.
Sensors 2015, 15, 18613–18640. [CrossRef]

15. Chen, Y.; Lv, P.; Guo, D.; Zhou, T.; Xu, M. Trajectory Segment Selection with Limited Budget in Mobile
Crowd Sensing. Pervasive Mob. Comput. 2017, 40, 123–138. [CrossRef]

16. Wang, S.; Zhao, Y.; Huang, L.; Xu, J.; Hsu, C.H. QoS Prediction for Service Recommendations in Mobile
Edge Computing. J. Parallel Distrib. Comput. 2017, 127, 134–144. [CrossRef]

17. Jaimes, L.G.; Vergara-Laurens, I.J.; Raij, A. A Survey of Incentive Techniques for Mobile Crowd Sensing.
IEEE Internet Things J. 2015, 2, 370–380. [CrossRef]

18. Jin, H.; Su, L.; Chen, D.; Nahrstedt, K.; Xu, J. Quality of Information Aware Incentive Mechanisms for Mobile
Crowd Sensing Systems. In Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc
Networking and Computing, MobiHoc’2015, Hangzhou, China, 22–25 June 2015; pp. 167–176.

19. Jin, H.; Su, L.; Xiao, H.; Nahrstedt, K. Incentive Mechanism for Privacy-Aware Data Aggregation in Mobile
Crowd Sensing Systems. IEEE/ACM Trans. Netw. 2018, 26, 2019–2032. [CrossRef]

20. Wang, X.; Liu, Z.; Tian, X.; Gan, X.; Guan, Y.; Wang, X. Incentivizing Crowdsensing With Location-Privacy
Preserving. IEEE Trans. Wirel. Commun. 2017, 16, 6940–6952. [CrossRef]

21. Lin, J.; Yang, D.; Li, M.; Xu, J.; Xue, G. Frameworks for Privacy-Preserving Mobile Crowdsensing
Incentive Mechanisms. IEEE Trans. Mob. Comput. 2017, 17, 1851–1864. [CrossRef]

22. Wang, J.; Tang, J.; Xue, G.; Yang, D. Towards Energy-Efficient Task Scheduling on Smartphones in Mobile
Crowd Sensing Systems. Comput. Netw. 2017, 115, 100–109. [CrossRef]

23. Zhao, Y.; Li, Y.; Wang, Y.; Su, H.; Zheng, K. Destination-Aware Task Assignment in Spatial Crowdsourcing.
In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, CIKM’17,
Singapore, 6–10 November 2017; pp. 297–306.

24. To, H.; Shahabi, C.; Kazemi, L. A Server-Assigned Spatial Crowdsourcing Framework. ACM Trans. Spat.
Algorithms Syst. 2016, 1, 2. [CrossRef]

25. Wu, P.; Ngai, E.W.T.; Wu, Y. Toward a Real-Time and Budget-Aware Task Package Allocation in
Spatial Crowdsourcing. Decis. Support Syst. 2018, 110, 107–117. [CrossRef]

https://newzoo.com/insights/trend-reports/newzoo-global-mobile-market-report-2018-light-version/
https://newzoo.com/insights/trend-reports/newzoo-global-mobile-market-report-2018-light-version/
http://dx.doi.org/10.3390/s18072125
http://dx.doi.org/10.3390/s19020411
http://dx.doi.org/10.1109/ACCESS.2017.2754269
http://dx.doi.org/10.1109/TKDE.2012.153
http://dx.doi.org/10.1016/j.dss.2016.06.019
http://dx.doi.org/10.1016/j.jnca.2019.01.008
http://dx.doi.org/10.1109/TMC.2017.2771259
http://dx.doi.org/10.1109/JIOT.2018.2864341
http://dx.doi.org/10.3390/s150818613
http://dx.doi.org/10.1016/j.pmcj.2017.06.010
http://dx.doi.org/10.1016/j.jpdc.2017.09.014
http://dx.doi.org/10.1109/JIOT.2015.2409151
http://dx.doi.org/10.1109/TNET.2018.2840098
http://dx.doi.org/10.1109/TWC.2017.2734758
http://dx.doi.org/10.1109/TMC.2017.2780091
http://dx.doi.org/10.1016/j.comnet.2016.11.020
http://dx.doi.org/10.1145/2729713
http://dx.doi.org/10.1016/j.dss.2018.03.010

