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Abstract: Physical activities can have important impacts on human health. For example, a physically
active lifestyle, which is one of the most important goals for overall health promotion, can diminish
the risk for a range of physical disorders, as well as reducing health-related expenditures. Thus,
a long-term goal is to detect different physical activities, and an important initial step toward this
goal is the ability to classify such activities. A recent and promising technology to discriminate
among diverse physical activities is the smart textile system (STS), which is becoming increasingly
accepted as a low-cost activity monitoring tool for health promotion. Accordingly, our primary aim
was to assess the feasibility and accuracy of using a novel STS to classify physical activities. Eleven
participants completed a lab-based experiment to evaluate the accuracy of an STS that featured a
smart undershirt (SUS) and commercially available smart socks (SSs) in discriminating several basic
postures (sitting, standing, and lying down), as well as diverse activities requiring participants to
walk and run at different speeds. We trained three classification methods—K-nearest neighbor, linear
discriminant analysis, and artificial neural network—using data from each smart garment separately
and in combination. Overall classification performance (global accuracy) was ~98%, which suggests
that the STS was effective for discriminating diverse physical activities. We conclude that, overall,
smart garments represent a promising area of research and a potential alternative for discriminating a
range of physical activities, which can have positive implications for health promotion.

Keywords: smart garment; smart textile system; wearable sensor; smart shirt; smart socks; physical
activities; classification; human health

1. Introduction

Physical activity refers to a range of human movements generated by the musculoskeletal system
that result in energy consumption [1]. According to this definition, physical activity includes all static
and dynamic postures in which an individual engages throughout the day. Physical activity is strongly
linked to an increasing number of physical, emotional, and life-enhancing benefits. As such, the degree
to which one engages in physical activity can impact one’s quality of life [2]. In contrast, a physically
inactive lifestyle is directly tied to numerous adverse outcomes. For example, such as increased body
mass index (BMI), musculoskeletal disorders, cardiovascular disease, Type 2 diabetes, high blood
pressure, and obesity [2–5]. Conversely, physically active individuals tend to be at significantly lower
risk for such diseases, and a review of several studies confirmed that the risks of cardiovascular
disease and other causes of mortality are decreased by 35% and 33%, respectively, for physically
active individuals [6]. In addition to the risks to one’s physical wellbeing, physical inactivity is also
linked to mental disorders such as stress, anxiety, depression, low self-esteem, and reduced cognitive
functioning [2,7]. There is also a well-documented monetary component associated with physical
inactivity. For example, a recent study indicated that the annual cost of physical inactivity in the U.S.,
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as measured in healthcare-related expenditures, was ~$117 billion between 2006 and 2011 [8]. In short,
physical activity has several important impacts on human health, and a physically active life style is
correlated with improvements in both physiological and psychological health [9].

To offset the risk for the range of disorders noted above, and to promote improved physical and
emotional wellbeing, it is useful to recognize static postures and to quantify sedentary periods during a
day. For this purpose, it is necessary to accurately determine the type of major daily activities in which
a person engages, so that then it would be possible to identify static postures among those activities,
and thereby help an individual to change their behavior from an inactive lifestyle to a more active one.
To accomplish this, activity monitoring represents an increasingly effective way for determining an
individual’s physical activity level during any given day. Indeed, many scholarly and commercially
driven efforts are seeking to develop an accurate and reliable activity monitor that is applicable for diverse
activity domains. To date, these monitors can be broadly categorized into subjective and objective types.

Subjective methods are typically used to assess physical activity through self-evaluations, with the
two main strategies involving questionnaires and diaries [10]. These subjective methods are, overall,
relatively low-cost, convenient, and applicable for a large population. Current subjective methods,
however, like all self-reported data, share some limitations when used to discriminate physical
activities—principally their low validity [10,11] and low reliability [11]. They also tend to be
time-consuming and are at risk for biased reporting [12]. Finally, ensuring that they are culturally specific
is an increasingly important component of such instruments [10].

