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Abstract: Currently, indoor localization is among the most challenging issues related to the Internet of
Things (IoT). Most of the state-of-the-art indoor localization solutions require a high computational
complexity to achieve a satisfying localization accuracy and do not meet the memory limitations of
IoT devices. In this paper, we develop a localization framework that shifts the online prediction
complexity to an offline preprocessing step, based on Convolutional Neural Networks (CNN).
Motivated by the outstanding performance of such networks in the image classification field, the
indoor localization problem is formulated as 3D radio image-based region recognition. It aims to
localize a sensor node accurately by determining its location region. 3D radio images are constructed
based on Received Signal Strength Indicator (RSSI) fingerprints. The simulation results justify the
choice of the different parameters, optimization algorithms, and model architectures used. Considering
the trade-off between localization accuracy and computational complexity, our proposed method
outperforms other popular approaches.

Keywords: Convolutional Neural Networks (CNN); deep learning; image classification; indoor
localization; kurtosis; RSSI fingerprinting

1. Introduction

The Internet of Things (IoT), also known as the Internet of Objects, is a trending concept
intended as a network of interconnected smart objects receiving and sending data without human
intervention [1-3]. The development of applications in IoT is strongly related to the notion of physical
location and positions. Therefore, localization technologies will play an important role in the IoT and
may become embedded into the infrastructure or into the object. In fact, collected data are reported for
a specific IoT application, which requires dedicated data analytic tools to make sense of them and take
the appropriate action. Plenty of applications are related to location-based services, which increases
the importance of location information. This information can be used for target tracking, surveillance
applications, guiding autonomous vehicles, etc. [4-7]. Therefore, collected data are meaningless if not
combined with the accurate location of the concerned sensor node. The latter can be obtained by using
Global Navigation Satellite Systems (GNSS), such as the Global Positioning System (GPS) [8], which is
an efficient outdoor localization system. These solutions cannot be deployed in indoor environments
due to the multipath effects caused by obstacles existing between satellites and users, which cause
an important degradation of the signals. To overcome this limitation, the idea is to use radio signals
for communication between objects. The communication technology is also a challenge in the IoT
development, and the choice is closely related to the application. Bluetooth [9], Ultra-Wide Band
(UWB) [10], Radio Frequency Identification (RFID) [11], and wireless local area network WiFi [12]
have been widely used in indoor localization. Most proposed indoor localization systems are based
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on WiFi signals due to the wide use of mobile devices that support this technology. In fact, the other
aforementioned communication solutions require specialized infrastructure (wireless radio beacons)
to be installed in the indoor environment and extra equipment in the devices. Because the signal
characteristics are strongly related to the distance between the transmitter and the receiver, they can
be used to perform localization [13-15]. Usually, the easy to obtain parameters are the Received
Signal Strength Indicator (RSSI) [16-18], Channel State Information (CSI) [19,20], Angle Of Arrival
(AOA) [14,21], Time Of Arrival (TOA) [22], and time difference of arrival [23]. RSSI does not require
specific hardware for time or phase synchronization, and no modification is needed on the device
firmware to be able to acquire it. That is why it is the parameter being explored most today.

Based on RSSI signals, existing methods can be essentially classified into fingerprinting-based
solutions and ranging-based solutions. The latter is combined with trilateration method and uses
geometric properties to estimate the sensor’s location [24]. In such a solution, the distance to Reference
Positions (RPs) is estimated by a propagation model, and at least four RPs are needed to get a 3D
position. This requires that the RPs have known positions, which is not easy to obtain in real indoor
scenes, this being the major drawback of the trilateration technique. Furthermore, the performance
of such a technique depends on the number of RPs and the precision of the propagation model,
which depends on the multipath effects. The fingerprinting method overcomes the mentioned
drawbacks because it employs a constructed radio map to be compared to RSSI measurements
associated with the sensor to localize [25]. It is a cost-effective solution, and its accuracy is related
to the sufficiency of data, where huge RSSI databases are constructed and manipulated to achieve
a good localization accuracy. This increases the complexity and the running time of fingerprint-based
localization systems, making them not adapted to real-time localization and not able to deal with big
sensor networks. Therefore, for a solution that uses a learned model, reducing the online complexity
is extremely needed. Recently, promising indoor localization solutions were implemented based on
RSSI fingerprinting combined with Machine Learning (ML) methods [26]. Since data preparation and
preprocessing are assured in the offline/training phase, only the prediction task is performed online.
Therefore, to find its position, a sensor node interrogates a trained model, which performs the estimated
position. Such algorithms shift the computational complexity from the online/prediction process to
the model offline/training step. Thus, such solutions based ML are highly recommended in real-time
localization applications. This is motivated by the highly-efficient Deep Learning (DL) algorithms,
which have been demonstrated to show very good performance in different contexts and applications
related to the indoor localization field: LOS/NLOS identification [19,27], activity recognition [28],
uncertainty prediction [29], denoising autoencoders [30], and localization [31,32]. These DL-based
methods have been widely introduced into indoor localization, estimating either the location
coordinates or other localization information such as room identification [31], floor identification [17],
region identification [13,14,33], etc. Sound-based localization systems have been proposed in [13,14],
ensuring a region identification prediction. The sensor data (sound) used require the use of specific
hardware (microphones) to be measured. The authors in [33] detected the region of the sensor node
and explored the nodes in the vicinity to estimate the sensor’s location based on RSSI measurements
and geometric properties. The mentioned works were not flexible, due to the fact that they needed to
place microphones or RPs at the top of each square region formed, which is impractical.

