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Abstract: Localization is a key-enabling technology for many applications in underwater wireless
sensor networks. Traditional approaches for received signal strength (RSS)-based localization often
require uniform distribution for anchor nodes and suffer from poor estimates according to unpredictable
and uncontrollable noise conditions. In this paper, we establish an RSS-based localization scheme to
determine the location of an unknown normal sensor from a certain measurement set of potential
anchor nodes. First, we present a practical path loss model for wireless communication in underwater
acoustic environments, where anchor nodes are deployed in a random circumstance. For a given area
of interest, the RSS data collection is performed dynamically, where the measurement noises and the
correlation among them are taken into account. For a pair of transmitter and receiver, we approximate
the geometry distance between them according to a linear regression model. Thus, we can obtain a
quick access for the range information, while keeping the error, the communication head and the
response time low. We also present a method to correct noises in the distance estimate. Simulation
results demonstrate that our localization scheme achieves a better performance for certain scenario
settings. The successful localization probability can be up to 90%, where the anchor rate is fixed
at 10%.

Keywords: received signal strength; localization; underwater wireless sensor network; linear
regression; relational distance refinement

1. Introduction

Recently, the development of underwater wireless sensor networks (UWSNs) has openned great
possibilities in several civilian and military applications such as event detection, monitoring and
surveillance technologies, especially when human operation is difficult [1–3]. In order to track sensor
nodes and to apply location-based routing algorithms, developing a localization scheme that takes
environment characteristics into account is required. Unlike terrestrial WSNs, underwater sensors
are often deployed with a large number over a region of interest. To maintain low cost, only a small
fraction of sensors are location-aware, while the rest of them need to be located. Underwater systems
inevitably have limited capabilities in storage and computational, fundamental principles for designing
localization schemes are rapidity, scalability, and reliability. In the end, the design of localization
algorithms should depend on several factors including accuracy requirement, resource ability,
and deployment restriction.

In this paper, we study a three-dimensional (3D) scenario and design a received signal strength
(RSS) localization scheme for underwater sensor networks using acoustic signals. In fact, due to the
high electromagnetic wave attenuation in underwater environments, acoustic channels are mainly
employed in UWSNs; thus, the obtained ranges using acoustic signals are more accurate than common
radio [2]. For system settings, some special nodes (e.g., anchor nodes, beacon nodes) meaure their
global locations. They are often deployed on water surfaces and can cooperatively determine their
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locations by sharing, while normal nodes (e.g., sensors) have unknown locations. A normal node can
obtain its depth information in the water by a pressure sensor. Based on the fact that radio signal
strength decreases during propagation, the RSS-based localization process refers to the procedure of
determining a sensor location based on the RSS information provided by a number of anchor nodes.
Due to RSS propagation factors, several RSS-based localization problems have been addressed [2,3].
Since RSS is easy to collect and highly dynamic in environmental changes, it provides a cheap and fast
solution for obtaining the relative distance of sensor nodes without any further computation. On the
other hand, it may contain large noise that needs to be refined during the localization process.

RSS-localization has attracted a lot of efforts from different literature, especially in 3D UWSNs.
Under an assumption that range measurements are corrupted by the Gaussian noises, a maximum
likelihood estimator (MLE) [4] was studied for UWSNs in which a search-based method was adopted.
As the maximum likelihood function is multi-modal, it requires a sufficiently close initial guess at the
beginning of sequence to obtain a good global solution. Another approach [5] provided an incomplete
matrix optimization method by recovering missing entries of a Euclidean squared distance matrix;
thus, the global solution was guaranteed. However, the approach [5] may be impractical for huge-size
UWSNs because its cost function is nonlinear and the computational burden appears during Newton’s
iteration. A convex approximation localization [6] was proposed by applying a projection onto a
convex set. In particular, the authors [6] found an appropriate projection onto several numbers of
circles to approximate the potential of sensor location, then the estimated location must be located in
the intersection of the circles. While [6] has low complexity and reduces the system implementation
costs, it cannot adapt to the mobility and dynamic changes in UWSNs. With the weighting factor of
nearest reference points [7,8], the authors first derived the MLE for estimating the sensor location,
where the transmit power can be treated as either a known or unknown parameter, applied several
approximations to convert the MLE into an easy solvable form, then performed a generalized trust
range region method. One big disadvantage of the approach is that the localization performance may
be degraded through several approximations, and the obtained solution may be a sub-optimal or local
one. In terms of energy-based localization, other approaches such as weighted least squares (WLS)
were proposed in several works [9–11], which offer close-form solutions and low complexity levels.
While the authors [10] only considered a simple underwater acoustic transmission path loss model
with medium parameters, authors in [11] presented a distributed localization scheme with periodic
beacon signals, where an additional time synchronization protocol must be executed before performing
the localization process. It has been shown in [10] that the localization scheme was accurate and less
vulnerable to environments compared to the time-of-arrival-based scheme [11]. The requirement of
time synchronization can also be neglected.