Objective methods that rely on a range of underlying technologies have also been used to
measure human behaviors and activities. Objective assessment systems currently available can be
broadly categorized into two types: non-wearable and wearable systems [13]. The former type (e.g.,
video motion capture system) has been used mainly in laboratory environments, since sophisticated
hardware or software is often needed. Wearable systems, though, are both portable and usable for
diverse indoor and outdoor applications for ambulatory motion analysis; such applications include
medical service systems (e.g., detection of falls or health problems), rehabilitation, ergonomics, and
sport biomechanics [14–26]. Individuals being assessed for physical activity tend to prefer small,
lightweight wearable devices that are easily operated and maintained, while also being compatible
with daily activities [27–29]. Furthermore, an increased focus on wellness, coupled with advances
in sensing technologies, has resulted in a sizable market for portable wearable systems compared
to non-wearable systems; indeed, the market for wearable systems is predicted to grow to over
$12 billion by 2022 [30]. This earnings potential has, in part, spurred researchers to develop and
utilize wearable, non-invasive, low-cost, and lightweight devices for classifying a range of common
activities [27,28,31–33]. For example, a recent review described the use of accelerometry-based devices
placed on different body segments to discriminate physical activities [34]. It indicated that the use of
accelerometry-based devices provides classification accuracy ranging from 85% to 95% [34]. Similarly,
Karantonis et al. [35] used an accelerometer on the waist for detecting sitting, standing, walking, lying,
and falls, and reported 91% accuracy using a decision tree method. By combining an accelerometer,
gyroscope, and barometer, investigators reported being able to discriminate physical activities using
the K-nearest neighbor (K-NN) classification method with 95% accuracy [36]. Massé et al. [37] utilized
a combination of an inertial measurement unit and a barometric pressure sensor placed on the trunk
to detect sitting, standing, walking, and lying, which yields an accuracy of ~90%. An instrumented
shoe equipped with special insoles and an inertial measurement unit (IMU) recognizes a number of
human movements (sit-to-stand, locomotion, and walking type) using the decision tree method, with
an overall accuracy of 97% [38]. However, while they appear to be a promising solution in several
applications [39,40], these wearable sensors are external devices that need to be attached on the body,
and therefore they may change the appearance of garment and compromise usability [41].

An alternative and promising wearable technology is being used increasingly by physical activity
researchers, namely interactive or smart textiles that have sensing material incorporated within them.
So-called smart garments (SGs) [42,43] are becoming an important technology for diverse applications,
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such as in healthcare, the military, the consumer fitness realm, and gaming/sports [42–44]. This technology
presents some significant advantages. For example, SGs can be easily tailored for individual usage;
they are relatively inexpensive (potentially even disposable); and they can be implemented in close
proximity to the body and are thus able to accurately capture physical movements [45]. For these reasons,
SGs have received increasing interest in recent years for discriminating a range of activities. However,
limited empirical evidence exists to support the implementation of SGs for accurately discriminating
physical activities.

Based on this lack of experimental evidence, an exploratory study was designed to assess the
feasibility and accuracy of using a specific smart textile system (STS) to classify several basic physical
activities. Thus, we completed a study to evaluate the ability of two SGs for classifying diverse physical
activities: (1) a commercially available pair of smart socks (SSs) that rely on textile pressure sensors; and
(2) a customized smart undershirt (SUS) that utilizes textile strain sensors. Additional objectives of this
study were to explore the relative merits of these two SGs, both separately and in combination, and to
compare the relative performance of several common classification methods. Furthermore, we sought
to identify the most effective subset of sensors for the SUS, based on accuracy in classifying several
basic physical activities. For these purposes, a lab-based experiment was undertaken to determine
how accurately an STS can classify several basic postures (sitting, standing, and lying down) and
diverse physical activity types (e.g., walking and running at different speeds). By discriminating
diverse physical activities using SGs, we hope to more accurately and efficiently detect these activities,
and determine the time spent in different active tasks. From doing so, both healthcare providers and
individuals could have the information they need to promote health and wellbeing, for example to
quantify sedentary periods and modify a sedentary lifestyle to a more active one.

