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Abstract: In the age of the Internet of Things, connected devices are changing the delivery system in
the healthcare communication environment. With the integration of IoT in healthcare, there is a huge
potential for improvement of the quality, safety, and efficiency of health care in addition to promising
technological, economical, and social prospects. Nevertheless, this integration comes with security
risks such as data breach that might be caused by credential-stealing malware. In addition, the
patient valuable data can be disclosed when the perspective devices are compromised since they are
connected to the internet. Hence, security has become an essential part of today’s computing world
regarding the ubiquitous nature of the IoT entities in general and IoT-based healthcare in particular.
In this paper, research on the algorithm for anonymizing sensitive information about health data
set exchanged in the IoT environment using a wireless communication system has been presented.
To preserve the security and privacy, during the data session from the users interacting online, the
algorithm defines records that cannot be revealed by providing protection to user’s privacy. Moreover,
the proposed algorithm includes a secure encryption process that enables health data anonymity.
Furthermore, we have provided an analysis using mathematical functions to valid the algorithm’s
anonymity function. The results show that the anonymization algorithm guarantees safety features
for the considered IoT system applied in context of the healthcare communication systems.

Keywords: IoT; security; privacy; anonymous function; healthcare; wireless sensor networks

1. Introduction

Nowadays, medical caregivers are able to monitor the patient’s status in real-time and the relevant
status can be updated time-to-time using applications and infrastructures. The connectivity protocol
based on the IPv6 low-power wireless personal area network is the most used in the IoT environment to
support healthcare mobility via wireless approaches [1]. Modern healthcare is reshaping the presence
and evolution of the IoT that support technology, economy, and social networks. The IoT state-of-the-art
reflects an inter-connection of people, anything, accessing any service anytime, anywhere and on any
network. It is seen as a megatrend technology in information and communication technology (ICT) that
is influencing the entire business spectrum with more advantages going beyond machine-to-machine
(M2M) states [2]. The solutions provided by the IoT are now exploitable in multiple areas of applications
like logistics, industrial control, smart cities, transportation, retails and healthcare systems [3–7].
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Among the aforementioned applications areas and others, the attention is given to the healthcare
system, which represents the most attractive application for developers and consumers [8]. The main
reason is that the human being is much involved for applications such as elderly care, fitness programs,
remote health care monitoring and chronic diseases surveillance. Figure 1 gives a generic illustration
of a body area network consisting of IoT medical sensors.
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The health devices collect and transmit patient health data to the medical service providers for
data analytics and visualizations to facilitate health monitoring and treatment. As shown in Figure 1,
the sensors can be embedded into the body. They are smart electronic devices equipped with a
micro-controller to compute different functions. Therefore, in IoT-based health care, the devices are
inter-connected, embedded with software and use a wireless communication system to exchange the
data [9].

However, security and privacy are highly discussed in such context given that devices or/and
software’s compromises directly leads to the safety of the user (here, patient) and can thus cause
harmful consequences, even a death. Most of the privacy and security solutions for healthcare systems
are discussed in Section 2. Using wireless technologies, any user with his sensitive data such as bank
transactions, health data, and email should exchange via a platform that provide the user’s privacy
and ensures the security of their information. Nevertheless, in a centralized system such as IoT-based
health care, the services providers can access the data and have capabilities to possibly perform a-priori
or a-posteriori control or reveal the sender’s message in their system to other entities, irrespective of the
concerned privacy level. Unfortunately, such a situation usually happens when the relevant institutions
abuse the user information. With this comportment, it is obvious that privacy and data protection
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need more attention as long as any misusage can lead to a threat. Therefore, security experts have
developed applied solutions to support the confidentiality of the information that protects sensitive
information in IoT-based health-care domain. With the said issues, this paper presents an approach to
the solution based on the anonymization process that provides features such as privacy and security of
sensitive health dataset.

On that, the main contributions of this paper are the following:

• We develop an IoT algorithm that provides an anonymous function.
• We present a strong mathematical basis to prove the privacy and security functions that protect

the data being exchanged over the internet using a wireless communication system. This method
follows the homomorphism equation via the Identity-based Encryption (IBE).