As said before, different localization approaches based on DL methods, like Support Vector
Machine (SVM) [34] and Neural Networks (NN) [35], have been developed. Different types of NN
have been used in the indoor localization context, especially Deep Neural Networks (DNN) and their
variants: Multi-Layer Perceptron (MLP) [29], Recurrent Neural Networks (RNN) [16], Convolutional
Neural Networks (CNN) [36,37], etc. The authors in [38] used a DNN to predict the node location
coordinates (latitude and longitude) in a multi-building and multi-floor environment, achieving 9.29 m
localization error. The approach implemented in [16] introduced RNN models as the DL method,
where RSSI signals were used as input data and GPS coordinates were used as output neurons to
train RNN models, in order to generate a model able to predict the location. The MLP introduced
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in [29] was applied to predict location uncertainty, while it was applied to RSSI statistics in [17] to
predict the user’s floor. To deal with the constraints of network training and to reduce the number
of neural network parameters (weights and biases) to learn and the complexity of traditional NN,
Convolutional Neural Networks (CNN) [36] have been deployed. CNN is a class of deep NN that is
widely used. It reduces the complexity of traditional NN and the number of weights to learn by its
weight-sharing structure. This means that CNN requires less training parameters and can bring better
generalization and robustness. Another reason why we use CNN is to deal with the need for large
datasets required by traditional NN, to avoid overfitting problems. Another challenge in implementing
positioning systems based on CNNSs is that these networks have translational invariance. This feature
coincides with the temporal dependency between RSSI fingerprints. Since this NN structure has
high invariance in translation, it has been widely used in image processing and classification [39-41],
achieving a spectacular success in this field. Thus, applying CNN on fingerprint images recently has
arisen as an important interest in the localization community.

In [28], the researchers designed a CNN for a pedestrian activity recognition, which can
serve as landmarks for indoor localization. Here, one-dimensional sensor data from accelerometers,
magnetometers, gyroscopes, and barometers were considered as network inputs. This work needed
specific types of sensors and did not take into consideration the energy consumption problem. In [13],
the authors converted the sound signal collected by a microphone into a spectral map to input it
into a CNN model. The authors in [19] used CNN to determine the NLOS channel classification
and ranging error estimation based on UWB CIR data. Here, the CNN models used were fed
one-dimensional input CIR images, then, to estimate the position, Least Square (LS) and Weighted Lest
Square (WLS) algorithms were used, needing at least four detected access points (APs) . Recently, other
designed localization systems based on RSSI measurements were proposed. In [16], a hierarchical
classifier employed a combination of smaller CNN models, which worked together to deliver a location
prediction. This system took 2D RSSI images, where each image was of size (N x K) , N was the
number of training points, and K was the number of APs. The authors in [42] identified the location of
a user (building ID and floor ID) by leveraging RSSI obtained from neighboring APs. From a given
1D RSSI fingerprint associated with a training point, a 2D image was made, adding some dummy
values (for example: (23 x 23), 2D image was constructed from a (520 x 1) RSSI fingerprint where
520 is the number of APs, adding nine dummy data). A hierarchical CNN architecture was proposed
in [18] using fingerprint images combining WiFi and magnetic field peculiarities in a single image.
The WiFi branch and the magnetic one produced two different predictions. Then, the prediction
vectors were combined as the input of a united branch to estimate the user’s location. A framework
was implemented in [38] using CNN to determine the building ID and the floor ID, then a DNN was
introduced to estimate the position’s coordinates. In this work, 2D RSSI images were considered where
each image corresponded to a specific training point, i.e., an image was formed by RSSI measurements
received by a training point from different APs at different instants.

Few existing localization solutions related to localization NN have explored 3D radio images.
They have always been used when working on robots’ localization, due to the fact that multiple types
of sensors are integrated on a robot (camera, laser, odometer, etc.) [43-46]. Therefore, each radio image
plane contained data received from a specific sensor. Besides robot localization, 3D radio images can
be used in systems exploring different types of data. For instance, the authors in [18] explored RSSI
data accompanied by magnetic and acceleration information. Based on CSI, 3D radio images can be
generated as developed in [20,47], where one CSI matrix of an antenna was considered as the red,
green and blue planes of the image. Therefore, the image was constructed by combining three channels
of CSL.