As we introduce above, the conventional localization algorithms have a same common weaknesses.
First, they all reply on the assumption of low noise conditions, and thus, cannot adapt to noise
uncertainty. If the environment is noisy, their localization performances are degraded due to imprecise
location information. Second, randomness in anchor locations is ignored, i.e., they are assumed to
be fixed, while in practice, their positions move according to wave motion, wind, etc. In order to
overcome those issues, we make three key modifications in our proposed localization approach: noise
covariance in RSS measurements, random deployment for anchor nodes, and a linear regression
model. For instance, we investigate the covariance among RSS measurements obtained by sensors.
The position of the anchor node is assumed to be randomly distributed in an area of interest. We also
develop a linear regression model that allows us to access a quick range of information despite of
noise condition. This work is a further development of the RSS-based WLS technique [12], where the
contributions of this paper are summarized as follows.

(i) We first establish an RSS-based underwater acoustic localization problem in 3D-UWSNs. A set
of anchor nodes is randomly deployed on the surface of water and other normal sensors are
deployed underwater in a 3D space. The question is how to estimate the normal sensor locations
with RSS measurements from anchor nodes, while achieving a high localization performance,
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short response time and low energy consumption. In order to reduce the 3D localization problem
to the 2D space, each sensor is equipped with an inexpensive pressure sensor which can quickly
calculate the sensor depth.

(ii) We develop a localization scheme for locating the dynamic nodes in a 3D UWSN. First, we suppose
there are N reference points available and calculate the relevant parameters such as transmit
power and path loss exponent by using the least squares method. Thus, several candidate range
estimations can be obtained according to the previous subset of samples. Multilateration takes
all distance estimations as the inputs and locates the sensor node in the next step. In order to be
computationally efficient and easy to implement, we build a linear regression model for obtaining
a direct distance ranging in which a given RSS value is further converted to the distance estimate.
Moreover, after each multilateration, we check the consistency of range estimation by taking a
relational distance adjustment.

(iii) In the simulation results, we compare our work with other existing approaches in terms of
localization accuracy. To be specific, it is defined by the probability of successful localization,
which indicates the ratio of the localization results satisfying a predefined accuracy requirement.
Through several case studies, we show that our localization scheme outperforms others in
some scenarios.

The remainder of the paper is organized as follows. In Section 2, we present a 3D UWSN system
including system architecture and a wireless signal propagation model. In Section 3, we present our
problem formulation and the proposed localization scheme for improving the location accuracy and
reducing response time. Simulation results are demonstrated in Section 4, followed by conclusions in
Section 5.

2. Overview

The aim of this section is to first introduce a 3D UWSN system that collects data in a centralized
manner, then to present those factors which affect the signal propagation. In order to utilize RSS
data collection, we investigate a practical wireless propagation model that reflects the environmental
characteristics. For a set of potential anchor nodes, a stable relative RSS distribution over the spatial
space reveals high accuracy location of the sensor.

2.1. Notations

The following notations are used in the paper.

• (·)T and (·)−1 denote the transpose and inverse operators, respectively.
• For a given random variable X, E(X) and Var(X) correspondingly represent the expectation and

the variance of X. Pr(X ≤ x) means the probability of which X is less than a value x.
• If X follows a normally distribution with mean µ and variance σ2, we write X ∼ N (µ, σ2).
• If X has an exponential distribution with a parameter λ > 0, i.e., X ∼ Exp(λ), its probability

density function is given by fX(x) = λe−λx for x ≥ 0.