• We provide an algorithm on computational complexity to evaluate the proposed anonymization
algorithm whether it satisfies the complexity requirements during algorithm execution.

• Conversely, the proposed method has a couple of limitations that introduces some opportunities
for further research in the IoT-based health care system:

• The anonymization algorithms work within a standalone healthcare system and third party. As
many services and providers gradually adopting cloud-based operations, further research are
required to overcome the limitation in our algorithm. This would require an additional function
to communicate with a cloud provider with anonymization as security service.

• Taking of privacy for data anonymization into account, the user should have the ability to choose
his anonymous parameters. However, our method does not offer the option that is reserved for
future work.

The remainder of this paper is organized as follows: related work is briefly summarized in
Section 2, while the proposed algorithm is presented in Section 3. The proposed IBE related to our
algorithm is outlined in Section 4, along with the mathematical basis. The final section concludes
our work.

2. Related Work

Since the Internet of Thing has been emerging in the health care system, personal health records
have become prey for cyber-attackers or hackers. This is a dangerous situation because any data breach
leads to exposure of sensitive information and patients can no longer trust the system nor the medical
staff anymore. Consequently, the patients may take drastic measures such as a denial of any healthcare
service, hiding information, or staying home to avoid seeking medical help [10]. In this section, we
present different solutions that are applied in IoT-based health care to solve the issue of privacy and
security of patient records.

Lightweight solutions (to overcome resources constrain in IoT devices) that support authentication
and authorization have been proposed by Lee et al. in [11], where they develop a method to encrypt
the data using logic operations for the encryption processes. Gong et al. [12] developed a scheme that
includes a homomorphism system enhanced from the DES algorithm with a model system related
to the lightweight scheme. In the same research way, a protocol for IoT in the electronic health is
proposed by Seyed et al. [13] and outlined security features like authentication, key agreement, access
control, and energy-efficient are available.

Data anonymizing with denaturing framework has been developed with the following aspects:
(a) the users have possibility to define rules before the algorithm is deployed, (b) personal data masking
system, (c) analytic system to allow denaturing, deletion inference anonymization and mobility data
privacy function and a wide range of research has been proposed to satisfy these features [14–19].

Furthermore, interesting research by Langheinrich [20,21] has contributed to the field of
privacy-preserving security. The work consists of a system in which a customer or user has some
options to select instead of having negotiations with a computerized procedure in order to have an
adequate agreement. The architecture provides data privacy and ensures that collected data is kept
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confidential by notifying the user what kind of data has been collected. With this acknowledgment,
the user has the ability to decide on the actions to be taken regarding the data. The same author [21]
incorporated a function to preserve the privacy ubiquitously. The architecture is mainly composed by
four elements: (a) the choice and consent provided by machine-readable privacy policies, (b) a notice
mechanism based on a policy announcement, (c) access control supported by the privacy proxies,
(d) resource protection provided by a policy-based on data access.

Kavenesh et al. [22] proposed a framework that models and considers the main privacy concepts
suitable for the healthcare applications in IoT. The proposed compliance scale presents essential
privacy principles that can be considered in the development of novel IoT health applications. The
proposed compliance scale would be significant for policymakers and applications developers to
measure understand and respect the privacy principles of consumers towards novel IoT-based
health applications.

A Privacy Protector framework that protects collected data from the patient has been developed
in the IoT network. This framework consists of sensors that collect the patient’s body data, a
communication service provider to prepare security scheme, a storage system to receive data from
sensors and finally a system of data access control to get access to the user data. The main idea is based
on secret sharing and shares paring for patients’ data privacy [23]. Besides anonymization techniques,
other methods to protect medical data have been presented in previous researches. A Context-Aware
Access Control (CAAC) models have been developed, extending the basic Role-Based Access Control
(RBAC) model where the author develop methods based on the access and privacy control policies to
manage sensitive data and determine whether users’ requests to limit data access permissions based on
the contextual conditions as developed in the recent works [24–26]. Furthermore, Kayes et al. [27,28]
have developed CAAC models including features such as sensitive and streaming data management
which are applied in today’s IoT-based smart spaces. In their works, they considered a wide variety of
contextual conditions, for example, the situational and relationship context, utilizing the process of
inferring implicit knowledge from the currently available context information.

