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Abstract: Dynamic vehicle detection is of great significance for the safety of autonomous vehicles
and the formulation of subsequent driving strategies. A pose-estimation algorithm, namely, the pose
estimation with convex-hull model (PE-CHM), is proposed in this paper, and introduced in the
dynamic vehicle detection system. In PE-CHM, the convex hull of the object’s point-clouds is first
extracted and the most fitted bounding box is determined by a multifactor objective function. Next,
the center position of the target is inferred according to the location and direction of the target.
With the obtained bounding box and the position inference, the pose of the target is determined,
which reduces the interference of the missing contour on pose estimation. Finally, three experiments
were performed to validate the performance of the proposed PE-CHM method. Compared with
several typical model-based methods, PE-CHM can implement dynamic vehicle detection faster,
which reduces the amount of calculation on the basis of ensuring detection efficiency.

Keywords: autonomous vehicle; environmental perception; Lidar; dynamic vehicle detection

1. Introduction

There are generally static and moving obstacles in traffic environments. For autonomous
vehicles in road scenario, since moving objects have their own movement state and motion direction,
their motion randomness affects the behavior decision of an autonomous vehicle, which poses a greater
threat to traffic safety. Therefore, the detection of moving vehicles is an important task [1-3], and is
considered in this work.

For vehicle detection, camera and Lidar are commonly used sensors. The camera has the closet
structure to that of the human eye, and can reflect features such as the color, texture, and edges of
the target [4-6]. A dynamic object detection method in monitoring scenario with fixed cameras has
been proposed [7]. The method models each pixel as mixture of Gaussians and can deal with slow
lighting changes and multimodal distributions caused by shadows, specularities, swaying branches
and other troublesome features of the real world. But this kind of method is not suitable to detect the
moving objects for the mobile platform. In [8], a front-vehicle detection with oriented fast and rotated
brief (ORB) matching method and spatial constraints was proposed, which had a good performance
in both vehicle detection efficiency and effectiveness. However, it is difficult to obtain the accurate
distance and contour size of the target with a monocular camera. The distance information is of great
significance in the formulation of driving strategies for autonomous vehicles, which can easily be
obtained with a Lidar sensor.

There are many useful methods to detect vehicles with Lidar [9]. Among these detection methods,
the training-based and model-based methods are two common vehicle detection methods [10,11].
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1.1. Training-Based Method

The training-based method usually extracts features from the objects with point-clouds data and
employs classifiers to detect both static and dynamic vehicles. In [12], an adaptive mean shift was
employed to segment the point-clouds. From the segments, five object attributes, area, elongatedness,
planarity, vertical position, and range, were utilized to classify objects into vehicles and nonvehicles
with a support vector machine (SVM). In [13], a new approach for object classification was proposed.
A convolutional neural network was employed to preliminarily classify the objects, which were refined
with contextual features considering possible expected scene topologies. A dataset with 1485 objects
was applied to test the method, and the F-score average reached 89%. In [14], three descriptors
combined with an SVM were utilized for vehicle classification. The three features were the length
and width of the approximated 2D bounding box derived from the convex hull, the four radius
values of the 3D spheres, the radius difference between the frontal and the back sphere pairs, and the
difference between the concave side profile hull of the candidate vehicle and the prototype shape.
The average F-score reached 86%. In [15], multiple sensors were utilized to detect and track moving
objects. Lidar are applied to detect the dynamic objects with cells change and determine the regions
of interest (ROI). The Histogram of Oriented Gradient (HOG) descriptor from visual images as well
as discrete Adaboost is employed to classify the objects. With the fused information, the detection
in highway scenario reached 97.8%. In [16], a real-time 3D vehicle detection method was proposed.
A pre-Rol-pooling convolution technique and pose-sensitive feature map were utilized to improve
computation efficiency and detection accuracy. The method could complete detection within 0.09 s.
In [17], three features, including the 2D distance of the cluster, total number of points and the direction
of the clustered points” distribution, are utilized to classify the vehicle and pedestrian combined with
the backpropagation artificial neural network (BP-ANN). The detection and tracking of the proposed
roadside Lidar data processing procedure are above 95%.

In general, the training-based method has the ability to achieve good performance in vehicle
detection. However, the method requires large amounts of data for model training, while complex
and variable scenarios could hardly afford the adequate training data. At the same time, the training
process usually costs a lot of computing resources. These constitute the main limitations of the
training-based method.