In this paper, we deal with the issue of indoor localization in the context of the IoT as a 3D radio
image-fingerprint-based location recognition problem motivated by the outstanding performance of
CNN in image classification problems and based on RSSI fingerprints. RSSI measurements can be
significantly affected by noise and environmental changes. Different sources of RSSI measurement
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uncertainty were deeply analyzed in [48] in order to determine the impact of each disturbing
phenomena on the localization accuracy. The authors in [49] evaluated the effect of different
propagation conditions on the localization accuracy in order to predict a satisfying accuracy, performing
a linearization process and a Kalman filter. However, this does not impact significantly the accuracy
due to the correlated shadowing process. To minimize their temporal variation and fluctuation, during
the 2017 IPIN competition explained in [50], the UMinho Team merged the fingerprints collected
in the same position to generate a less noisy fingerprint and potentially improve the localization
accuracy. In this paper, we exploit multiple RSSI measurements like the authors in [51], expecting
to remove the noise and improve the localization accuracy. CNN are used taking into account the
correlation between different RSSI measurements. We propose to split the studied environment into
region “classes” limited in space, and we construct radio images from measured RSSI fingerprints.
These radio images are used as our CNN model input data to predict the real-time region index.
The main contributions of this paper are summarized as follows.

e Anadvanced cost-effective indoor localization framework inspired by the image classification
process is developed using CNN for region recognition on radio tensors based on collected
RSSI data.

o  To the best of our knowledge, this is the first time that radio tensors (used as CNN localization
system inputs) have been constructed based on RSSI data alone, without exploring extra
information (magnetic information, acceleration, visual data, etc.). This avoids modifications of the
existing infrastructure and the increase in the cost of the proposed solution. For this, we propose
to use the kurtosis values calculated from measured RSSI. By using the kurtosis, we aim to provide
a statistical parameter that will give global information to local filters. This choice is justified
later, empirically. Furthermore, the proposed approach is independent of the communication
technology because in all of them, the RSSI can be measured.

e To train CNN models, multiple datasets are used where each dataset corresponds to a specific
training point, presenting RSSI values received from different APs during T. The parameter
T is varied in order to study its impact on the localization accuracy and choose the best value
considering the trade-off between localization accuracy and computational complexity. This is
the first time that such an input data structure has been introduced analyzing the impact of T on
localization performance.

e  Our implemented classification network uses radio tensors to predict the index of the region
containing the target. For this, our environment can be split into different grid sizes and forms,
without the need to add or place APs in specific positions. Thus, we develop a flexible framework
that can be applied to any existing indoor environment. As mentioned before, existing approaches
based on region recognition are not flexible and require the use of extra hardware.

e  Simulation results based on a realistic propagation model are presented. Different parameters are
empirically justified. Finally, the localization accuracy associated with different indoor localization
approaches is compared in order to illustrate the outperformance of the proposed one.

The remainder of this paper is organized as follows: In Section 2, we present the system model
and explain each step of our developed framework based CNN. In Section 3, the architecture and
different aspects of CNN are presented. The obtained results are presented and discussed in Section 4.
Finally, the conclusion is given in Section 5.

2. System Model of the Proposed CNN-Based Localization Framework

Our system model included two phases (Figure 1): an offline phase including the collection and
preprocessing of data to be used as inputs for the localization CNN model and the training of the
latter and an online phase introduced to find the position of each sensor node in the studied area
using the trained model. First, the studied area was split into different partitions named “classes”,
as shown in Figure 2. Each region was labeled class g with g € 1,2, ..., Q, and Q is the number of classes.
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We mention that the area of each class is a choice, based on the precision of localization required by the
application and the availability of computing resources.
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Figure 1. Different steps of our CNN-based localization system.
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Figure 2. Region partition.

RSSI values received from M deployed APs at different training points (sensor nodes) were
measured at different instants. After acquiring RSSI measurements, a normalization process was
conducted in order to make all RSSI values be included in [0,1]. RSSI matrix was used as two dimensions
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(2D) of the radio tensor. Then, a statistic parameter named “kurtosis” was calculated and added in the
third dimension (3D) of the radio tensor, leading to the development of two localization frameworks:
without and with the kurtosis plane, referred to as CNNLocWoC and CNNLocWC, respectively.
After organizing the inputs of CNN, which is a crucial step, many CNN architectures were implemented
and tested in order to ensure a satisfying localization accuracy. Finally, a sensor node could be localized
efficiently using the considered trained model. In our system, the localization was formalized as
a classification problem with Q classes. Each step is explained and described in detail later.

2.1. Preprocessing of RSSI Data

Preprocessing of RSSI data refers to transformations on the input data before they are fed to
the CNN model. Different steps and techniques, applied in order to speed up training and to lead
to good classification performance, are described in detail (RSSI acquisition, RSSI normalization,
and kurtosis calculation).

2.1.1. RSSI Acquisition and Normalization

At each training point, T consecutive RSSI measurements, received from M APs, were taken. N
RSSI databases, called realizations, were constructed for each training point, as illustrated in Figure 3;
where N is the number of realizations, T is the number of RSSI measurements received from each AP,
and M is the number of APs. Therefore, each realization presented RSSI values received from different
APs at T instants. Notice that N and T were experimentally adjusted.

Realization 1 Realization 2 Realization N
RAAL|RA2 | oevvennnnn RAT | | RAL [RA2 | oevvennnn. RIT RAL|RI2 | ..., R_IT
R2L[R22 | .oiiin.. R 2T R21 [R22 |..ocvnnnn. R.2T R2U/R22 | .o, R.2T
sl———rA0 —o—-— ——
RML[RM2 | covennen. RMT| | RIMLRM2 | oevvennns R_MT RML{RM2 | cevnnnn. R_MT
} {
T

Figure 3. The structure of RSSI databases at each training point.