3. Proposed IoT-Based Anonymization Algorithm for Security and Privacy in Health Care

3.1. System Model and Overall Description

This section describes in detail the proposed anonymization algorithm that preserves security
and privacy in IoT-based health care system. Two algorithms compose the whole system and the main
steps are depicted in Algorithm 1. The description of some parameters are given in Table 1 and other
parameters are described throughout the algorithm.

Table 1. Main parameters used in Algorithm 1.

Parameters Description

HSys with P & PKG Health care System with Public & Private Key Generator
Sick Person <Sp>, Physician <Ph> Users <U> in the HSys

<ms, ns> Secret Pair Key of each user
HDS Health Data-Set
HTP Health Third Party
∨ Or: Sp ∨ Ph

First of all, we describe the system model which includes two main parts: the Healthcare System
(HYsy) and HealthThird Party (HTP) as given in Figure 2. The HSys includes the data owner such
as patients and physicians with their databases (DB). Furthermore, the system possesses a security
engine to encrypt the data with the defined parameter. The HTP host the anonymization engine with
the parameters to perform the data anonymization process. The anonymous data is available once all
steps described in the algorithm are executed. In the end, the HTP can return the anonymized data to
the HSys where the corresponding user can then decide when and where to share his data.
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Algorithm 1 is the overall scheme from the step in which the users interact via the HSys using
their sensor or mobile devices to exchange the HDs. Let HSys be the Health care System environment
(e.g., clinic, hospital, remote care . . . ) where the data owners are playing a part in. Further, let be Sick
Person <Sp> and Physician <Ph> be the users in the HSys. The system requires each user participating
to have a secret key pair <ms, ns>.



Sensors 2019, 19, 3146 6 of 14

Algorithm 1: Overall Algorithm (Tripartite: <User, HSys and HTP>)
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Statement 1 denotes that a user that belongs to the healthcare system has a private key pair to be
used for cryptographic functions to secure his data. Within his private keys, the system generates its
random private key too.

During the first operation of the session when the user wants to exchange the data, it is encrypted
by the HSys’ key. The anonymization comes in when the data is sent out of the HSys to the HTP
or collaborating hospital or other health organizations. In this case, the algorithm generates an
anonymization parameter β that is assigned to the encrypted data. The parameter is required for
additional steps and the HTP returns a response message to the HSys that the data has been anonymized
with β. The user with secret pair key is the only one to whom the data can be disclosed as long as he
holds the secret pair keys. At this end of operations, the user system holds his encrypted (Cs) data
with a β-anonym parameter.

3.2. Process of Health Data-Set Anonymization

As long as the data is being exchanged inside of the HSys, the users are confident. However,
when IoT comes in, the data handling or exchange becomes problematic with all attack types over the
internet. The anonymization process is triggered when the user is in the position of sending his data to
the HTP or other collaborating organizations. The negotiation is tripartite: User, HSys and HTP and
final decision is made by the HTP where the β-anonym parameter is generated to the other entities.

Statement 2. Each user U ∈ HSys
Sending HDS
�

Receiveing a β−anonym parameter
to HTP using HSys, the data is encrypted

and anonymized.

Statement 2 indicates that a user belongs to the healthcare systems and can send his data to the
third party. Before that, the user makes sure that his data is encrypted and anonymized.
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The HSys, after getting the data from the user (here: <Sp> or <Ph>), the system encrypts the
data and afterward, transmit the cipher to the designated HTP. The system then analyzes the request
and generates an anonymized dataset. In the beginning, the user systems pre-analyze which data
is designed to be anonymized so that it is not revealed to the rest of the networks. The proposed
method’s details are given in the pseudo-code of Algorithm 2.

3.3. Description of the Algorithms

As the very first step consists of a request of anonymization function, in this case, we consider the
response to the HSys as health data set from the HTP. Therefore, to get back or construct the responses,
heuristic and approximation methods have been utilized for data allocation.