1.2. Model-Based Method

In [18], an object-based hierarchical two-level model is proposed for the joint probabilistic
extraction of vehicles with aerial Lidar point-clouds that are relatively dense compared with common
vehicle Lidar, such as Velodyne HDL-64E. A dataset with 1009 vehicles was applied in the experiment,
97% (F-score) of which could be detected with the proposed method. In [19], a new detection method of
line segments in scanning laser-range measurements was proposed that could be especially applied to
vehicle detection. Feature extraction could be summed up in the detection of triangles in the cumulative
function and property estimation. A model-based joint detection and tracking method was proposed
in [20], which is a track-before-detect method. The method improved estimation-accuracy performance,
robustness to false alarms, and track continuity based on a bounding-box model. In [21], the L-shape
model was proposed for vehicle detection and tracking, which can overcome the appearance change
problem caused by Lidar. However, precise corner point position and heading angle extraction are
required for the best performance. The reference [11] also used the minimum rectangle area with
L-shape cloud fitting for box-fitting, which detect and track the objects in a close area.

In [22], a likelihood-field-based vehicle measurement model as well as the pose estimation
with modified scaling series (PE-MSS) algorithm were proposed to detect the dynamic vehicles.
Motivated by the work in [22], we used the information obtained from the point set registration
with the process of pose estimation and the proposed pose estimation based on coherent point drift
(PE-CPD) algorithm [10],which did not bring an additional computation burden to the algorithm
and improved detection efficiency. Although the detection method was proven to have the ability to
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complete the detection of a scenario that contained a single vehicle within 100 ms under the MATLAB
platform, the model-fitting process with likelihood-field-based model still required a large amount of
computation and consumed many computing resources.

The main objective of this work was to propose a dynamic vehicle detection system with
Lidar point-clouds that could quickly and accurately detect dynamic vehicles in the scenarios,
thereby improving the ability for autonomous vehicles to sense environmental hazards. In this
work, our contributions mainly focus on the proposed vehicle-pose estimation algorithm based on
a point-cloud convex-hull model and position inference, and estimation results were introduced
into the process of dynamic vehicle detection. Compared with the existing methods, the proposed
pose-estimation method requires low computation and is robust to the environment, which reduces
the amount of computation while maintaining good detection efficiency.

The remainder of the paper is organized as follows. In Section 2, the process of pose estimation
with convex-hull model (PE-CHM) is described in detail. Based on PE-CHM, the dynamic vehicle
detection system is introduced in Section 3. Experiments with several comparative methods were
implemented and are analyzed in Section 4. Finally, concluding remarks are shown in Section 5.

2. Pose Estimation with CHM

Pose estimation of the target can be utilized for target detection [10,22]. The target pose in this
work is denoted by (Cx,Cy,H), in which (Cy, Cy) is the center position of the target in bird-view
projection, and 6 is the yaw angle. The process of the proposed PE-CHM method mainly includes two
processes, convex-hull model fitting and position inference, which are detailed below.

2.1. Convex-Hull Model Fitting

Since most of the Lidar point-clouds come from the object contour, a point-cloud convex-hull
model with a multifactor objective function is proposed to fit the point-cloud set. The model-fitting
results of two vehicles are shown in Figure 1. The 3D point-clouds are projected on the x-y plane
regardless of the height dimension. The detailed modeling process is shown in Algorithm 1.
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Figure 1. Convex-hull model-fitting results with multifactor objective function. (a,c) Original
point-clouds of two vehicles. (b,d) Corresponding fitted bounding box with the convex-hull model.
Blue lines show the convex hull of the point-cloud set.

The input of Algorithm 1 includes the point-clouds of object P and its approximate direction
vector Dy that is obtained by the positions of the associated objects. First, the convex hull of the
point-clouds set is determined [23]. The selected K points surround all the point-clouds in set P.
As shown in Figure 2a, the two adjacent points p; = (x;, ;) and p;11 = (Xi41,¥iv1),i =1,...,m—1
in set K are sequentially selected to determine the equation of line 1 with slope k| and intercept b,
in which m is the number of points in K. The calculation process is shown in Equation (1).
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Algorithm 1 Convex-hull model (CHM) fitting.

Input: P = (p1,p2, ..., pn)T, Dy;
1: K = ConvexHull(Py, Py);
2. fori=1,..,m—1do
3: (ki b}) = ParameterofLine(p;, pi+1);
4; D' = DistancetoLine(K, ka, b’l) ;
5: pfnax = {P]|d] = max(Di)};
6: b, = ParameterofLine(pl,,, k! );
7: X; = ProjectiontoLine(k}, b} );

8: p;max = {pj|xpj = max(X;)}; p;min = {pj|xpj = min(X;',)};

9: bl = ParameterofLine( p;mm, —i) ;b = ParameterofLine(p;mx, —kl—,l) ;
0 R = [k, b b b b
11: A(i) = AreaofBoundingBox (R (i));
122 D(i) = SumofMinDistancetoEdges(K, R(i));
13:  M(i) = MaxofMinDistancetoEdges(K, R (i));
14 ©(i) = SelectYawAngleDif(Dy, ki );
15: end for
16: (Roptimal, 0) = SelectOptimalParameter(R, A, D, M, ®);
17: (Xrect, Yrect) = IntersectionofLine(Ryptimat );
Output: (Xrect, Yrect, 0);
tnez (k1 ) tne? (1 10) e (1,5)
tinel (kf, ) line1 (kf, b%) T tinel (kS b})
P
(a) (b) (9 (d)

Figure 2. The determination process of the bounding box. (a—d) indicate the determination process of
line 1 to line 4, respectively. The dots denote the point-clouds. The polygon represented by the blue
lines denote the convex hull of this set of point-clouds.