2. Materials and Methods

2.1. Participants

A total of 11 participants from the local student population and local community completed the
study (Table 1). Three inclusion criteria were confirmed for each participant: (a) they needed to be
moderately physically active; (b) they could not have experienced any current or recent history of
musculoskeletal disorders; and (c) they needed to be able to wear the SSs and fit comfortably into
the single SUS that was available. Experimental procedures were approved by the Virginia Tech
Institutional Review Board, and participants completed an informed consent procedure approved
prior to beginning the study.

Table 1. Summary of participant characteristics (SD = standard deviation).

Measure Mean (SD) Range

Age (years) 21.3 (2.5) 18–26
Body mass (kg) 76.2 (8.2) 64.4–86

Stature (cm) 174.5 (7.4) 163–186
BMI (kg/m2) 25.0 (2.6) 22.4–29.4

2.2. Experimental Procedures

An experiment was designed to investigate the efficacy of utilizing an STS (including both SSs
and the SUS) in discriminating basic human postures and common physical activities types. Prior to
the actual data collection sessions, all participants completed a training session, during which they
were first sized for the SSs (from medium, large, and X-large sizes) and specified shoes (Jogger style,
Athletic Works Shoe). They were then asked to walk and run on a treadmill (SOLE F63, SOLE Fitness,
Salt Lake City, UT, USA) while wearing the STS, during which we obtained their preferred walking
and running speeds [46].
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In the experimental session, participants were asked to complete 11 basic physical activities:
standing to lying down & reverse (A1), lying down (prone) (A2), standing on both feet (A3),
standing-to-sitting & reverse (A4), sitting on a chair (A5), slow walking (A6), comfortable walking
(A7), fast walking (A8), comfortable running (A9), fast running (A10), and stairs climbing up/down
(A11). Activities A5–A10 were performed on the noted treadmill. The three walking and two running
speeds were set according to each participant’s preferred walking and running speeds, (specifically
slow, comfortable, and fast indicated 80%, 100%, and 120% of their preferred speed, respectively) [46].
Table 2 provides results regarding the three different walking speeds (slow, comfortable, and fast) and
the two running speeds (comfortable and fast).

Table 2. Walking and running speeds used in the experiment for each participant (PX is an abbreviation
for participant number, units are km/h, and SD is an abbreviation for standard deviation).

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 Mean (SD)

Walking
Slow 2.1 1.9 2.0 2.1 2.1 2.1 2.0 2.2 1.9 2.2 2.3 2.08 (0.12)

Comfortable 2.6 2.4 2.5 2.6 2.6 2.6 2.5 2.8 2.4 2.7 2.9 2.6 (0.15)
Fast 3.1 2.9 3.0 3.1 3.1 3.1 3.0 3.4 2.9 3.2 3.5 3.12 (0.19)

Running Comfortable 5.6 4.6 5.7 5.5 5.5 5.8 6.0 4.2 5.4 6.3 5.1 5.43 (0.6)
Fast 6.7 5.5 6.8 6.6 6.6 7.0 7.2 5.0 6.5 7.6 6.1 6.51 (0.74)

The order of the 11 activities was assigned to participants using a partially balanced Latin square [47]
to minimize the potential for order-related confounding effects. Each of the transition activities (i.e., A1
and A4) was repeated 10 times, and each of these activities lasted ~2 s. The remaining activities were
done repeatedly for at least 120 s each, in order to collect sufficient samples for subsequent classification
model developing and testing, as described below [48]. Moreover, we encouraged the participants to
utilize different strategies to perform the activities each time, to include more variability for the purpose
of enhanced generalization of results. To normalize signal magnitudes from the SSs and SUS and thereby
facilitate activity classification, we asked the participants to adopt two reference postures [49]: (1) sitting
on a chair and lifting both feet (for normalizing the signals from the SSs); and (2) standing upright on
both feet with the trunk erect and the arms hanging relaxed (for normalizing signals from the SUS).