• To boost the allocations number with a no-null response, the heuristic method is designed and
can be observed in Algorithm 2. From step 5, some d-encrypted samples are allocated to the HSys
from its submission to its response. This operation is done until each considered health system (in
a distributed environment such as IoT-based healthcare [29,30]). It is not allowed that in case a
sample is put on the reply, a similar action cannot be computed on the rest of the responses in the
health system. Partial data (samples) is allocated to the HSys, which performs the big data of the
user through the probability of the prediction. The observation of a chosen sample has probably a
low value when it is randomly submitted. The steps 16 to step 18, show such case when it is not
possible for a response to be allocated d samples, therefore the systems ensures that null samples
are allocated. During this process of the operation, the algorithm guarantees that any location
should provide a user data within d size otherwise d–anonymity rules are not satisfied.

• The approximation method can be seen at step 21 where it processed using a minimally sized
submission allocation to the rest if the encrypted sample from the HSys submission. According to
a distributed IoT-based healthcare in [29,30] where more than one health system is interacting,
these samples are removed from other entities in which all system have no samples to send until no
more system can be allocated samples to release. When all steps of the algorithms are completed,
the HTP broadcast a message to each contributing HSys that a sample has been designed to be
public or/and which one is anonymized.

3.4. Algorithm Complexity Computation

The evaluation of the algorithm is done by the so-called time complexity in algorithm execution
procedures. “Time complexity of an algorithm quantifies the amount of time taken by an algorithm
to run as a function of the length of the input.” For instance, in step 1, the health datasets are
reduced considering the result of the intersection tests. This process is computed in O(|HSys|logHSys|)
assessments. For step 6, in every HSys the user data is assigned d answers but, they are no longer
in the session because they are cleaned from all participating entities in the health network system.
Consequently, this necessitates O(|HSys|) phases at the condition of d to be fairly enough the smallest
value. The step 18 shows clearly that the datasets are zeroed due to the lacking of size, the complexity
is O(|HSys|) of the linearity function. The complexity at step 21 is O(log|HSys|) after considering the
assignment of the data during round two in addition to data cleaning. The complexity of the algorithm,
once the maximum steps are computed, is O(log|HSys|). This result is within the allowed standard
complexity during algorithm execution.

According to [31–33], the complexity analysis of an algorithm is determined by the resources
like time and storage which are required to execute the algorithm. Furthermore, most algorithms are
designed to be executed based on the inputs of random length or size. Often, the complexity is defined
as a function of the input or size given a number of fundamental steps (in here: time complexity) with
sometimes the fundamental storage (called space complexity). To this end, notations such “O” (Big O)
and theta notation (Θ) are usually utilized and in this paper, we have used only big-O. For example,
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the logarithmic time {noted O(log(n))} in the binary search operation running, means that there a list is
a proportional number of steps being searched off to the length logarithm.

Algorithm 2: Anonymization Process (α, Ω, and β-anonym parameter)
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4. Algorithm Evaluation Based on Mathematical Concepts

This section describes an evaluation of the proposed algorithm using a mathematical approach
based on an encryption process to prove the correctness in a communication environment. The
evaluation follows Shamir idea in [34] where we incorporate the main parameters used in the IoT-based
healthcare algorithm. The idea is based on the IBE algorithm as it supports anonymity functions for
sensitive information passing through wireless communication.

4.1. Preliminary

The notion of the algorithm based on IBE is able to give the users the ability to utilize their identity
to generate the public key to encrypt the data in addition of an easy approach of public key certificates
management. The infrastructure managing public key is usually used in case of the non-cryptographic
model. This infrastructure is used to legitimate the public key and it is called certificate authority where
it authenticates and distributes to the users their matching certificate of the public key. During IBE
key exchange session, a user can utilize any string to encrypt his data but there exist other encryption
methods which do not require a Public Key Encryption (PKE) infrastructure.