2.2. System Model

Figure 1 depicts a deployment scenario for a 3D UWSN. In this system, the network consists
of three main components: anchor nodes, normal nodes (or sensors), and a base station (BS).
Generally, the anchor nodes can be deployed on a sea surface like buoys, which float according to
the motion of water flows and waves, but are attached by a rope to the seabed. Their locations are
often known because they are equipped with global positioning system (GPS) modules. The normal
sensors are randomly or uniformly deployed with different depths to cover the target area. They are
in passive motion with the surrounding to observe and transmit data to the surface anchor nodes.
The anchor node collects measurements from the sensors and delivers to the BS where the localization
algorithm and further data analysis are performed. Thus, the BS has high power and large capacity for
computing and storage.
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Figure 1. Deployment scenario for 3D localization scheme.

In order to reduce the computational complexity of localization task as the number of sensors
grows, each sensor has ability to retrieve its depth information by being equipped with a pressure
sensor. From theoretical perspective, a simple relationship between the pressure Ftotal and the sensor
depth h is given as

Ftotal = Fatmosphere + (ρ× g× h), (1)

where Fatmosphere is the atmospheric pressure, ρ is the water density, which varies according to the type
of underwater conditions (e.g., deep sea, clean ocean, or coast), and g is the acceleration of gravity.
From a practical perspective, several manufacturers have produced pressure instrumentation with
high accuracy and adaptability to harsh environments. For instance, Paroscientific Digiquartz’s depth
sensors [13] can calculate pressure and achieve a highly accurate depth measurement (about 99.9%) up
to 7000 m water depth. Thus, errors that come from depth measurements are neglected in this paper.

Regarding to transmission strategies, existing mechanisms of data transmission process can be
divided into two main categories: demand-driven and event-driven [11]. While a sensor answers
the requests by sending back a message (which contains the required contents) to the BS in the
demand-driven-based transmission, it only reports when it perceives a target event in the event-driven
mechanism. When a sensor initially detects the object, data packets generated by the sensor are
sent towards to the anchor nodes on the surface through a distributed manner. A data packet
contains the sensor’s identity, the recorded RSS measurement, and the depth information. Until the
packet reaches the surface anchor nodes, they collect and deliver back to the BS with their locations.
Finally, a centralized localization algorithm can be executed by the BS to obtain the sensor location
based on the received packets.

2.3. Wireless Signal Propagation Model

Due to the limitation in the storage and processing capacity of sensors, developing a less complex
measurement method for them is an important issue. RSS measurement is a commonly known method,
which is used for measuring signal strength by a receiver. It not only offers a low cost and easy
implementation solution but also allows us to obtain a proximity of neighboring range instead of
direct-distance measurement. Thus, several works have investigated the RSS-based localization
problems for many location-aware applications. Under the system architecture in Section 2.2, we aim
to formulate the localization problem in terms of RSS. Mathematically, for a given distance d between
two sensors, RSS reading is defined by the observed path loss at d ≥ d0 as [14,15]

P(d) = P(d0)− 10γ log10

(
d
d0

)
−A(d, f ) + Xσ [dB], (2)

where P(d0) represents the signal power loss at the reference distance d0, γ is the path loss component,
and Xσ ∼ N (0, σ2) is the shadow fading. Equivalently, P(d) can be expressed as P(d) = Pt − Pr(d),
where Pt and Pr(d) are the transmit signal power and the received signal power at the distance d.
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The attenuation A(d, f ) is calculated as a function of the distance d and the frequency f according to
the Thorp model [7,8].

A(d, f ) = 10k log10 d + dζ( f ). (3)

Here, k (1 ≤ k ≤ 2) is the geometrical spreading coefficient (e.g., k = 1 and k = 2 represent
the cylindrical and spherical geometries, respectively), ζ( f ) is a frequency-dependent absorption
coefficient given as

ζ( f ) =
0.11 f 2

1 + f 2 +
44 f 2

4100 + f 2 + 2.75× 10−4 + 0.03 [dB/km]. (4)

The model in (3) is often applied to characterize the acoustic channel in underwater communications.
This representation is very simple to implement and only depends on the signal frequency, thus, other
parameters such as water temperature, salinity and acidity are neglected in this paper. Thus, the total
signal attenuation at the receiver is obtained by combining the effects of path loss due to absorption and
spreading loss. Regarding the fading effects Xσ, we also assume that the correlation between Xσ(i)
and Xσ(j) satisfies

E[Xσ(i)Xσ(j)] = σe−dij/c, (5)

where dij is the distance between the i-th anchor and the j-th sensor and c is a predefined decorrelation
parameter [9]. Note that γ and σ2 are unknown parameters and can be estimated based on a certain
number of the RSS measurement samples.