2.3. Smart Textile System

All participants donned the two SGs (SSs and SUS), which were included as representatives of
activity monitors for the lower and upper extremities, respectively; together they formed this study’s STS.
The commercially available Sensoria SSs (Sensoria Inc., Redmond, WA, USA, www.sensoriafitness.com)
featured three textile pressure sensors integrated into the heel, the first metatarsal bone, and the
fifth metatarsal bone. SSs that employ integrated pressure textile sensors can measure foot pressure
relatively easily. These SSs can be used either within a pair of shoes for mostly outdoor applications
(e.g., running) or by themselves for indoor or more outdoor applications [50]. An important component
of the Sensoria socks is that they include two wireless transmitters as anklets, providing a 32 Hz
sampling rate; thus, the socks feature limited wiring and did not constrain normal activities or reduce
the wearer’s comfort. In contrast, the SUS, which was developed and calibrated in our lab as described
earlier [49], included 11 stretchable textile sensors [51] placed on the low-back and shoulder regions
to record thorax vs. pelvis and 3D shoulder motions, respectively. These sensors were developed by
coating electroactive polymers (i.e., polymerization) on a fabric using manual screen printing, and they
quantify strain in the fabric by measuring resistance changes between the two ends of each sensor [51].
The sampling rate for the SUS was 1000 Hz. We purposefully selected an undershirt, in accordance
with a recent study indicating that participants preferred a short-sleeved T-shirt over other types of
SGs [41]. Furthermore, the upper body typically involves a larger range of activity, as well as variability,
compared to the lower body, and was thus thought to be more effective in classifying physical activities.
Figure 1 depicts a participant wearing both SGs during several of the physical activities investigated.

www.sensoriafitness.com
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Figure 1. Illustrations of a participant wearing two smart garments (smart shirt and smart socks) while:
(a) A5: sitting, (b) A3: standing, (c) A2: lying down, (d) A6: walking, and (e) A9: running.

A 4th-order bi-direction Butterworth filter was used to filter raw data from the SSs and SUS,
with a cutoff frequency of 5 Hz for both [52]. We then resampled all data at 20 Hz, which represents
an appropriate sampling rate for physical activities [48,53]. These preprocessing methods were
implemented using MATLAB (2016, The MathWorks, Inc., Natick, MA, USA).

2.4. Activity Classification

As noted above, it is important to classify different types of physical activities. Here, the specific
problem was to classify the 11 simulated physical activities through the use of SGs. It is unrealistic to
presume (at least initially) that a single, optimal classification method can be derived for all conditions of
interest [54,55]. For this reason, researchers have typically utilized and compared several classification
methods to achieve better accuracy [54–58]. Similarly, we implemented three relatively common
classification methods—K-NN, linear discriminant analysis (LDA), and artificial neural network
(ANN)—each implemented using MATLAB (2016, The MathWorks, Inc., Natick, MA, USA).

We developed a number of different types of classification models, differing in: (1) whether they
were at the individual or group levels; (2) whether the inputs included data from the SSs, the SUS, or
their combination (STS); and (3) the classification method employed (K-NN, LDA, or ANN). At the
individual level, we adjusted the inputs for these methods to form the raw signals for the SSs (six
features) and SUS (11 features), and the output target from the relevant activity patterns (A1–A11) for
each individual participant (i.e., individual level). However, we used all data from all participants
as the inputs for the classification methods at the group level. We randomly selected data from all
participants for training the group-level models. We considered these two types since we wanted to
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compare the accuracy of SGs in both potential applications. In other words, we sought to determine
whether a system might need to use a personalized classification model for each individual or whether
it was feasible to use a general model developed based on the data from multiple individuals. We also,
as noted, trained the different classification models using data from each SG separately, as well as in
combination. Therefore, we developed nine classification models at the group level (3 input sets × 3
classification methods), and 99 classification models at the individual level (11 participants × 3 inputs
sets × 3 classification methods). A 5-fold cross-validation technique was used to avoid overfitting
of the K-NN and LDA models. For ANN models, the complete dataset was randomly divided into
training (70%) and testing (30%) subsets according to conventional methods [59]. We set k to be 10 for
the K-NN method after several initial iterations [54].