Next, point p,,. = (xiy0x, Yinay) in K with the farthest distance from line 1 is selected. According to
slope ki and the coordinates of pay, intercept bé of line 2 is calculated, which is shown in Figure 2b.

bl2 = y;‘nax - x;‘naxkil' (2)
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Subsequently, all points in set K are projected to line 1, and the x value of each projected point is
obtained, which is represented as X;,.

_ Ke+ KKy —biky
(ki) +1

where K, and K, represent the x values and y values of the points in K. The points with

the minimum and maximum projected x values ppmax = (x ;mux,ypmax) xpmax = max(Xl) and

®)

ppmm = (x ;mm,ypmm),xpmm mm(X;) are selected to confirm the other two edges of the box

with slope —ki,-, which are shown in Figure 2c,d, respectively. The parameters are calculated
1
with Equation (4).

i 1 . 1
by = y;min + ka;gminf ypmax + o= kl pmax 4
1

All parameters of the four edges, including k! and bi-b}, are recorded in R. The area of the box
determined by the four edges is recorded in .A. The sum value and maximum value of minimum distance
of each point in K from the edges of the box were calculated and recorded in D and M, respectively.

When the object in time step k was associated with the object at time step k — 1, the approximate
direction vector D, can be obtained with the position of the object at these two time steps. The geometric

center of the object at time step k — 1 and k is denoted by (X1, ’;’1) and (ck, k) respectively. Dy is
calculated with Equation (5).
D, = (K — k= 1,(:5 - c§_1). (5)

If the object is not associated with other objects in adjacent scan frames, the vector is set to be
empty. Vector D, and slopes of bounding-box edges k! and —:- are utilized to determine the object’s

approx1mate pose. The angles between vector Dy and the two straight lines whose slopes are ki
and —k—, are calculated, respectively, and the smaller angle in Af; and Af, is stored in ®. The angle
difference is calculated with Equation (6).
ki — kp,

+ k- “kp,

1+kll~kDy

NGy = atan( -
ki —kp,

), A8, = atan( ) (6)

where kp, is the slope of vector D,,.

Then, points p;;1 and p;,;, are utilized in the next for-loop. After all the points in set K have
been applied to construct the bounding box, an objective function is proposed to select the optimal
parameters. Objective function F is show below.

3 fiomin(f)

where w; denotes the weights of each factor, 2 w; = 1. f; denotes one of the four impact factors.

Set D and set M represent the sum and max1m111rn value of the minimum distance of the points in
set K from the bounding box, respectively. Set A stores the area value of each bounding box. Set ©
stores the angle between the direction vector and the yaw angle of each bounding box. In order to
comprehensively consider the influence of the factors of different measurement spaces, the maximum
and minimum values of the set are utilized to normalize the measurements. The parameters of the
bounding box with the smallest F value are selected as the optimal parameters, and the corresponding
bounding box is defined as the fittest box.
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2.2. Position Inference

The convex-hull model in the last section can obtain the yaw angle of the target. To obtain
complete pose information, the position of the target needs to be determined. From [22], the center
of the bounding box with a minimum area is utilized as the initial center position. Then, the center
position is iteratively calculated by model fitting. The reason that the center of the bounding box is not
taken as the position of the target is that the obtained center position is inaccurate, as the contour of
target is missing. As shown in Figure 1c, the vehicle is far from the Lidar and only one short side can be
seen. It is obvious that the center of the bounding box in Figure 1d is not the actual center position of
the vehicle, and there is a large deviation between them. In this section, the position-inference process
is applied to obtain its center position without iteration.

Position inference uses a fixed model size to determine the center of the target based on its position
relative to Lidar. Figure 3 shows the rectangular model of the vehicle. O.x.y. is the Lidar coordinate
system. y, axis points forward and x. points to the right side of Lidar. O,x,Y, is the coordinate system
of the target vehicle with y, points to the moving direction of target vehicle and x, points to its right
side. Angle § between x, and x, is defined as the yaw angle of the target vehicle.

Yo

o

Ye o

>
Le

Oe

Figure 3. Rectangular model of the vehicle.

The obtained convex-hull model was employed to determine the visible edges of the targets.
As shown in Figure 3, the vectors that point from the center of model to the center of each side
constitute a normal vector set, and the vectors that point from the center of each side to the origin of
the Lidar constitute the orientation vector set. For each edge, the angle between the orientation vector
and normal vector show whether the edge can be seen under the perspective of the Lidar [22]. If the
angle is greater than %, the edge is invisible; otherwise, the edge is visible.