The most important factor in deep learning is how much data are available for training and how
relevant they are. Furthermore, data are generally required to be normalized, especially when using
gradient-based optimization methods, in order to accelerate the learning process and minimize the
risk of algorithm divergence [52,53].

2.1.2. Kurtosis Calculation

In order to improve the efficiency of our developed framework, we considered using the kurtosis
as the third dimension of our tensor, because we wanted to introduce new information to our network.
By using the latter, we aimed to provide statistical information calculated from RSSI values that can
present useful information (global information of the input image). The kurtosis brings nonlinear
information, which can be useful and non-redundant since the operations ensured by a neural network
are linear operations. It was defined by Karl Pearson as the fourth moment [54]. R is the RSSI value
received from AP m at instant f, wherem = 1,2,..,Mand t = 1,2, ..., T. For a specified sensor node,
the kurtosis is calculated as follows:

1 & Ry —
ki = 7 % (o= M

where: B 2%21 R,
Hi = M (2)
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and: M 2
R
U'k — Zm_l mk , (3)

2.2. Radio Image Construction

After collecting RSSI values and calculating the values of kurtosis corresponding to each RSSI
database forming a radio tensor, 3D radio images were constructed. As the two first dimensions,
we put T measured RSSI values from M APs, and we put kurtosis values in the third dimension. Thus,
the size of each realization became (M x T x 2) (Figure 4). Constructed radio images needed to be
classified and organized, so each image was labeled q, 4 = 1,2, ..., Q. Then, N realizations of each
sensor node should belong to the associated class. Images were organized into Q folders labeled
classl,class2, ..., classQ, each containing the appropriate radio images.

Radio image Second plane:
(MxTx2) kurtosis values (M x T)
kur_11 | kur_12 kur_1T
kur_21 |kur_22 kur_2T
> <
kur_M1| kur_M2 kur_MT
T

l

First plane:
RSSI values (M x T)

R_11 |R_12 R_IT
R_21 |R_22 R 2T
>
R_M1 |R_M2 R_MT
T

Figure 4. The structure of the radio images.

2.3. Model Training and Target Localization

Training refers to finding the best set of weights that maximize the model’s accuracy. This is
related to maximizing the classification score. For this, a backpropagation process associated with
an optimization algorithm was used. After training (in the offline phase), our model was able to
localize a sensor node accurately in its target area. In the next section, we discuss the CNN architecture,
the training process, and some design aspects.

To find a sensor’s position, after acquiring RSSI values and doing the preprocessing of the data,
a radio image was constructed having the same dimension and structure of those used for training.
This image was fed to the trained model in order to predict the region to which the sensor node
belonged. For this, probabilities were assigned to each class, and the sum of these probabilities was
equal to one. The predicted class was the one that corresponded to the highest probability.
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3. Deep CNN Architecture Overview

The Convolutional Neural Network (CNN) is a part of the Deep Neural Networks (DNN),
including specialized NN layers, where each layer ensures a specific function. The structure of
a convolutional neural network designed for region recognition consists of one or more convolution
layers followed by one or more fully-connected layers taking radio images as the input and the classes’
labels as the output neurons. We explain the detailed role of each layer of the system model shown in
Figure 5.

—@
— @\ @® Class1
Q@ ® Class2
] I { ] ® Class 3
] L — { ® Class4
 J ® Class5
L N\ @ ® Ciasso
o o N\ @
N
\ < ® ClassQ-1
. N\ ® classQ
Input radio image Convolutional Pooling Layer 1 Convolutional Pooling Layer 2 ®
Mxtx2) Layer 1 Layer 2 wi @ w2
Fully-connected Output neurons
(FC) Layer
Features extraction Classification

Figure 5. An example of a CNN architecture with two convolution layers and one fully-connected layer.

3.1. CNN Layers (Convolutional, Pooling, and Fully-Connected Layers)

As said before, CNN consists of multiple hidden layers between the input and output layer.
The hidden layers consist of convolutional layers, pooling layers, and fully-connected layers. The role
of each layer is described in detail.

3.1.1. Convolution Layer

After the input layer, which takes the radio tensors, a typical CNN’s structure was designed
beginning with a feature extraction process. This feature extraction, of the input tensor function, was
ensured by a randomly initialized filters. Multiple filters could be used to extract the maximum of
features and characteristics contained in the input data. After sliding (convolving) filters across the
input’s pixels, each convolutional output was fed to an activation function. The current default choice
for activation functions in CNN, namely Rectified Linear Units (ReLU), was used. It was applied to
handle non-linearity in the data. It is given by:

x ifx>0
4)

0 otherwise

freru(x) = {

where x is the argument of the function (in our case, x denotes each pixel of the convolutional output
radio images).

3.1.2. Pooling Layer

This layer is a spatial reduction layer that downsamples the outputs of the previous convolutional
layer. It reduces the computational load and the time complexity by reducing the dimension of
tensors obtained as outputs of the previous convolutional layer. We chose the max-pooling function,
which selects the maximum value of the ones covered within the current pooling chosen window
(Figure 6). When we use a small-sized tensor and we want to learn all the features from the entire
sensor, this layer can be eliminated.
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8 2 9 1 Max(9, 1,5,3) =9
5 10 5 3 Max-pooling 10 9
7 4 2 6 with 2 x 2 filters and 7 6
stride 2
4 2 1 4 Output (2 x 2)
Input (4 x 4)

Figure 6. Max-pooling operation on radio images (2 x 2 window and stride two).