3. Problem Formulation and Solution

In this section, we establish a two-step localization scheme which extracts RSS measurements.
First, in order to explore the closeness information on the RSS measurements, two biasing factors
(i.e., transmit power and path loss exponent) are calculated according to a given measured set.
With the help of this step, an unknown sensor is able to obtain an estimate for its relative distance.
Then, for a given number of available anchor references, we can determine the sensor location by
applying a multilateration technique. In many cases, since RSS may suffer from noisy ranging
measurements, we also develop a consistency check scheme in which the revised distance estimate
is adjusted based on the geometrical configuration. Thus, we get a better location estimation with
guaranteed accuracy.

3.1. Estimation of Unknown Path Loss Factors

If γ and σ2 are perfectly known and the sensing time is not limited, we can achieve a full knowledge
of channel information, thus can obtain an MLE at a certain distance as in [8]. However, these assumptions
hardly hold in practical situations. First, since the noise uncertainty is randomly changed in water
environments, it is difficult to obtain the exact value of σ2 at a particular time. Second, time dedicated
to the sensing depends on the quality-of-services of the system. From those perspectives, we realize
that one of the critical limitations is the issue of matching the observation with the learned elements
from environments. It can be solved by either designing a test for hypothesis verification or extracting
the characterizing features from the raw sensor data. As shown in the work [12], γ and σ2 can be
evaluated from persistent learning of the area.

Consider a set of N observations P(di) at different distance di from a transmitter, we collect N
measurement pairs {P(di), di} for the area of interest. The log-likelihood function is obtained from the
joint probability density function of N measurements as

L(γ, σ2) = −N ln(
√

2πσ2)− 1
2σ2

N

∑
i=1

[
P(di)− P(d0) +A(d, f ) + 10γ log10

(
di
d0

)]2

. (6)



Sensors 2019, 19, 3105 6 of 17

Taking the derivative of L(γ, σ2) respect to γ, σ2 and compensating to zero, we obtain

γ̂ =
∑N

i=1 log10

(
di
d0

)
[P(di)− P(d0) +A(d, f )]

10 ∑N
i=1

[
log10

(
di
d0

)]2 . (7)

σ̂2 =
1
N

N

∑
i=1

[
P(di)− P(d0) +A(d, f ) + 10γ̂ log10

(
di
d0

)]2

. (8)

Thus, once those channel parameters are obtained, the distance estimation from (2) becomes
relatively straightforward.

3.2. Estimation of Distance and Location

Substituting (7) and (8) into (6), the log-likelihood function becomes a function of single distance
d, i.e.,

L(d; γ̂, σ̂2) = − ln
(√

2πσ̂2
)
− 1

2σ̂2

[
P(d)− P(d0) +A(d, f ) + 10γ̂ log10

(
d
d0

)]2
. (9)

With the same technique, the measured distance between two sensors can be derived by taking
the derivative of L(d; γ̂, σ̂2) respect to d and letting it to zero, which satisfies the following.

10(γ̂ + k) log10 d̂ + d̂ζ f = P(d0)− P(d) + 10γ̂ log10 d0. (10)

For solving (10), an estimated distance d̂ is obtained by implementing the graph method [16].
This numerical solution provides an approximation of the corresponding distance between the anchor
node and the normal sensor. Then, we can apply a range-based geometric multilateration technique to
produce a single location estimation. In particular, the estimated location can be found as the centroid
of the intersection of the areas generated by the estimated distance d̂ from several anchor nodes.

In the next step, we discuss how to obtain the location of sensor from a set of the estimated
distances (10). Note that an unknown sensor can use the received information to obtained
its own location for achieving a course-grained localization. The basic idea of this procedure
is the multilateration method. We denote a set of Ma reference anchors with the locations
{a1, · · · , aMa} (ai = [xi, yi, 0]T , i = 1, · · · , Ma) and the location of a normal sensor x = [x, y, z]T .
Our goal is to estimate the sensor location x from the RSS measurements from Ma anchor nodes.
In general, the multilateration procedure requires at least Ma = 3 in 2D space, and Ma = 4 in 3D
space. According to Section 2.2, each normal sensor uses its measured pressure to obtain the depth
information. For the sensor x, let h denote the corresponding estimated depth value adopting from the
pressure sensor and define z = h, zi = 0, R2

i = d̂2
i − h2, we have

(x̂, ŷ) = arg min
(x,y)

Ma

∑
i=1

[
(x− xi)

2 + (y− yi)
2 + (z− zi)

2 − d̂2
i

]
= arg min

(x,y)

Ma

∑
i=1

[
(x− xi)

2 + (y− yi)
2 − R2

i

]
,

(11)

In another expression, the 3D localization problem was reduced to a 2D one. From (11), the sensor
location can be obtained by solving Ax = b, which leads to a least-square solution x̂ = 1

2 (A
TA)−1ATb.