4.2. Generation of Homomorphism Equation via IBE

Fundamentally [35], the IBE method is characteristically a tuple-algorithms denoted as <I-B-E> =

(Set-up, Extract, Encr, Decr) and described as follows:

• Set-up: The responsible of key generation runs Setup to generate a secret parameter a where it
receives an ensemble of parameters (parames) and main key. In this early stage, the parames
comprise a space of message with limitations denoted P together with L as a crypto-message. To
have the main key as a private element, the PKG is involved.
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• Extract: This algorithm is about input parames, including the main key with Id belongs to [0, 1]*
where it receives f as a private key. During this phase, the id and public key are an arbitrary
sequence with f as a private key.

• Enc: Basically, any algorithm with the encryption phase takes some parameter to encrypt and in
this case, they are as follow: The input is <parames, Id, and P0 ∈ P>, the output is a cipher-message
<L0 ∈ L>.

• Dec: In the same way, the decryption is the counter-part algorithm with parameters such as the
input is <parames, L0 ∈ L, the private key d>, where the output is <P0 ∈M>.
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• Secret Key Generation Step: This is the step where the <I-B-E> scheme computes the main keys
such as secret (or private) and its corresponding public key as follow: For ∀ Id, ∃ ΦId = B (δId, Id)
and ΘId = B (δQ, Id) as main secret and public keys respectively. Here B is a cryptographic hash
function to compute the keys.

• Cipher Process Step: The cipher message is the result of the secret key with the encryption process
over the message itself from the sender. This operation is done as follow: Let σ be a sample data ∈
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4.3. Theoretical Proof with Mathematical Analysis 

2 and Id the user identity, Ψ=EncId (σ, µ) = (σ·
_
u (µId, Id), ΘId), where µ ∈ {0, 1, . . . , q − 1} is a

secret parameter which is arbitrary selected consistently. The cipher from this encryption process
generates a result denoted Ψ.

• Decipher Process Step: To complete the <I-B-E> full cycle algorithm, the system must provide a
function to retrieve the original message from the sender. This operation is called decryption. Let
Id be the user identity and Ψ the cipher such as Ψ = {Ψ′, Ψ′′ }, the decryption process is a function
of ρ (plaintext) and Ψ (cipher):

ρΨ =
Ψ′

_
u(ΦId, Ψ′′)

(1)

The Equation (1), leads to the homomorphism Equation (2), which is needed for the anonymization
algorithm in the further steps. The homomorphism equation satisfies the following:

EncId = (σ′ ⊗ σ′′ ,µ′ ⊕ µ′′ )
= EncId(σ

′,µ′)EncId(σ′′ ⊗ µ′′ )
(2)

4.3. Theoretical Proof with Mathematical Analysis

The theoretical proof presents the mathematical concepts, which are applied in order to generate
the anonymization function used in the IoT-based healthcare algorithm.
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Therefore, we recall the main parameters involved in this process such as Users such as Sp and Ph
with IdSp and IdPh, which are the ids of the users respectively in the HSys. We assume that there is
no exploitation of the user‘s health data between the system communication and HTP as they may
collaborate to expose the data.

Considering HSys, there are η users, the total of users that are playing part in the communication
system with <N> the total number of all corresponding Ids. Given that a single identification is
assigned to every user has a unique identity a (unique identity usually is such as ID-NUMBER), we
define a network <V> with all identities and users such <a> user has only and only one identity <1>

with the condition that two users in <V(a,b)> cannot have matching identity defined as follows:

∀(a, b) ∈ {Users}¬∃V(a,b) = V(1)

V =
{
Users(a,b,...η) ∪ Ids(1,2,...,N)

}
While submitting the data, the system performs a comparison task. Let the user <a> in V (V(a))

compares his identity <1>, in n-th data transfer rounds that correspond to the initial process, the
system performs the comparison, if the condition is satisfied, the <a> user computes and send:

χ1,a = EncIdSp+IdPh
(ζa, V1,a) (3)

This is the operation in Equation (3) where the system sends an encrypted χ dataset where ζa

is a sample user health dataset taken from the HDS and V1,a is a pair of user and his identity with
an arbitrary selection process from the health care system configuration. The condition V(a) , 1 is
checked and if it is satisfied, the user system computes and submit the following:

χ1,a = EncIdSp+IdPh
(1, V1,a) (4)

Equation (4) is a particular case where we specify the user identity <1> which gives to the system
a possibility to compute all submission rounds of his data set:

χ1 =
N∏

a=1

χ1,a (5)

Equation (5) represents a computation of all datasets until the last round submission. The HSys
then forward all t χ1 to the HTP. The system in the third party will compute the following expression
and send back it the HSys for further steps:

ζ̂1 = χTIdSp
(χ1) (6)

Equation (6) shows us that the system can identify the ID of the user who is, in this case, the
patient and for now, the anonymization process is getting started. Moreover, it is remarkable that {T}
value includes the expression to specify that this is not a replicated data as described in Algorithm 2.