We then evaluated the performance of these classification models using common metrics, global
accuracy, sensitivity (recall), specificity, precision, accuracy, and the F-score [54], which were determined
using the testing data subset. Furthermore, we created confusion matrices based on results obtained
from the entire set of data (both training and testing subsets); these were used to assess the performance
of the classification models for each activity and to identify the most confused specific pairs among the
set of 11 activities. Using the entire dataset for confusion matrices provided a more complete assessment
of misclassified activities, especially for identifying the most confused activities pairs. Additionally,
the confusion matrix provided the percentages of precision, false discovery rate, sensitivity, and false
negative rate for each activity.

2.5. Most Effective Sensors in the SUS

We used the estimated Bayes accuracy method to determine the most effective subsets of the 11
SUS sensors, based on the accuracy in classifying physical activities. The best possible accuracy for
any classification problem is known as Bayes [60] which is independent of any specific classification
methods and depends only on the distribution of the classes. Noshad and Hero [61] proposed a method
to compute a tight bound on the Bayes accuracy. We used their method here to find the most effective
subset of SUS sensors. This method also helped to determine the best possible accuracy that can be
achieved by the SUS. In our analyses, we chose increasing subsets. We first chose a subset of size one,
and thereby determined which sensor could classify the activities with the best accuracy using a single
sensor. This was performed by simply comparing the Bayes accuracies among all single sensors. Next,
we added another sensor in each step and identified the set of sensors that provided the best classification
accuracy. We continued this procedure until we included all 11 sensors. The advantage of this sensor
selection method is that it does not depend on any specific classification method (i.e., it is generic).

3. Results

Table 3 provides a summary of global accuracy for each classification model at both the group
and individual levels. At the group level, global accuracies using the K-NN, LDA, and ANN methods
were in the range of ~97–98%, ~15–47%, and ~90–98%, respectively. Models developed using LDA
demonstrated relatively poor classification performance at the group level when using the SSs, SUS,
and STS, while the other two methods (K-NN and ANN) yielded comparable global accuracies with
all three systems. Although global accuracies with the STS using both K-NN and ANN classification
methods were the same (98%), global accuracies for SSs and SUS using the K-NN method were
slightly better than when using ANNs. Note that using SUS data resulted in improved global accuracy
relative to the SSs for all classification methods except K-NN, for which the results were nearly similar.
In general, the global accuracy at the individual level was higher than at the group level.

F-scores are provided in Table 4 for all classification models at the group level. Similar to the
results for global accuracy, F-scores resulting from the LDA method were relatively lower. The K-NN
approach yielded the best performance, with F-scores for all activities exceeding 0.90. Activities A2, A3,
and A5 had the best classification performance (i.e., 0.99) for both SSs and SUS using the K-NN method.
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Table 3. Global accuracy (percentage) for each classification method at the individual and group levels
for the smart garments (SSs), smart undershirt (SUS), and smart textile system (STS).

Model
Individual Level Group

LevelP1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

K-NN
SSs 97 97 98 99 98 99 96 98 97 96 96 97
SUS 95 97 97 98 98 97 96 95 98 96 91 96
STS 97 99 99 99 99 99 98 98 99 98 96 98

LDA
SSs 69 89 90 91 83 92 72 81 90 75 83 15
SUS 87 91 89 92 96 94 88 84 96 90 82 42
STS 94 96 97 97 99 97 92 96 98 96 93 47

ANN
SSs 95 94 97 98 98 98 93 93 95 90 93 90
SUS 95 99 98 99 98 98 97 95 98 88 90 94
STS 97 99 99 99 99 99 98 99 99 98 98 98

K-NN: k = 10 in k-nearest neighbor, LDA: linear discriminant analysis, ANN: artificial neural network. P1–P11 are
participant numbers.

Table 4. F-scores obtained for each activity using different classification models at the group level.