3.1.3. Fully-Connected Layer

After a feature extraction process provided by a combination of convolutional layers and spatial
reduction layers, a fully-connected layer was in charge of identifying the classes probability using the
softmax function [55]. The class with the highest probability was selected as the output (in our case,
our classes were the formed partitions). In this layer, the neurons were all connected to the neurons in
the previous layer.

The number and the size of filters, the number of layers (convolutional and fully-connected
layers), and various hyperparameters of CNN are adjusted by simulations and discussed in Section 4.
The optimization of different parameters was a crucial step in the CNN'’s training process, which is
an empirical process requiring several simulations.

3.2. CNN Optimization

In the training phase, our CNN model used a backpropagation algorithm. The weights w were
updated iteratively in order to reduce the loss function, between the initial prediction (estimated
class) and the label (real class), most efficiently using Stochastic Gradient Descent (SGD) [56], Root
Mean Squared Propagation (RMSProp) [57], and Adaptive Moment estimation (Adam) [58]. Gradient
descent is the most common first order optimization algorithm in machine learning and deep learning.
RMSProp and Adam are first order gradient-based optimization of stochastic objective function
algorithms. They are advanced methods used to optimize the learning process registered by SGD
employing an adaptive learning rate.

3.2.1. Stochastic Gradient Descent

Gradient descent aims to find the local minimum of differentiable cost function J. GD is based on
updating weights w in the direction to optimize the objective function J(w), using a constant learning
rate for every weight update. The new parameter w(*1) can be adjusted as:

wD) = ) — 4V (J(w®)), ®

where « is the learning rate from range (0,1), w') is the weight at iteration i, and V (J(w(?))) is the
gradient of the cost function with respect to the weight. Since we used the quadratic error as the cost
function, V (J(w(?)) is the difference between the estimated output y() and the wanted output z(9).

3.2.2. Root Mean Squared Propagation

RMSProp uses recent past gradients computed in a restricted time and adjusts the weights based
on how fast the gradient changes. Each weight w; is updated individually. For each w;:
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wi ) = wl) — 8% V(1()), ©6)
where:
0= @)
G ye
where € is a regularization parameter and Gj(i) is given by:
() =2 (02
G; :px];(dj) +(1-p) x (d")? ®)

()

where p is a moving average adjustable parameter and d ;s calculated as follows:

i = v(j(w!)). 9)

3.2.3. Adaptive Moment Estimation

Adam uses the first gradient moment g](i) and the second gradient moment v](.i) of the past

gradients to adjust the weights, adding an accelerator term. The updated weight is given by:

(
8
w](z+1) _ w}(l) Cax 1(:)l31 . (10)
v
=g t€
where: ‘ ‘ ‘
g = Brxgl V(1 py)xd, ()
and: ‘ ' '
o = By x ol 4 (1- ) x (a2, (12)

We mention that 81 and B, are hyperparameters of Adam, adjusted by simulations.

3.3. CNN Owerfitting Considerations

In deep learning, overfitting is a problem encountered when our model is not able to generalize
and predict the output accurately. To prevent overfitting, different interventions can be taken into
account. For this:

o  Weintroduced a dropout rate. This is ignoring some subset of neurons in a given layer in training,
i.e., dropping the nodes from the layer at each training stage. In our proposed models, dropout
was used after each fully-connected layer. The dropout regularization rate is mentioned in each

case in Section 4.
e  We added more data in the training set to be able to learn more from the training set and to add

more diversity without redundancy.

4. Simulation Results

In this section, we present different obtained results. Furthermore, we justify empirically the
choice of the different parameters used, the optimization algorithm, and the architectures.

4.1. Simulation Setup

We considered a wireless sensor network of M access points (in our simulations, we worked with
five and 10) and L training points, placed in an area of 400 m? (i.e., 20 m x 20 m). It was partitioned
on grids of dimension 5m X 5m or 2 m x 2 m. When we worked with a grid of size 5m x 5m,
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we considered four training positions per class; while there was one training point per class when the
size of the grid was2m x 2 m.

The training node locations and AP locations were randomly placed in the studied area.
The accuracy was investigated over many environment realizations. In order to simplify the
presentation of the paper and without loss of generality, we describe one environment test, as shown
below, where the choice of each parameter was justified experimentally. Different RSSI measurements
R, received from AP m (m =1,2,3, ..., M) were taken at each training position! (I =1,2,3,...,L) for
sigma shadowing equal to two, using a real propagation model and conducting intensive simulations
aiming to simulate real propagation conditions. The value of RSSI was calculated in dBs as:

Ryy =p, — pl,; + X0, (13)

where p, is the transmission power, x, is a Gaussian random variable with zero mean and variance o,
which describes the random shadowing effects, and pl,; is the path loss in dBs [59].

d
Pl = ply +20logio(f) + 10Q10810(%)1 (14)

where pl, is the path loss value at a reference distance dy, ¢ is the path loss exponent, f is the used
frequency in MHz, and d is the distance between the mth AP and the /th node. In this paper, we used
parameters relative to our laboratory: ¢ = 3.23, p, = 20 dBm, dg = 1 m, and f = 2.4 GHz. The sigma
of the random variable x, took the value of two.