Before inference, the geometrical center of the point-clouds is momentarily employed. The normal
vector and orientation vector of each edge in the bounding box are obtained, by which the visible
edges are determined. Generally, there are two edges visible in the scenario except when the object is
directly in front of the Lidar, so that the angle between the normal vector and the orientation vector is
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0, which is a small probability event and almost nonexistent in practice. It is assumed that there are
theoretically always two visible edges, and the intersection point is denoted by pjys..

Figure 4 shows an example of position inference. Lines p;p; and p,p3 are the two visible edges.
The angle 6 is its yaw angle. The angles between v, and lines pj p and pyp3 are calculated, respectively.
As can be seen from the Figure 4, the edge with the larger angle is the short edge, and the edge with
the smaller angle is the long edge. The size of the model is assumed to be constant. The length and
width of the model are set to L and W. Angle 6, is determined depending on the relationship between
the visible edge and y, with Equation (8).

o, — | atan(P), if (p2p1,yo) < (p2p3,yo) g
b = L : : ®)
atan( ), otherwise

/

e ye

X
D2 (pitsc)

Figure 4. Center-coordinate determination with position inference. Two blue lines, visible edges.
Xy and Yy, two axes of object’s local coordinate system. x, and y,, two axes of global Lidar coordinate
system. x, and v/, axes with pj;. as the origin and parallel to x, and y., respectively.

After calculating intersection pj;s. with the line equations of the two visible edges and angle 6y,
the coordinates of the model center can be obtained with Equations (9) and (10).

L2 + W2 N

Cx = Xpypee T —5—— -cos((pap1, xp) — 6p) )
L2+w2

Cy = Ypise T 5 - sin((pap1, xp) — 6p) (10)

where (xp,_,Yp,.. ) is the coordinate of intersection point pjss, (p2p1, x,) denotes the angle between
vector ppp1 and x,,.

2.3. Pose Estimation

The pose-estimation process uses the convex-hull model and position inference to determine the
pose of target. The detailed description of pose estimation is described in Algorithm 2.
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The inputs of Algorithm 2 include the point-cloud coordinates of the object and approximate
direct vector D,. The output is the center position and yaw angle of the target.

First, CHM fitting in Algorithm 1 was implemented to select the optimal bounding box. The center
of the box can be obtained, and the theoretical visible edges were determined with the normal vector
and orientation vector of the model. Then, the intersection point of the two visible edges is calculated.
With the fixed size of the vehicle rectangular model and the obtained yaw angle, the center position of
the target is finally infered.

Algorithm 2 Pose estimation with convex-hull model (PE-CHM).

Input: P = (py, 2, Pn)", Dy;
1 (Xpect, Yrect, 0) = CHM_Fitting(P, Dy );
2: ¢ = mean(Xyect), cy = mean (Yrect);
3: N™ = NormalVector (Xyect, Yrect, c?,c;”) ;
4: O™ = OrientationVector (Xrect, Yrect );
5. E, = FindVisibleEdge(N™,O™);
6: pitsc = FindIntersect(E,);

7: (cx, cy) = PositionInference(6, Dy, pitsc);

Output: (cx, ¢y, 0);

3. Dynamic Vehicle Detection

In order to detect dynamic vehicles fast and accurately, a detection system with PE-CHM is
proposed in this section. The framework of the detection process is shown in Figure 5.

Point Clouds Clustering

\J

Ground Filtering

\4

Preprocessing

|| Dynamic Objects . _ . |
Detection Map Difference [«— Virtual Scan Mapping
Determination of ROI
| Object Pose _ | Candidate Vehicles _| Dynamic Vehicle _ Dynamic
Estimation g Generation ~|__ Confirmation " Vehicles
Detection Process

Figure 5. Framework of the dynamic vehicle detection based on pose estimation with convex-hull
model (PE-CHM).

The detection system mainly included three parts. First, point-clouds are preprocessed to reduce
the amount of data, and clustered based on the 3D point-cloud characteristics. Second, a virtual-scan
map is constructed to determine the region of interest, and the dynamic objects are extracted from
the clustering results. At this stage, the 3D coordinates of the point-clouds are projected onto the
2D x-y plane for subsequent processing. Third, the poses of the extracted objects are estimated,
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combined with motion consistency, and the object is judged as a vehicle or nonvehicle. The detailed
process is shown below.

3.1. Preprocessing

The number of point-clouds received by the Lidar is usually large, and a large percentage
of the point-clouds come from the ground. In order to reduce the number of point-clouds to be
processed and eliminate the interference of the measured outliers, the original point-clouds need to be
preprocessed before detection [24]. The preprocessing process in this paper includes ground filtering
and point-cloud clustering.