Model A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11

K-NN
SSs 0.96 0.99 0.99 0.97 0.99 0.94 0.93 0.95 0.98 0.99 0.97
SUS 0.92 0.99 0.99 0.9 0.99 0.93 0.93 0.95 0.96 0.96 0.97
STS 0.96 0.99 0.99 0.95 0.99 0.95 0.95 0.97 0.98 0.98 0.98

LDA
SSs 0 0.2 0.21 0 0.13 0.17 0.09 0.08 0.19 0.13 0.11
SUS 0.26 0.78 0.52 0.02 0.52 0.23 0.26 0.38 0.39 0.5 0.23
STS 0.79 0.6 0.11 0.58 0.38 0.31 0.43 0.45 0.49 0.3 0.35

ANN
SSs 0.78 0.97 0.92 0.84 0.97 0.82 0.83 0.84 0.96 0.96 0.88
SUS 0.88 0.99 0.99 0.81 0.99 0.90 0.90 0.92 0.94 0.94 0.95
STS 0.97 0.99 0.99 0.97 0.99 0.96 0.96 0.97 0.99 0.99 0.98

A1–A11 are activities.

Table 5 shows the remaining classification performance metrics for models developed using the
K-NN method at the group level for each activity. Note that we only presented confusion matrices for
the K-NN method, since models developed using this method provided the best performance based
on global accuracy and F-score. Each of these metrics was >0.9 for all activities (maximal values for
these metrics = 1.0).

Table 5. Classification performance for each activity (A1–A11) using K-NN models at the group level.

Sensitivity Specificity Precision Accuracy

SS SUS CSTS SS SUS CSTS SS SUS CSTS SS SUS CSTS

A1 0.96 0.87 0.93 0.99 0.99 0.99 0.95 0.97 0.99 0.99 0.99 0.99
A2 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
A3 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
A4 0.98 0.86 0.95 0.99 0.99 0.99 0.96 0.94 0.96 0.99 0.99 0.99
A5 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.99
A6 0.93 0.92 0.94 0.99 0.99 0.99 0.96 0.93 0.95 0.98 0.98 0.99
A7 0.94 0.95 0.96 0.99 0.98 0.99 0.92 0.91 0.94 0.98 0.98 0.99
A8 0.94 0.95 0.97 0.99 0.99 0.99 0.95 0.94 0.96 0.99 0.99 0.99
A9 0.99 0.96 0.98 0.99 0.99 0.99 0.98 0.97 0.98 0.99 0.99 0.99

A10 0.99 0.96 0.99 0.99 0.99 0.99 0.99 0.95 0.98 0.99 0.99 0.99
A11 0.96 0.98 0.99 0.99 0.99 0.99 0.98 0.96 0.98 0.99 0.99 0.99

Mean 0.97 0.95 0.97 0.99 0.99 0.99 0.97 0.96 0.98 0.99 0.99 0.99
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Figure 2 provides confusion matrices for models developed using the K-NN method at the group
level. Note that we only presented confusion matrices for the K-NN method, since models developed
using this method provided the best performance based on global accuracy and F-score. We had 11
participants, each of whom performed 11 simulated physical activities. As noted earlier, each of the
transition activities (i.e., A1 and A4) was repeated 10 times, while the remaining activities were done
repeatedly for at least 120 s. The different activities required different durations. At our re-sampled rate
of 20 Hz, this means there were ~650–2200 samples per participant, and ~7100–25,000 total samples for
each activity (for example, Figure 2 shows 14,804 total samples for A1). The most confused pairs of
physical activities using the SSs, SUS, and STS were A6 (slow walking) and A7 (comfortable walking).
A7 (comfortable walking) and A8 (fast walking) were the second most confused activities.
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Figure 2. Confusion matrix when using the K-NN method at the group level (i.e., all participants),
using input from both SSs and SUS (i.e., the complete STS). Input and output classes correspond to the
11 simulated physical activities. Cells on the main diagonal (green color) and off-diagonal (red color)
indicate the numbers of correctly and incorrectly classified observations of each activity, respectively.
Cells in the right-hand column provide the percentages of precision (green font) and false discovery
rate (red font) for each activity. Cells in the lowest row provide the percentages of both sensitivity
(green font) and false negative rate (red font) for each activity. The cell at the bottom-right corner (gray
color) provides global accuracy.