The dimension of each RSSI fingerprint as mentioned before was (M x T), where T was varied to
choose the best value, as discussed later. The number of realizations per training point was N = 72.
Therefore, we obtained 72 tensors corresponding to each training sensor node, and the dimension
of each tensor was (M x T x 1) with the CNNLocWoC method and (M x T x 2) when applying the
CNNLocWC method. Eighty percent of tensors were considered for the training phase and 20% for
validation. The presented performances were based on the validation data.

Our experiments were conducted on a PC with Intel(R) Core(TM) i7-6700 CPU @3.4 GHz.
MATLAB R2018a has an advanced Neural Network Toolbox. It is a very efficient framework for
us to implement our CNN models.

4.2. Hyperparameter Settings

The optimization of hyperparameters and the architecture choice are the most important factor
in the CNN’s performance. Identifying the optimal values of the CNN parameters is defined by
an empirical process. Thus, it required several experimentations. Estimated values depend on the
input data. Data were trained with different numbers of convolutional and fully-connected layers to
find the best architecture.

Since training the CNN model was the most time-consuming process of implementing our
system, we fed mini batches of the input data, rather than exposing the entire data, to the network
during consecutive learning iterations in order to accelerate training [60,61]. Therefore, an iteration
corresponds to passing a mini batch of data. In this way, we ensured more robust convergence
compared to the full batch learning algorithms [62]. An epoch is a full pass through the entire data.
The max number of iterations to reach convergence is given by Equation (15). We chose the value of
mini batch size properly because increasing the batch size decreased the time of convergence and
performed better. However, from a certain point, the system can find problem of generalization.
Therefore, determining the appropriate size of mini batch is a crucial step in CNN networks.

input data

iterations = ——————
mini batch size

x epochs. (15)
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The number of filters, the filter size, the pooling size and stride, the mini batch size, and the number
of epochs were optimized during the training phase. For each fully-connected layer, we adjusted
the number of neurons and the dropout regularization rate to retain the best configuration. As the
final configuration, we chose the best architecture with its appropriate parameters. The parameters
illustrated in Table 1 are the same for all trained models. For the others not mentioned (the number of
filters, the mini batch size, the number of epochs, the number of neurons in the fully-connected layer,
and the dropout regularization rate), their values depended on the trained model.

Table 1. List of the proposed hyperparameters.

Parameter Value
Number of output neurons 16 (grid size is 5m x 5 m) and 100 (grid size is 2m x 2 m)
Number of convolutional layers 0,2,3,4,5
Number of FC layers 1
Filter size 2x2
Max-pooling Used once after the first convolutional layer
Max-pooling size 2 with stride 1 or 2
Parameter T 2,10, 20, 25, 30
Optimization algorithm SGD, RMSProp, and Adam
Activation function ReLU for convolutional layers and softmax for FC layer

4.3. Evaluation of Localization Accuracy

In the literature, machine learning-based localization approaches can solve regression or
classification problems. In this paper, motivated by the outstanding performance of CNN in the image
classification problem, we dealt with the issue of indoor localization as 3D radio image-fingerprint-based
location recognition. Thus, as the output of our CNN model, we had the label of the predicted class
containing the sensor node to localize, and not its position coordinates. To evaluate the performance of
such deep learning algorithms, standard metrics were calculated [63] comparing the actual classes and
the assigned ones. In this paper, we introduced accuracy as a classification performance metric. It is
the percentage of correctly-classified sensor nodes; it refers to the recognition rate of the classifier. It is
defined as:

accuracy = gtm x 100, (16)
total

where Ciye is the number of sensor nodes rightly classified and Cy,y,; is the total number of sensor
nodes classified.

Optimization Algorithm

We mention that &, €, p, f1, and B, are the optimization algorithms’ adjustable parameters,
selected to ensure the best result in terms of localization accuracy on the validation data. Thus, several
simulations were required to identify the optimal value of each parameter. The parameters used in the
rest of the paper are presented in Table 2.

Table 2. Optimization algorithms’ adjusted values.

Parameter Value

® 0.0005
€ 107
0 0.99
B1 0.9
B2 0.8

In the first set of simulations, we investigated the performance, in terms of localization accuracy, of
different cited optimization algorithms in order to determine the best one. SGD, RMSProp, and Adam
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(Tables 3 and 4) provide the good localization accuracy in the cited scenarios. As said before, RMSProp
and Adam provide an adaptive learning rate aiming to optimize the learning process registered
by SGD.

Table 3. Variation of the accuracy according to the optimization algorithm on the validation data using
a grid of size5m x 5m.

Number of APs  Mini Batch Size Algorithm Accuracy (%) Number of Iterations

SGD 89.93 690

5 60 RMSProp 90.8 1610
Adam 93.92 228

SGD 97.57 575
10 60 RMSProp 98.9 1610
Adam 98.96 228

We notice that the performance of RMSProp was close to that obtained when using SGD. However,
Adam slightly outperformed the latter. In terms of computational complexity and running time, the
highest ones went to RMSProp, and this can be a major inconvenience, especially when we work
with large networks and small grids, which require the use of hardware with huge computational
capabilities. Adam had the lowest complexity; it accelerated the convergence compared to SGD and
RMSProp. Instead of converging at 3800 iterations or 1900 iterations as SGD and RMSProp, respectively,
it converged at 285 iterations when working with a grid of size 2 m x 2 m and 10 APs. Thus, Adam
will be considered in the rest of this paper as the optimization algorithm.