Many ground-filtering methods of point-clouds have been proposed [25-28]. Generally, road
surfaces are relatively flat. Considering operation time, the extended Kalman filter (EKF)-based
ground-filtering algorithm in [28] is utilized. Subsequently, the radially bounded nearest neighbor
(RBNN) algorithm [29] is applied to cluster point-clouds above the ground. Among clustering results,
clusters with few point-clouds are eliminated.

3.2. ROI Determination

Dynamic objects are detected from the preprocessing results, which constitute the ROI and avoid
the complexity of detecting vehicles in the entire point clouds. The ROI extraction process includes
virtual-scan mapping, virtual-scan difference, and dynamic-object detection.

3.2.1. Virtual-Scan Mapping

After preprocessing, the remained point-clouds above the ground are projected to the virtual-scan
map for dynamic-object detection. The virtual-scan map is a polar grid representation of the
point-clouds [10]. As shown in Figure 6, the polar grid map is divided into grids with the same
center angles and radial lengths. The state of each grid is determined by the number and position
of point-clouds. The grid without point-clouds projected is defined as free, as shown by the green
grids in Figure 6. In each sector divided by the same center angle, the grid closest to the Lidar in the
place where the object is located is defined as the occupied state, which are shown with the red color.
The states of the grids between the occupied grid and the farthest grid where the object is located are
defined as the occluded states, which are shown in yellow.

Figure 6. Virtual-scan mapping. (left) Point-clouds; (right), corresponding virtual scan. States of grids
in green, red, and yellow are free, occupied, and occluded, respectively.

3.2.2. Virtual-Scan Difference

Since the origin of the point-cloud coordinates is the Lidar location, the coordinate systems of the
two consecutive point-clouds should be unified before calculating the virtual-scan difference when the
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Lidar is on a mobile platform. The transformation process with the information received by GPS-ISN
is as follows.

RE 170 [ g1 g1
=19 1 ] ' l 0 1 1 (1)
RE = R(7*) * R(¢*) * R(¢"), (12)

where k — 1 and k represent two consecutive comments. R and ¢ denote the rotation matrix and
translation vector. 7, ¢, and ¢ denote roll angle, pitch angle, and yaw angle of the ego vehicle,
respectively. With the transformation matrix T¢, the coordinates of the point-clouds in time step k — 1
are transformed into the coordinate system in time step k. The transformed coordinates of P;_; are
represented as P;_;.

iy =Te Py (13)

After converting the point-cloud coordinates in time step k — 1 to the coordinate system in time
step k, virtual-scan mapping is performed on the two frames of the point-clouds, respectively, and the
map difference is implemented.

3.2.3. Dynamic-Object Detection

The difference of two consecutive virtual scans is applied to detect the dynamic objects
in the scenario [15]. Dynamic objects are detected according to the change of the grid state.
Adaptive threshold Ty, of the changed grids for object o is employed in detection [10].

W
o= | o | 9

in which W denotes the width of the vehicle. A, represents the angular resolution of the virtual scan.
||-|| is the Euclidean distance between object and Lidar. [-] is the rounding-up operation. According to
the virtual-scan difference and adaptive detection threshold, dynamic objects in the scenario are
detected, which become the ROI for subsequent dynamic vehicle detection.

3.3. Dynamic Vehicle Detection

In this section, the dynamic vehicle detection system is detailed. The flowchart of the first stage in
the detection process is shown in Figure 7a.

As shown in Figure 7a, after obtaining the dynamic objects in Section 3.2.3 at time step k, the pose
of the object is determined by PE-CHM with D, = @, and the obtained yaw angle 6 contains two
angles that differ by 90 degrees. Subsequently, the point-clouds at time step k — 1 are transformed into
the coordinate system at time step k. Along the direction of yaw angle, velocity is evenly sampled in
the range of [0}, v3] to find the associated object at time step k — 1. When the state of the objects at
time step k and k — 1 satisfy motion theory [22], they are associated as the same object. Motion theory
determines whether objects are associated by inspecting the grid change between the objects’ positions
in the virtual scan at consecutive time steps. Approximate direction vector Dy, is obtained by the
associated objects. With the direct vector, the poses of the associated objects at time step k — 1 and k
are determined with PE-CHM. Motion consistency [22] is then applied to judge the dynamic objects.
Motion consistency means that changes of velocity and yaw angle should be small. After the judgment
of motion consistency, potential vehicles are detected.