Figure 3 shows the results of using the Bayes accuracy method to find the most effective subsets of
SUS sensors on classifying physical activities. Sensor D was selected as the most effective single sensor,
with an accuracy of ~89%. Adding sensor C could increase accuracy by roughly 4%. After adding
two more sensors on the shoulder area, the accuracy was further increased by ~2%. Finally, the best
accuracy could be achieved using nine sensors (97%); adding sensors A and B did not improve accuracy.
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Figure 3. Results of applying the Bayes accuracy method (left) to identify effective subsets of sensors,
from the total of 11 sensors in the SUS (sensors are labeled in the figure on the right, using letters A-K).

4. Discussion

Our goal for this study was to assess the ability of textile-based sensor systems to help classify
different physical activities. This is the first study to evaluate SSs and SUS separately and their
combination in classifying physical activities, to our knowledge. For this purpose, we completed an
experiment to evaluate the accuracy of a specific STS featuring two SGs (SSs and a smart shirt),
using three classification methods in classifying diverse types of simulated physical activities.
Classification results indicated that the STS could discriminate among the several physical activities,
with accuracy levels of 99% at the individual level and ~98% at the group level (Table 3). Of the
three classification approaches tested, the K-NN method provided the best classification performance
based on global accuracy and F-scores (Tables 3 and 4). No clear differences in performance were
evident between using inputs from the SSs and SUS with the K-NN method. However, classification
performance was better with data from the SUS and the SSs when using the LDA and ANN methods.
The reason for the latter differences in performance may be that most of the physical activities
simulated here involved more variability in upper vs. lower extremity behaviors. For example, there
may be important differences in shoulder motions while walking and running, with relatively less
differences in pressure patterns at the feet. While using data from the STS yielded slightly better
classification performance than when using either of the two components separately, the improvement
in classification accuracy was only modest (1–2%). It thus appears that the use of either SSs or the
SUS may be sufficient, with no major benefit obtained from using both of these wearable systems.
Of note, using data from either the SSs or SUS was also shown earlier to be effective at classifying
diverse occupational tasks [25]. We also found that global accuracies using data from the SSs and
SUS were similar for models developed at the individual and group levels (Table 3). Thus, it may be
feasible to develop and implement a general model for multiple users.

Accuracy of the current STS was found to be at least comparable to the earlier studies using
different wearable activity monitors. It should also be noted that participants may prefer using SGs
rather than systems based on inertial measurement units [41]. There are several possible explanations
for this high accuracy in identifying diverse physical activities. First, we printed the sensors in the
SUS at specific locations to capture upper body movements [49]. Second, the pressure sensors on
the bottom of SSs were also placed at three positions to capture movements of the feet. Third, six of
activities investigated here (A1–A4, A10, and A11) involved very different ranges of movements.

Here, slow walking (A6) and comfortable walking (A7) were the most confused pair of activities
among the 11 physical activities simulated (Figure 2). This misclassification may have resulted from
the obvious kinematic similarity between these two activities. Additionally, the slow walking speed
was set relative to each participant’s preferred speed (i.e., 80%). Thus, there may have been insufficient
differences in kinematics between the slow and comfortable walking speeds to allow for more accurate
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discrimination (Table 2). Indeed, this overlap may also account for the second most confused pair of
activities: comfortable walking and fast walking. Overall, the most frequent misclassifications were
between activities requiring different speeds of walking or running (Figure 2). These misclassifications
may also have occurred as a result of overall classification approach used here. For example, we did
not extract any temporal features. Thus, future work is needed to investigate the merits of including
temporal features and/or feature selection methods in discriminating between different speeds of
walking and running using SGs.

Based on the Bayes accuracy method, the best possible accuracy that can be achieved using the
SUS is on the order of 97%. Using K-NN methods could reach an accuracy of 96% with the SUS at the
group level. Thus, we can conclude the K-NN is almost the best classification method for the SUS.
From examining effects sensor subsets using the same Bayes method, we found that the best accuracy
could be achieved with nine of the initial 11 SUS sensors. Specifically, two can be removed without loss
of classification performance. If a slight decrease in performance is acceptable, as few as 2–4 sensors
may be sufficient (Figure 2).