In particular, we have

A =


x1 − 1

Ma
∑Ma

i=1 xi y1 −∑Ma
i=1 yi

...
...

xMa − 1
Ma

∑Ma
i=1 xi yMa −∑Ma

i=1 yi

 ,
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b =


(x2

1 −
1

Ma
∑Ma

i=1 x2
i ) + (y2

1 −∑Ma
i=1 y2

i )− (R2
1 −∑Ma

i=1 R2
i )

...
(x2

Ma
− 1

Ma
∑Ma

i=1 x2
i ) + (y2

Ma
−∑Ma

i=1 y2
i )− (R2

Ma
−∑Ma

i=1 R2
i )

 .

This procedure will produce a coarse solution after obtaining enough number of anchor nodes.
Finally, it takes M ×

(
M−1

2

)
equations needed to solve. This number of equations increases

substantially as the number of anchor nodes used for the localization increases.

3.3. Regression Model

Unlike conventional approaches, there are three main challenges at the BS to obtain the sensor
location from its received packets, which are listed as follows.

(i) First, RSS measurements depend on the unknown location x and channel factors, thus are
time-varying at the BS. Thus, it takes more than three reference anchor nodes for the BS to
calculate the exact solution by only using (2).

(ii) Second, RSS is typically affected by shadowing and multipath effects. If we learn a set of anchor
nodes relatively stable over the space, the measured RSS can reveal the exact location of the
unknown sensor.

(iii) Third, it is challenging for the BS to estimate all the above parameters and to response in a short
time. In fact, the localization task should be fast and energy efficient. While the sensor only
broadcasts a localization request message when it detects an event, the BS should proceed with
the message soon before the sensor may be changed due to water motion.

In order to solve those aforementioned problems, we need to collect the distribution of the
RSS of the anchor nodes to conduct a site survey in the area by recording the RSS measurements at
each reference location. By this way, a linear regression model is proposed to responsively obtain
a relationship between the RSS measurements towards the distance. In particular, denoting the ideal
distance as di, the polynomial fitting function for the set of N points {di, Pi} is defined by

di(Pi) = α0 + α1Pi + · · ·+ αnPn
i , (12)

where αj ∈ R (j = 0, · · · , n) are the coefficients and n is order of the polynomial. Given a sequence
of distances between two sensors d̂i, we suppose that each distance is determined on a predefined
interval. According to the Weierstrass approximation theorem [17], for each tolerance ε > 0 there exists
a polynomial di(Pi) of an appropriate order, which approximates d̂i within the given tolerance, i.e.,

|d̂i − di(Pi)| ≤ ε. (13)

Given ε, we need to calculate the coefficient subject to minimizing the sum of square errors.
In particular, let ε(a0, · · · , an) = ∑N

i=1 ε2
i , where εi = (d̂i − di), we write

(α∗0 , · · · , α∗n) = arg min
(α0,··· ,αn)

ε = arg min
(α0,··· ,αn)

N

∑
i=1

(d̂i − di)
2. (14)

Taking partial derivatives of ε with respect to α0, · · · , αn and letting them approach zero yields to