Subsequently, as can be seen in Figure 7b, at time step k 4 1, the point-cloud coordinates of time
step k are transformed into the coordinate system at time step k + 1. The pose of the potential vehicles
is applied to select their associated objects. The poses are predicted according to the obtained D,,
yaw angle, and velocity. Objects near the predicted poses are applied to get new approximate direct
vector Dy, and are modeled with PE-CHM. If the associated objects at time step k — 1 to k + 1 satisfy
motion consistency, the object at time step k + 1 is first detected as a dynamic vehicle.
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At time step k 4 2, for the detected dynamic vehicle, a similar process to Figure 7b is employed to
update the state of the detected vehicle. If motion consistency is not satisfied, the vehicle is eliminated.

| Dynamic objects | | Potential dynamic vehicle |
) PEfCHM ) | Coordinate transformation |
without motion information *

v —
| Coordinate transformation | | Pose prfdlctlon |
v

Data association |

| Data association | |
Motion ievidence ¢

| Motion information D y | | Motion information Dy |

7 v

PE-CHM PE-CHM
on both associated objects on the associated object
Motion¢ consistency Moti0n¢ consistency
Potential dynamic vehicle Dynamic vehicle |
(a) (b)

Figure 7. Flowchart of dynamic vehicle detection. (a) Potential dynamic vehicle detection. (b) Dynamic
vehicle determination.

3.4. Computational Complexity

The purpose of this work was to develop a dynamic vehicle detection system that has the ability to
detect targets quickly and accurately. In this section, the complexity of the detection process is analyzed
compared with the method based on the likelihood-field-based model, which has been proven to
perform well in dynamic vehicle detection [10]. Considering that the framework of the detection
process in [10] and the process in this work are similar, mainly the complexity of the pose-estimation
process is analyzed in this section.

By analyzing the process of Algorithm 2 and the process in [10], the largest computational
complexity is concentrated on the solution of the point-cloud convex hull [23]. Therefore, in terms
of complexity, their operation complexity is in the same order. Even so, the proposed method has
a large advantage in reducing computing resources. Specifically, in Algorithms 1 and 2, the main
operation focuses on the for loop to find the best bounding box. It is assumed that the convex-hull
process obtains m points that can surround the objects, whose complexity is O(m), in most cases
m < n, and only when the target point-clouds returned from a single layer, m = n. In PE-CPD,
meanwhile, calculation mainly focuses on the measurement model-fitting process. The integral value
of each point needs to be calculated. Though the erf function was utilized instead of the integral
operation for reducing computational complexity, the computational complexity of this process is still
O(n). At the same time, the introduction of the CPD process also brought computation complexity
of O(n). Therefore, in addition to O(nlogn) that is needed by the convex hull, PE-CHM additionally
brings computational complexity of O(m) 4+ O(1), while PE-CPD brings computational complexity of
20(n) + O(1). Therefore, PE-CHM brings a reduction in the amount of calculation.

4. Experiments and Results

In this paper, three experiments were performed to validate the performance of the proposed
pose-estimation algorithm and dynamic vehicle detection system. The KITTI dataset [30] was employed
in the experiments. In the KITTI dataset, the autonomous driving platform was equipped with
two high-resolution color cameras, two grayscale video cameras, a Velodyne HDL-64E, and a GPS
localization system. The provided label set of the Velodyne point-clouds was located within the view
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of the optical sensors, that is, in front of the ego vehicle. Therefore, only the point-clouds in front of
the ego vehicle were processed in this paper. Considering that the provided labels are incomplete,
the labels of each frame of the point-clouds were manually corrected. The angular resolution in virtual
scan map is set 1 degree. The velocity range of [0}, v5] when associating objects is set to [—35,35] (m/s).
The sizes of vehicle model are setto L = 4.8 mand W = 1.8 m.

4.1. Pose-Estimation Accuracy

In KITTI, four datasets, 0014, 0018, 0056, and 0057, were utilized to verify pose-estimation accuracy.
These four datasets were collected from the city scenarios and contained many vehicles. The optical
images of these datasets are shown in Figure 8. In addition to separately counting the estimation
accuracy for each dataset, the average results of the deviations of the four datasets and the pose
estimation of targets with sparse points, which means that the objects returned less than 50 points,
were calculated at the same time. PE-MSS [22], PE-CPD [27], and the model-fitting method in [14]
were implemented as the comparative experiments. The estimated poses of vehicles in the range of
80 m are utilized to perform the statistics. The provided labels in KITTI were employed to obtain the
statistical deviations in position and angle, respectively, which are shown in Figure 9. The position
deviation represents the distance between the midpoint of the ground truth and the midpoint of the
fitting model. The angle deviation is the difference between the angle of ground truth and the angle of
the estimated pose.

Figure 8. The optical images of KITTI datasets. (a—d) represent the scenarios in 0014, 0018, 0056 and

0057 datasets, respectively.