Although the current results support the feasibility of using an STS for classifying physical
activities, some limitations in the study must be addressed. First, we included a relatively small sample
size of only healthy, young volunteers, which precludes the possibility of generalizing the results of
this study to a population consisting of older adults and/or individuals with medical conditions [62].
Second, this study required participants to engage in simulated basic physical activities. Therefore,
the extent to which results of this study can be generalized to a wider set of activities is unknown [11,63].
Furthermore, simulated activities may involve different behaviors compared to those in real life [64].
In fact, a number of diverse activities do occur during a person’s typical day that go beyond sitting,
standing, walking, and running. Third, the sampling rate use here was ~20 Hz, which prior research
has indicated may be sufficient for physical activities [48,53]. However, this sampling rate may be
insufficient for accurately classifying highly dynamic activities. Thus, the findings detailed herein
cannot be extrapolated to high-speed activities, such as during certain sports. Fourth, our SUS
transferred signals from the shirt to an electronic board via wires, and these would likely restrict
the performance of physical activities in real-life settings. Future efforts are needed to modify such
garments, such as with wireless transmitters that would not impede normal activities. Additionally,
the SUS may be improved for the shoulders, since it had weaker performance in terms of angle
estimation than in the lumbar area [49], and, as noted earlier, participants had to “fit” to the single
SUS that was available. For future applications, improving accuracy at the shoulder may, in turn,
enhance the ability of the SUS in classifying physical activities, and diverse sizes of the SUS will need
to be developed. Fifth, we did not employ any automated data segmentation or feature extraction.
In practice, a continuous data stream from STS sensors will need to be divided into smaller subsets,
although here segmentation was done manually (start to end of a given activity). While feature
extraction could enhance classification performance, a featureless approach was used here, which
decreased computation cost. The fairly good classification performance we found may also suggest that
feature extraction may have limited additional value. Another limitation related to using data streams
is potential correlations between samples that might result in inflated classification accuracy for our SGs.
To address this, secondary analyses were completed using data segmentation (temporal windows, size
= 1 s), from which we extracted the following features: mean, median, standard deviation, maximum,
and minimum. Using temporal windows with these features increased classification accuracy by 1%.
Furthermore, the Bayes accuracy method showed that the best accuracy that could be achieved using
the SUS was 97%. Thus, we concluded that obtaining high accuracy when classifying physical activities
using SGs is feasible, and that using data stream seems not critical here since slightly better accuracy
could be obtained with temporal windows. However, additional work is suggested to both address
data segmentation and assess the value of extracting features related to diverse physical activities.
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5. Conclusions

In this study, we evaluated the potential for using two SGs including SSs and SUS—as part of a
system—to classify diverse physical activities. Data obtained from SSs, the SUS, and the combined
system (STS) could effectively discriminate between several diverse physical activities with fairly high
levels of accuracy and using standard classification methods. Our results also suggested that the
use of single classification model, developed using data from multiple individuals, could be effective
when applied across individuals. Based on our findings, we hope to facilitate future work that more
effectively discriminates additional activity types that may help or hinder health and fitness activities.
Such information will likely be of use to both healthcare practitioners and individuals. More specifically,
results from future investigations could provide strategies for helping to accurately identify injury risk
factors associated with human movement. For example, an STS may be useful in quantifying sedentary
periods with the goal of modifying a largely sedentary lifestyle to a more active one. Indeed, mounting
evidence shows that a sedentary lifestyle is deleterious to human health and emotional wellbeing
across a range of factors, such as increased BMI [65], the effectiveness of breathing [66], a higher risk
for developing cancer [65] and cardiovascular disease [67] and diabetes [65,68]. Therefore, an accurate
and reliable wearable system, such as an STS for activity classification, could be useful for healthcare
providers to quantify sedentary periods, with the goal of devising strategies for changing an inactive
lifestyle to a more active one. Another potential future application is to classify physical activities
among older individuals and those with diverse health problems, since these systems may be useful
for monitoring health status.

6. Patents

A U.S. patent has been filed for the SUS; disclosure # 62/641,448.
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