Supplementary Materials: Background and Properties of Selected Commercially Available, Low-cost Carbon Dioxide and Methane Gas Concentration Sensors

Wesley T. Honeycutt ^{1,†},^(D), M. Tyler Ley ², and Nicholas F. Materer ³,^(D)*

1 Selection Rational

The selection rational, sensing method, and selected properties obtained from the manufacturer 2 documentation is tabulated below. Sensors can be generally categorized by detection method, which as optical absorption, chemiresistive (based on the resistance changes of a material due to л chemical reaction with an analyte [1]), and electrochemical. Since studies have cited concerns with 5 electrochemical gas concentration sensors, such as a short lifetime and lack of robustness [2], only 6 optical and chemiresistive sensors were selected. The potential application of the selected sensors is also 7 impotent in the selection. For this study, the application includes, but is not limited to, environmental monitoring of local gas concentration and detection of leaks around industrial locations. For such applications, the collection of multiple samples at several locations in a given area (possibility including 10 places without power availability) is critical to obtain reliable results. Thus, with only two exceptions, 11 sensors selected were all commercially available in large volumes (at least 1000 units) at low-cost 12 (defined here as less than \$100 per unit in bulk) The sensors were further selected based on the 13 reported sensitivity at environmental concentrations of CO_2 (around 400 ppm [3,4]) and CH_4 (under 2 14 ppm [5–7]), and at concentrations of several thousand ppm, which simulate a potential leak. In the 15 selection process, the cost, limit of detection, precision, accuracy, reliability, and power consumption 16 are all important parameters, many of which are not reported the manufacture or cannot be directly 17 compared to other similar sensors. 18

19 Sensing Technology

Lower cost optical sensors typically utilize nondispersive infrared (NDIR) sensing. This method 20 utilizes a broad spectrum light source which is restricted by a narrow band pass filter across the 21 absorbance maximum before reaching the detector. Since these sensors utilize the Beer-Lambert law to 22 relate absorption to concentration, the calibration is only dependent on the geometry of the sensor and 23 physical properties of the gas [8]. In general, NDIR detection is utilized for CO₂ due to its relatively 24 large molar absorption coefficient, allowing for short path lengths to be used in devices. For CH₄, 25 NDIR detection is limited due to its lower absorption coefficient and overlapping symmetric C-H 26 stretches. The overlapping stretches makes CH₄ difficult to distinguish from other common aliphatic 27 gases such as ethane and propane [9]. The selected lower cost chemiresistive sensors typicality detect 28 CH₄ using a thin oxide film [2] and work by measuring resistance changes due to differences in the 29 electron transport through the metal oxide film, in the presence of oxygen and target gases [10]. The 30 resistance change is typically non-linear with the analyte concentration. The chemiresistive sensors are 31 known to respond to a range of hydrocarbon gases [11], which should be considered when integrating 32 these sensors into a sensor platform. 33

34 Selected Sensors

Table S1 lists the selected CO_2 sensors with important properties obtained from the manufacturer.

Table S2 lists the CH_4 or hydrocarbon sensors and respective properties. The K-30, COZIR, Dynament,

and Telaire sensors are all NDIR sensors. These sensors were chosen as low-cost, lightweight sensors

with satisfactory detection parameters of CO_2 . Dynament also provides a dual gas NDIR sensor

³⁹ (MSH-DP/HC/CO2/) designed to measure both CO_2 and CH_4 concentrations. This ability was

- attractive given low-cost and portability requirements. The CO_2 and CH_4 Gascard sensors sold by
- GHG Analytical were an order of magnitude more expensive than the other chosen NDIR sensors,

- ⁴² which have a cost between that of the lowest cost sensors on our list and that of the bench-top analyzers.
- ⁴³ Their specifications combined with the included pressure and temperatures compensation make them
- attractive enough to make up for the expense. In addition to the Gascard sensor, the Dynament
- ⁴⁵ hydrocarbon sensors (MSH-P/HC and MSH-DP/HC/CO2/) were chosen as inexpensive candidates
- ⁴⁶ for CH₄ detection. Chemoresistive sensors include the MQ-4 from Hanwei Electronics and TGS-2600,
- ⁴⁷ TGS-2610, and TGS-2611 manufactured by Figaro Engineering Inc. sensors. The TGS sensors are used
- ⁴⁸ in commercial CH_4 and air quality detectors. There are several different MQ versions optimized for
- ⁴⁹ hydrocarbon sensing. The MQ-4 sensor was chosen as this variant was specifically tuned for CH_4 .

Table S1. Manufacturer listed properties of evaluated CO₂ sensors

Sensor	Supplier	Туре	Sampling Method		Cal. Range	Op. Range
K-30 SE-0018	CO ₂ Meter	NDIR	flow or diffusion		0-5000 ppm	0-10000 ppm
COZIR AMB GC-020	CO ₂ Meter	NDIR	flow or di	iffusion	0-5000 ppm	0-10000 ppm
Gascard CO ₂	GHG Analyti	ical NDIR	flow		0-50000 ppm	0-50000 ppm
MSH-P/CO2/NC/5/V/P/F	Dynament	t NDIR	diffusion		0-2491 ppm	0-5000 ppm
MSH-DP/HC/CO2/NC/P/F	Dynament	t NDIR	diffusion		100-2500 ppm	0-5000 ppm
Telaire T6615	General Elect	tric NDIR	flow or diffusion		0-2000 ppm	0-2000 ppm
					• •	
Sensor	Warm Up	Т	Humidity	Auto-ca	l V Input	Avg. I
K-30 SE-0018	<1 min	0-50°C	0-95%	Yes	4.5-14 VDC	40 mA
COZIR AMB GC-020	<3 s	0-50°C	0-95%	Yes	3.25-5.5 VDC	1.5 mA
Gascard CO ₂	30 s	$0-45^{\circ}C$	0-95%	Yes	7-30 VDC	250 mA
MSH-P/CO2/NC/5/V/P/F	45 s	-20-50°C	0-95%	No	3.0-5.0 VDC	75-85 mA
MSH-DP/HC/CO2/NC/P/F	45 s	-20-50°C	0-95%	No	3.0-5.0 VDC	75-85 mA
Telaire T6615	10 min	0-50°C	0-95%	Yes	0-5 VDC	33 mA