Figure 9a,b show statistical errors in position estimation. Among the four pose-estimation
methods, the convex-hull model-fitting method in [14] had a large fluctuation on estimation accuracy,
that is, it had well-estimated results in some scenarios (such as the 0057 dataset), but it performed
poorly in other scenarios, such as the 0014 dataset and estimation with sparse point-clouds. The reason
for this result is that the criteria for model fitting is single and cannot be adapted to the model fitting
requirements for various scenarios. The center of the model is determined by the center of bounding
box. For targets with sparse point-clouds and a missing contour, deviation between the position of
the bounding box and the real target’s center is large. The proposed PE-CHM solves this problem
by inferring the intersection with the two visible edges and using the fixed model size to determine
the target’s position. Meanwhile, the proposed model-fitting criteria that compose four factors make
the model adapt to the environment. The pose estimation of the three methods with fixed model size,
namely, PE-CPD, PE-MSS, and PE-CHM, are basically stable for each dataset, showing robustness
to the environment. The PE-CHM and PE-CPD algorithms had similar performance, and both had
better estimation accuracy than PE-MSS, which indicates that, by introducing motion information,
the target’s pose-estimation accuracy is improved, especially for a target with incomplete contour.
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Figure 9¢,d show the deviation results of the yaw angles. The disadvantages of the convex-hull
model-fitting method using a single criterion for pose estimation are more obvious. Deviations between
estimation and ground truth are large and estimations are unstable. The PE-MSS method performed
badly in some situations, such as in the 0057 dataset and in the case with sparse point-clouds.
The reason is that estimation with PE-MSS easily falls into local optimal estimation when vehicles are
distant with sparse point-clouds and incomplete contours. The performances of the PE-CPD method
and the proposed PE-CHM method were similar. The mean of the angular deviation of PE-CHM was
0.0079 rad larger than PE-CPD, and 0.0801 and 0.1033 rad smaller than PE-MSS and convex-hull model
fitting, respectively.
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Figure 9. Statistical results of pose-estimation deviations. (a,b) Mean and standard deviation of position
errors, respectively. (c,d) Mean and standard deviation of yaw angle errors, respectively.

Figure 10 shows an example of the pose-estimation results of two vehicles with only one visible
short edge. Since PE-CPD used random sampling to determine the best fitted model, their results of
100 pose estimations varied over a small interval. PE-CHM and the convex-hull model use the objective
function to determine the best bounding box without random sampling, therefore they only obtain
one estimated pose. It is shown in Figure 10c that using the center of the bounding box as the pose of
the objects brings a big deviation between estimated position and actual position. With the multifactor
objective function in the convex-hull model and the position-inference process, the proposed PE-CHM
had accurate estimation.
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Figure 10. Pose estimation of two vehicles in the scenario. (a) Ground truth of their poses.
(b—d) Estimated poses with the proposed pose estimation based on coherent point drift (PE-CPD),
convex-hull model, and the proposed PE-CHM algorithm, respectively. Experiments were implemented
one hundred times.

4.2. Dynamic Vehicle Detection

In this section, two datasets in KITTI, 0018 and 0056, were applied to verify vehicle detection
performance. The distance of 40 m was utilized to divide the detection range into distant area and
close area. There are totally 816 targets in 0018 dataset, among which 448 targets are in the close
area. The 0056 dataset contains 407 targets in close area and 22 targets in distant area. PE-MSS-based
detection [22], PE-CPD-based detection [27], and the detection method that introduces the convex-hull
model [14] into our detection system were utilized as the comparative experiments. Detection range
was set to [0,80] (m) from the Lidar. The detailed detection results are shown in Table 1. Np and Nf
denotes the numbers of detected vehicles and false alarms, respectively. Nt denotes the number of
total vehicles in the scenarios. The precision P and recall R are calculated by Equation (15). As shown
in Equation (16), the F; score is the harmonic average of P and R, which comprehensively represents
the detection performance of the detection algorithm. The larger the value of F; score is, the better the

detection performance will be.
Np Np

P=————,R= 15
Np + Nr Nt (15)
2PR
= _ 1
1" P+R (16)

Table 1 shows the detection results with the original convex-hull model and the PE-MSS-based
method. The convex-hull method detected many false alarms from the scenarios, and the PE-MSS-
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based method had poor detection performance in the distant area. The convex-hull model that was
proposed in [14] only used the sum of minimum distances from the bounding box as the objective
function to determine the optimal pose, in which the center of the optimal bounding box was utilized
as the object position. Since objects in the scenario could be occluded by obstacles, and the contour of
the objects in the distant area was partially lost, the obtained center position’s change could cause a
large deviation and the pose could be determined at a position with a large deviation on the yaw angle,
which violates motion consistency and result in the loss of the vehicle. In the distant area, for objects
with sparse point-clouds, the PE-MSS easily fell into the local extremum during pose estimation,
resulting in wrong pose results. Inaccurate pose estimation also results in efficiency reduction in
subsequent vehicle detection. For the close area, PE-MSS could have better pose estimation than the
convex-hull model, so detection results were better.