Sensors 2019, 19, 3158 19 of 19

26. ul Hassan, U.; Curry, E. Efficient Task Assignment for Spatial Crowdsourcing: A Combinatorial Fractional
Optimization Approach with Semi-Bandit Learning. Expert Syst. Appl. 2016, 58, 36–56. [CrossRef]

27. Chen, J.; Yang, J. Maximizing Coverage Quality with Budget Constrained in Mobile Crowd-Sensing Network
for Environmental Monitoring Applications. Sensors 2019, 19, 2399. [CrossRef]

28. Wang, E.; Yang, Y.; Lou, K. User Selection Utilizing Data Properties in Mobile Crowdsensing. Inf. Sci. 2019,
490, 210–226. [CrossRef]

29. He, Z.; Cao, J.; Liu, X. High Quality Participant Recruitment in Vehicle-Based Crowdsourcing Using
Predictable Mobility. In Proceedings of the 2015 IEEE Conference on Computer Communications
(INFOCOM), Hong Kong, China, 26 April–1 May 2015; pp. 2542–2550.

30. Greene, J.; Baron, J. Intuitions about declining marginal utility. J. Behav. Decis. Mak. 2001, 255, 243–256.
[CrossRef]

31. Marginalism Principle. Available online: http://www.opentextbooks.org.hk/system/files/export/15/
15497/pdf/Principles_of_Managerial_Economics_15497.pdf (accessed on 13 May 2019).

32. Parent, M.; Plangger, K.; Bal, A. The New WTP: Willingness to Participate. Bus. Horiz. 2011, 54, 219–229.
[CrossRef]

33. Zhang, S.; Wang, S.; Xia, H.; Cheng, X. An Attack-Resistant Reputation Management System For Mobile
Ad Hoc Networks. Procedia Comput. Sci. 2019, 147, 473–479. [CrossRef]

34. Li, B.; Li, R.H.; King, I.; Lyu, M.R.; Yu, J.X. A Topic-Biased User Reputation Model in Rating Systems.
Knowl. Inf. Syst. 2015, 44, 581–607. [CrossRef]

35. Josang, A.; Ismail, R. The Beta Reputation System. In Proceedings of the 15th Bled Electronic Commerce
Conference, Bled, Slovenia, 17–19 June 2002; pp. 2502–2511.

36. Euclidean Distance. Available online: https://www.pbarrett.net/techpapers/euclid.pdf (accessed on
5 May 2019).

37. Dong, X.L.; Saha, B.; Srivastava, D. Less is More: Selecting Sources Wisely for Integration. Proc. VLDB Endow.
2012, 6, 37–48. [CrossRef]

38. Yang, J.; Xing, C. Data Source Selection Based on an Improved Greedy Genetic Algorithm. Symmetry 2019,
11, 273. [CrossRef]

39. Yang, Z.; Wang, G.; Chu, F. An Effective GRASP and Tabu Search for the 0-1 Quadratic Knapsack Problem.
Comput. Oper. Res. 2013, 40, 1176–1185. [CrossRef]

40. Lechowicz, P.; Walkowiak, K.; Klinkowski, M. Greedy Randomized Adaptive Search Procedure for Joint
Optimization of Unicast and Anycast Traffic in Spectrally-Spatially Flexible Optical Networks. Comput. Netw.
2018, 146, 167–182. [CrossRef]

41. Rutenbar, R.A. Simulated Annealing Algorithms: An Overview. IEEE Circuits Devices Mag. 1989, 5, 19–26.
[CrossRef]

42. The Real-World Data. Available online: http://www.mcm.edu.cn/html_cn/node/
460baf68ab0ed0e1e557a0c79b1c4648.html (accessed on 5 May 2019).