Suppose that: χ1 =
{
χ′1,χ′′ 1

}
in this assumption, the health care system in the IoT configuration

will compute the following:
ζ̃ = χTIdSp

(ζ̂,χ1
′′ ) (7)

The result in Equation (7) shows that partial data ζ̃ is encrypted with the owner data Id; in this
case, it is <Sp>. This expression leads us on the following theorem where all involved users with their
data are assigned a random number.

Theorem 1. The correctness of the anonymization function in the algorithm is true; that is, assuming that all
involved parties follow the rule, then (ζ̃1, ζ̃2, . . . , ζ̃n) is a permutation of (ζ1, ζ2, . . . , ζn)
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Proof. The demonstration of the provability clarify it as follows:

ζ̃1 = ζTIdSp
(ζ̂,χ1

′′ ) =
ζ̂1

û(ΦIdSp ,χ1′′ )
=

χTIdDr
(χ1)

û
(
TIDSp ,χ1′′

) =
χ1

û
(
TIdSp ,χ1′′

)
û
(
TIdPh

,χ1′′
) (8)

In Equation (8), the system takes into consideration of all involved users (Sp and Ph) as we stated
that the anonymization rule must be applied on each entity-playing role in the IoT system.

The last computation is based on the condition that user <a> and its id <1> satisfies the condition
such as Va = 1 for a(1) as its value, this will transform the Equation (8) into the following global
Equation (9) and final result:

ζ̂1 = χ1
û(TIdSp

,χ1
′′ )û(TIdPh

,χ1
′′ )

=
∏N

a=1 χa,1

û
(
TIdSp

,χ1
′′

)
û
(
TIdPh

,χ1
′′
)

=
EncIdSp+IdPh(ζa(1),V1,a)

∏
a,a(1)EncIdSp+IdPh

(1,V1,a)

û
(
TIdSp

,χ1
′′

)
û
(
TIdPh

,χ1
′′
) = ζa(1)

(9)

With the permutation, operations of a(1) we deduct that the permutation function is applied on
(1, 2 . . . N), the result is then a permutation of the following expression: (ζ1, ζ2, . . . , ζn), which proves
Theorem 1 of anonymization algorithm.

5. Conclusions

With the growth of the IoT-based healthcare system, extensive studies offering applicable solutions
in the field have been developed and others are still going on. Considering such an environment,
an immense volume of data is transmitted over the public network among the patients, physicians,
nurses, and relevant health organizations. Therefore, it is highly important to assure the safety of the
data owner to avoid an unwanted situation. This paper proposed the development of a theoretical
approach that ensures the security and privacy of sensitive data for the considered IoT environment.

The proposed algorithm provided required security features such as privacy or confidentially for
the user’s data that is transmitted within the health care network. When the user sends his information
to be used by the third party via a given health network, the encryption process is firstly executed
using a key from the key pair and the system request a response to the third party in which the
anonymization function generates a value to anonymize the encrypted data set.

In the work, we showed that our proposed scheme guarantees the anonymity function where the
algorithm computes the conditions and then executes the anonymization procedure on the healthcare
data. In addition, we demonstrated that the algorithm satisfies the computational complexity
requirements of the execution of all steps. Lastly, a proof based on a mathematical analysis has
been developed to demonstrate that the proposed algorithm ensures the veracity and can be a real
application to secure the IoT technologies for the health care network using wireless communications.
For future work, we intend to implement the proposed approach in a practical environment (using
healthcare sensors). The experiment results can, therefore, be used for evaluation and comparison
with other existing methods.
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