Table 2 shows the results of the PE-CPD based method and the proposed PE-CHM-based method.
Compared with the results in Table 1, both these methods had better detection performance in both
the close and the distant area. Compared with the PE-CPD method, pose-estimation accuracy with the
proposed PE-CHM was slightly reduced in the distant area, and the number of false alarms was slightly
increased in the whole area. By comprehensively considering detection and false-alarm suppression
performances, the F; scores of the PE-CPD method and the proposed method were 0.86 and 0.85,
respectively, which indicates that the proposed method achieved similar detection performance to the
PE-CPD method, offering the advantage of low computational complexity, which is explained in the
next experiment.

Table 1. Dynamic vehicle detection results by the convex-hull model method and pose estimation with
modified scaling series (PE-MSS) method.

Convex Hull Method PE-MSS Method
Npo N) P R F Np NN P R F

<40m 448 348 17 095 078 086 357 22 094 0.80 0.86
0018 >40m 368 19 70 074 053 0.62 39 9 081 011 0.18
Total 816 544 87 086 067 075 39 31 093 049 0.64

<40m 407 314 97 076 078 077 359 32 092 0.88 0.90
0056 >40 m 22 9 52 015 041 022 O 9 0 0 -
Total 429 323 149 068 076 072 359 41 090 0.84 0.87

<40m 85 662 114 085 067 075 716 54 093 084 0.88
Overall >40m 390 205 248 045 053 049 39 18 068 010 0.17
Total 1245 867 362 071 070 070 755 72 091 0.61 0.73

Datasets Range Nr

Table 2. Dynamic vehicle detection results by the pose estimation based on coherent point drift
(PE-CPD) method and the proposed pose estimation with convex-hull model (PE-CHM) method.

PE-CPD Method PE-CHM Method
Npo Npb P R F Np NP P R F

<40m 448 368 5 099 082 09 374 10 097 083 0.89
0018 >40m 368 219 16 093 060 073 207 16 093 056 0.70
Total 816 587 21 097 072 082 581 26 096 071 0.82

<40m 407 38 21 095 095 09 377 31 092 094 093
0056 >40 m 22 9 3 075 041 053 8 8§ 050 036 042
Total 429 394 24 094 092 093 38 39 091 091 091

<40m 85 753 26 097 088 092 751 41 095 0.88 091
Overall >40m 390 228 19 092 058 072 215 24 090 055 0.68
Total 1245 981 45 096 079 086 966 65 094 078 0.85

Datasets Range Nt
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4.3. Operation Time

In this work, all experiments were implemented on a MacBook Pro with a 2.9 GHz Intel Core
i5 CPU and 8 GB main memory. Detection methods were conducted in MATLAB 2017b. Detection
operation time with PE-CPD [10], and proposed detection with PE-CHM are listed in Table 3.

Table 3. Operation-time comparison.

Frame 221-230

Total Time/

Methods . i i
Time  Frame Time Read Data Groupd RBNN Virtual ]?etectlon
Tracking Scan  Time/Frame
PE-CPDbased 1509s 513ms 1976 ms 42 ms 60 ms 681 ms 203 ms 98 ms
PE-CHM based 69.6s 237ms 1125ms 38 ms 49 ms 628 ms 196 ms 21 ms

There are a total of 294 point-cloud frames in the 0056 dataset. The point-clouds were labeled with
0-293. The PE-CPD-based detection method utilized 150.9 s to finish detection, while PE-CHM-based
detection reduced computation time by more than half. In frames 221-230, there was only a single
vehicle in the scenario, and detailed statistics were recorded on the time consumption of each detection
stage. It can be seen that the same preprocessing process had a similar operation time while ignoring
the impact of the software. After removing the time consumption of the preprocessing process,
PE-CPD needed an average of 98 ms to detect a point-cloud frame, and PE-CHM only needed 21 m:s,
which indicates that PE-CHM obviously improved pose-estimation efficiency.

5. Conclusions

To quickly and accurately detect dynamic vehicles in road scenarios, a novel pose-estimation
method based on the convex-hull model and position inference was proposed in this paper. The main
contributions are listed as follows.

First, multiple factors including the minimum boundary distance, minimum enclosed area,
and minimum difference with the yaw angle, were utilized to construct the objective function
for bounding box determination, which increases the adaptability of the convex-hull model to
the environment. The construction of the convex-hull model is the foundation of the proposed
pose estimation.

Second, a pose-estimation algorithm based on the convex-hull model and pose inference was
proposed to estimate the pose of objects with a simple process. The proposed PE-CHM algorithm
only uses contour point-clouds in the convex-hull set to determine the target pose, which reduces the
amount of computation compared with the existing PE-CPD method.

Third, the proposed PE-CHM algorithm is applied to detect the dynamic vehicles in road scenarios.
The experimental results showed that the proposed method could significantly reduce computation
time while maintaining good detection efficiency.
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