43. Hu, T.; Xiao, M.; Hu, C.; Gao, G.; Wang, B. A QoS-Sensitive Task Assignment Algorithm for
Mobile Crowdsensing. Pervasive Mob. Comput. 2017, 41, 333–342. [CrossRef]

44. Cheng, P.; Lian, X.; Chen, Z.; Fu, R.; Chen, L.; Han, J.; Zhao, J. Reliable Diversity-Based Spatial Crowdsourcing
by Moving Workers. Proc. VLDB Endow. 2015, 8, 1022–1033. [CrossRef]

45. Nguyen, P.H.; Wang, D.; Truong, T.K. A New Hybrid Particle Swarm Optimization and Greedy for
0–1 Knapsack Problem. Indones. J. Electr. Eng. Comput. Sci. 2016, 1, 411–418. [CrossRef]

46. Yang, J.; Zhao, C.; Xing, C. Big Data Market Optimization Pricing Model Based on Data Quality. Complexity
2019, 2019. [CrossRef]

47. Yang, J.; Xing, C. Personal Data Market Optimization Pricing Model Based on Privacy Level. Information
2019, 10, 123. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.eswa.2016.03.022
http://dx.doi.org/10.3390/s19102399
http://dx.doi.org/10.1016/j.ins.2019.03.071
http://dx.doi.org/10.1002/bdm.375
http://www.opentextbooks.org.hk/system/files/export/15/15497/pdf/Principles_of_Managerial_Economics_15497.pdf
http://www.opentextbooks.org.hk/system/files/export/15/15497/pdf/Principles_of_Managerial_Economics_15497.pdf
http://dx.doi.org/10.1016/j.bushor.2011.01.003
http://dx.doi.org/10.1016/j.procs.2019.01.275
http://dx.doi.org/10.1007/s10115-014-0780-9
https://www.pbarrett.net/techpapers/euclid.pdf
http://dx.doi.org/10.14778/2535568.2448938
http://dx.doi.org/10.3390/sym11020273
http://dx.doi.org/10.1016/j.cor.2012.11.023
http://dx.doi.org/10.1016/j.comnet.2018.09.011
http://dx.doi.org/10.1109/101.17235
http://www.mcm.edu.cn/html_cn/node/460baf68ab0ed0e1e557a0c79b1c4648.html
http://www.mcm.edu.cn/html_cn/node/460baf68ab0ed0e1e557a0c79b1c4648.html
http://dx.doi.org/10.1016/j.pmcj.2017.01.005
http://dx.doi.org/10.14778/2794367.2794372
http://dx.doi.org/10.11591/ijeecs.v1.i3.pp411-418
http://dx.doi.org/10.1155/2019/5964068
http://dx.doi.org/10.3390/info10040123
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Task Assignment
	User Selection

	User Selection Driven by the Gain-Cost Models
	Problem Definition
	Quality of Service (QoS) for Users
	QoS-Based Gain-Cost Models

	Optimization Algorithm
	Complexity Analysis of MCUS Marginalism Problem
	GRASP with Annealing Randomness (GRASP-AR)

	Experimental Evaluation
	Experiment Design
	Datasets
	Baseline Algorithms

	Evaluation Results
	Comparison of Three Selection Schemes under Different Gain-Cost Models Using Real Dataset
	Performance Comparison of Four Algorithms under Different Gain-Cost Models Using Real Dataset
	Performance Comparison of Various Parameter Combinations for GRASP-AR Using Synthetic Dataset
	Performance Comparison of Four Algorithms under Different Number of Tasks Using Synthetic Dataset
	Performance Comparison of Four Algorithms under Different Number of Users Using Synthetic Dataset

	Conclusions and Future Work
	References