Table S2. Manufacturer listed properties of evaluated CH₄ sensors

Sensor	r Supplier		Type San		Sampling Method		Cal. Range	Op. Range
MQ-4	Futurelec		chemiresistive		diffusion			200-10000 ppm
Gascard CH ₄	GHG Analytical		NDIR		flow		0-50000 ppm	0-50000 ppm
MSH-P/HC/NC/5/V/P/F	Dynament		NDIR		diffusion		0-5000 ppm	0-10000 ppm
MSH-DP/HC/CO2/NC/P/F	Dynament		NDIR		diffusion		5000-11000 ppm	0-10000 ppm
TGS-2600	Figaro Engineering		chemiresistive		diffusion			1-30 ppm
TGS-2610	Figa	ro Engineering	chemiresistive		diffusion			1000-25000 ppm
TGS-2611	Figa	ro Engineering	chemiresistive diff		diffu	usion		500-10000 ppm
	0	0 0						
Ser	nsor	Warm Up	Т	Hur	midity	Auto-ca	l V Input	Avg. I
М	Q-4					No	5 VDC	<150 mA
Gascard G	CH_4	30 s	0-45°C	0-	95%	Yes	7-30 VDC	250 mA
MSH-P/HC/NC/5/V/	P/F	30 s	-20-50°C	0-	95%	No	3.0-5.0 VDC	2 75-85 mA
MSH-DP/HC/CO2/NC/	P/F	30 s	-20-50°C	0-	95%	No	3.0-5.0 VDC	2 75-85 mA
TGS-2	600					No	5.0±0.2 VD0	2 4.2±4 mA
TGS-2	610					No	5.0 ± 0.2 VDC	5.6±5 mA
TGS-2	611					No	5.0±0.2 VD0	5.6 ± 5 mA

Sensors with no listed warm-up time required 7-day burn-in time

50 References

51

 Wetchakun, K.; Samerjai, T.; Tamaekong, N.; Liewhiran, C.; Siriwong, C.; Kruefu, V.; Wisitsoraat, A.; Tuantranont, A.; Phanichphant, S. Semiconducting Metal Oxides as Sensors for Environmentally Hazardous Gases. *Sensors and Actuators B: Chemical* 2011, 160, 580 – 591. doi:https://doi.org/10.1016/j.snb.2011.08.032.
 Neri, G. First Fifty Years of Chemoresistive Gas Sensors. *Chemosensors* 2015, 3, 1–20. doi:10.3390/chemosensors3010001.

- Blasing, T. Recent Greenhouse Gas Concentrations. Technical report, U. S. Department of Energy, CDIAC, 2016.
- 59 4. Dlugokencky, E. Trends in Atmospheric Methane. Technical report, NOAA/ESRL, 2016.
- 5. Turner, A.J.; Jacob, D.J.; Benmergui, J.; Wofsy, S.C.; Maasakkers, J.D.; Butz, A.; Hasekamp, O.; Biraud, S.C.
- A Large Increase in U.S. Methane Emissions over the Past Decade Inferred from Satellite Data and Surface
 Observations. *Geophysical Research Letters* 2016, 43, 2218–2224. doi:10.1002/2016GL067987.
- 6. Bamberger, I.; Stieger, J.; Buchmann, N.; Eugster, W. Spatial Variability of Methane:
 64 Attributing Atmospheric Concentrations to Emissions. *Environmental Pollution* 2014, 190, 65–74.
- 65 doi:10.1016/j.envpol.2014.03.028.
- ⁶⁶ 7. Dlugokencky, E.; Tans, P. Trends in Atmospheric Carbon Dioxide. Technical report, NOAA/ESRL, 2016.
- 8. Bacsik, Z.; Mink, J.; Keresztury, G. FTIR Spectroscopy of the Atmosphere. I. Principles and Methods.
 Applied Spectroscopy Reviews 2004, *39*, 295–363. doi:10.1081/ASR-200030192.
- 9. Coblentz Society, Inc.. Evaluated Infrared Reference Spectra. In NIST Chemistry WebBook; Lindstrom, P.J.;
- Mallard, W.G., Eds.; Number 69 in NIST Standard Reference Database, National Institute of Standards and
 Technology: Gaithersburg MD, 20899.
- Albert, K.J.; Lewis, N.S.; Schauer, C.L.; Sotzing, G.A.; Stitzel, S.E.; Vaid, T.P.; Walt, D.R. Cross-Reactive
 Chemical Sensor Arrays. *Chemical Reviews* 2000, 100, 2595–2626. doi:10.1021/cr980102w.
- ⁷⁴ 11. Sekhar, P.K.; Kysar, J.; Brosha, E.L.; Kreller, C.R. Development and Testing of an
 ⁷⁵ Electrochemical Methane Sensor. *Sensors and Actuators B: Chemical* 2016, 228, 162 167.
- ⁷⁶ doi:https://doi.org/10.1016/j.snb.2015.12.100.