Table 4. Variation of the accuracy according to the optimization algorithm on the validation data using
a grid of size2m x 2m.

Number of APs  Mini Batch Size  Algorithm Accuracy (%) Number of Iterations

SGD 80.43 4350

5 200 RMSProp 80.53 2900
Adam 81.93 435

SGD 91.14 3800

10 300 RMSProp 90.71 1900
Adam 91.57 285

4.4. Fingerprint Construction

We tried to construct a significant training database, which included several RSSI variations,
in order to present the maximum of fluctuations and variations, since indoor environments are
characterized by high dynamics of people and other structural changes. The fingerprint database
can be updated periodically depending on the availability of computing and memory resources.
We studied the impact of the variation of our input data’s size. Thus, we studied the variation of
parameter T on the localization accuracy, and we proved empirically the beneficial use of kurtosis.

4.4.1. Variation of the Parameter T

As said before, we worked with RSSI databases of size (M x T). In this section, we study the
impact of the variation of T on the localization accuracy taking into account the complexity and the
training time. To determine the best localization accuracy and reduce the training time, we worked
with four simulation scenarios: 10 APs and a grid of size 5m x 5m, 5 APs and a grid of size2 m X 2 m,
5 APs and a grid of size 5 m x 5 m, and 10 APs and a grid of size 2 m x 2 m. We used a two
convolutional layer architecture and one FC layer. Figure 7 illustrates the accuracy of localization
related to the parameter T.
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Figure 7. Variation of the accuracy depending on the parameter T.

We notice that the localization accuracy became almost stable from T = 20. We notice that the
training time increased considerably from T = 20 (Tables 5 and 6). The trade-off between localization
accuracy and complexity led us to use a parameter T equal to 20. We mention that our computing and
memory resources did not allow us to construct RSSI databases with T > 20 for 10 APs and a grid of
size 2m X 2 m. However, due to the fact that T = 20 was proven to be the best value of parameter T
for the three other simulation scenarios, as shown in Figure 7, we generalized this result.

Table 5. Variation of the accuracy according to T using a grid of size 5m x 5 m.

Number of APs  Mini Batch Size T  Accuracy (%) Training Time (min)

Prediction Time (s)

2 79.34 0:06 024 x 1073
10 84 0:07 0.29 x 1073
5 60 20 95.83 0:10 0.36 x 103
25 95.92 0:50 0.83x 1073
30 96.35 1:10 091 x 1073
2 91.57 0:09 03 x 1073
10 96.88 0:09 0.48 x 1073
10 60 20 98.96 0:15 0.58 x 1073
25 99.31 1:23 13x1073
30 99.88 1:50 15x 103

Table 6. Variation of the accuracy according to T using a grid of size 2 m x 2 m.

Number of APs  Mini Batch Size T  Accuracy (%) Training Time (min)

Prediction Time (s)

2 47.71 0:13 0.17 x 1073
10 65 0:24 0.27 x 1073
5 200 20 81.93 1:25 0.3 x 1073
25 82.35 4:31 0.69 x 1073
30 82.86 5:15 0.93 x 1073
2 72.07 0:47 02x 1073
10 85.36 1:15 028 x 1073
10 300 20 91.57 2:52 0.68 x 1073
25 X - -
30 X - _
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4.4.2. Empirical Proof of the Beneficial Use of Kurtosis

In this section, we demonstrate the advantage of the use of kurtosis on the localization accuracy,
empirically. We wanted to improve the performance of Adam on the radio fingerprint, introducing
a radio tensor. Table 7 illustrates the obtained performance when using the kurtosis (CNNLocWC)
and without kurtosis (CNNLocWoC), on the validation data. We can easily notice that the use of this
parameter guaranteed an improvement of almost 2.5% of the localization accuracy and an acceleration
of the convergence of the optimization algorithm, which converged in 190 iterations instead of
285 iterations. Therefore, we found that using kurtosis was a good way to enhance the localization
accuracy without the need to deploy extra infrastructure. The tests were performed for several
scenarios, but only one is presented in this paper.

Table 7. Adam’s accuracy on the validation data using a grid of size 2 m x 2 m and 10 anchors.

Mini Batch Size Accuracy (%) Number of Iterations

CNNLocWoC 300 91.57 285
CNNLocWC 400 94.13 190

4.5. CNN Architecture: Variation of the Number of Convolutional Layers

To analyze the effect of the number of layers, CNN models were performed with different numbers
of convolutional layers and different numbers of neurons in each layer. The mini batch size considered
was 300. We used a fully-connected layer with 120 neurons and dropout regularization with a 0.3 rate
after the feature extraction module. The output layer was composed of the output neurons (100 classes
because we worked with a grid of size 2 m x 2 m). The results are summarized in Table 8. Different
models were trained in order to find the best number of filters in each layer and presented. For the
filters, we used zero padding with stride one. We note that we mean by Conv(p, q) a convolutional
layer with p filters with size (g x q) and by max-pooling(y, z) a max pooling layer with size (y x y)
and stride z.

Table 8. Variation of the accuracy according to the number of layers using a grid of size 2 m x 2 m and
10 anchors

Number of Convolutional Layers Accuracy (%) Feature Extraction Module Architecture
0 83.3 -

Conv(200,2)
2 91.57 Max-pooling(2,2)
Conv(120,2)

Conv(120,2)
Max-pooling(2,2)
Conv(200,2)
Conv(300,2)

Conv(40,2)
Max-pooling(2,2)
4 83.29 Conv(90,2)
Conv(300,2)
Conv(400,2)

Conv(40,2)
Max-pooling(2,2)
Conv(90,2)
Conv(300,2)
Conv(400,2)
Conv(700,2)

3 88.43
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It is clear that the CNN network with two convolutional layers, associated with the best
localization accuracy, outperformed the others. This is based on the fact that such a network is
complex enough to extract appropriate features for region recognition. A CNN network with more
than two convolutional layers is a complex model tending to cause overfitting. Therefore, deploying
a CNN network with two layers seems to be the best architecture to obtain a good localization accuracy.

4.6. Comparison of the Indoor Localization Accuracy of Different Approaches

The proposed indoor localization method based on CNN using RSSI values needed to be evaluated
and compared to standard methods. All methods used the RSSI information to localize a specific
sensor node. For the trilateration technique, it was based on pairwise distances between the node
to localize and APs, requiring at least three known pairwise distances. Based on traditional NN,
we introduced two systems “Classic NN” and “Classic NN2”. Classic NN was a network composed
of five FC layers. It was associated with the same order of complexity, in terms of the number of
weights to learn, registered by CNN in order to compare these techniques fairly. Classic NN2 was
verified experimentally to be the best NN model implemented based on our data. To reach this
model, we began with a one-FC layer model. The best localization accuracy 83.3% was obtained with
120 neurons. Then, a two-FC layers’ model was constructed. The number of neurons was optimized to
reach 84.5% accuracy. A third FC layer was added, contributing 84.75% accuracy. From four FC layers,
it decreased again to reach 80%. Therefore, we worked with the three-FC layer model, which had the
best accuracy. Table 9 presents the localization accuracy associated with each technique, in order to
compare the performance of our developed localization frameworks (CNNLocWoC and CNNLocWC)
and other existing approaches that did not use the kurtosis information (trilateration, Classic NN,
and Classic NN2). The deep learning network architectures associated with the presented results are
presented in Table 10.

Table 9. Comparison of the accuracy associated with different algorithms using a grid of size2 m X 2 m
and 10 anchors.

Indoor Localization Technique  Accuracy (%)

Trilateration 30

Classic NN 80.76
Classic NN2 84.75
CNNLocWoC 91.57
CNNLocWC 94.13

We notice easily that trilateration introduced the worse localization accuracy compared to the
other tested algorithms. Classic NN was associated with good localization accuracy, but it was less
accurate than indoor localization systems based on CNN. To reach good accuracy, we had to feed the
model appropriately because we could get better accuracy with lower complexity (Classic NN2 was
better and less complex than Classic NN), especially since the considered radio tensors were not big.
For CNN, it was associated with the best localization accuracy. When used with kurtosis, only 5.84%
of classes were wrongly estimated. From each, 96.75% were estimated as neighboring class. We notice
that this error of classification was always caused by training points near the class borders. Therefore,
in future works, we will have to split the studied area in a way to avoid this case.
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Table 10. The deep learning network architectures used.

Deep Learning Algorithm Network Architecture

FC(1500)
FC(3000)
Classic NN FC(2000)
FC(1200)
FC(120)

FC(100)
Classic NN2 FC(200)
FC(120)

Conv(200,2)
Max-pooling(2,2)
Conv(120,2)
FC(120)

Conv(200,2)
Max-pooling(2,2)
Conv(300,2)
FC(120)

CNNLocWoC

CNNLocWC

5. Conclusions

In this paper, a CNN indoor localization framework based on RSSI measurements was developed.
We aimed to shift the online prediction complexity to an offline preprocessing step. This method
investigated, not only RSSI measurements, but also the corresponding kurtosis values calculated based
on RSSI, aiming to provide new information to the network. We converted radio tensors containing
RSSI values, received during T from different deployed APs, associated with calculated kurtosis values
into 3D radio images in order to realize a region recognition. The method proposed in this paper solved
the problem of the high computational complexity of the traditional methods and ensured a good
localization accuracy. As said before, the optimization of hyperparameters and different architectures
used is the most important factor in the CNN’s performance. To identify the optimal values of
different parameters, several experimentations were done. This empirical process demonstrated that
a two-convolutional layer CNN model optimized by Adam was the most adapted, regarding the input
data. The simulation results proved that our approach was robust and outperformed other popular
methods considering the trade-off between localization accuracy and computational complexity.

New positioning opportunities can be provided based on our flexible framework. It can be
introduced in order to estimate the three-dimensional orientation of the sensor node, not only the
three-dimensional spatial location, in order to develop a six-dimensional positioning framework.
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