∂ε

∂αj
= 0⇔

N

∑
i=1

(−2Pj
i )(d̂i − di) = 0

⇔
N

∑
i=1

(−2Pj
i )(d̂i − α0 − α1Pi − · · · − αnPn

i ) = 0

⇔
N

∑
i=1

Pj
i d̂i = α0

N

∑
i=1

Pj
i + α1

N

∑
i=1

Pj+1
i + · · ·+ αn

N

∑
i=1

Pj+n
i ,

(15)
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for all j = 1, · · · , n. By combining (12) and (15), the regression coefficients (α∗0 , · · · , α∗n) can be
numerically found. The linear regression model has many good properties. From the standpoint of
the execution time, it is capable of being flexibility for non-complicated data and, overall, the fitting
process is simple. Furthermore, it still performs well even when the error distribution associated with
the measurement data is not normal, which are important for stable localizability. It also shows a
precise way to transform an RSS value to a distance estimate with a given upper bound of errors. In
Figure 2, we provide four examples of polynomial regression fits (PRFs) in several orders. In this
figure, the solid black line interpolating circles and the curve of black square dots represent the ideal
and real RSS versus distance , respectively. The fitting polynomials (12) in several orders are plotted
with different colors. For instance, the first order PRF is specified by a dashed curve with red cross
markers. We also add a text description (in red color) on the average root mean square error (ARMSE)
between the real distance and the estimated one via fitting for each case. We observe that with higher
PRF more accurate distance translation is obtained, thus we get a better location estimation.
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Figure 2. Fitting polynomials for different orders.

3.4. Adjustment of Relational Ranging

According to the previous analysis, the RSS measurements are often affected by the noise and
interference in the environments. Thus, in this section we propose a sufficient and necessary method
to reduce those phenomena that cause errors in distance estimation. The basic idea is that each normal
sensor requires its location in a certain time defined by a number of rounds. At the beginning of
each round, the BS estimates the sensor location by computing a least-squares-based multilateration
solution. In general, the relative distances from sensor to anchor nodes will be refined according to
an error constraint controlled by the BS. The distance adjustment is done after achieving a desired
accuracy or a specific number of iterations. Without loss of generality, suppose that an estimated
distance d̄ can be expressed as a summation of the true distance d and the error δ as

d̄ = d + δd. (16)

Here, the error δd proportional to d, i.e., δd = ξd, where ξ is a random variable with mean
E(ξ) = η. This is a clear definition for two reasons. First, since the aim of this section is to reduce the
uncertainty of distance estimation in the previous localization process, it is more important to ignore
other factors. Second, although we may not know how much ξ is proportional to d, adjusting its value
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as a random parameter still guarantees the fairness among random factors in distance uncertainty.
As soon as the distribution of parameter η is known, the refine distance can be readily computed as

d̃ =
d̄

1 + β
, (17)

where β is chosen to minimize the mean square error E[(d̃− d)2]. Here, we ignore the subindex of
distance value for the simplicity purpose. The basic idea is that for a random subset of variable ξ,
we use it to compute several candidate estimations d̃ according to (17). Then, the one with the least
mean square error is chosen as a tentative estimate. The term E[(d̃− d)2] can be expressed as

E[(d̃− d)2] = E
[(

d̄
1 + ξ

− d̄
1 + β

)2
]

. (18)

Thus, results from taking derivative on both sides of (18) and setting it to zero, we obtain

d
dβ

E
[(

d̄
1 + ξ

− d̄
1 + β

)2
]
= E

[
1

1 + η
− 1

1 + β

]
= 0, (19)

which yields to β = E[(1 + ξ)−1]−1 − 1. For example, we consider the case that ξ follows the
exponential distribution, i.e., ξ ∼ Exp(λ), where λ = 1

η . Thus, the value β can be calculated as

β =

[∫ ∞

0

1
1 + ξ

ηe−ηξ dξ

]−1
− 1 =

[
1
η

e
1
η E1

(
1
η

)]−1
− 1, (20)

where E1(u) =
∫ ∞

u e−t/tdt is the special exponential integral. Figure 3 shows an example of distance
adjustment following the above procedures. The simulation parameters are given in Section 4.
In Figure 3a, the vertical and the horizontal axes represent the corresponding total lengths of the
distances that we perform. Due to the mutually perpendicular plane property in 3D space, the distance
between two points in the space can be defined by this way. In each run, the coordinates of a single
sensor were randomly generated from a uniform distribution. The estimated range was obtained
from the raw measurements (2) by applying the dead-reckoning method [3]. Thus, the adjusted
distances show the number of runs in which the optimal solution was given by (17) (averaged
over 50 realizations). Note that for high noise level, the optimal adjusted distances have a decent
performance because the estimated distances from the raw data are unstable and have the huge
norm, which causes their averages to be large. Also, Figure 3b shows the average error during the
refinement phase versus given error mean η of the random variable ξ ∼ Exp(1/η). In this figure,
we keep a fixed real distance d = 50 m, generate its estimated distance according to (16), and compute
the corresponding refined distance by using (17). We observe that the average error increases as η

increases. Obviously, a larger region means less precision and lower quality of distance estimation.



Sensors 2019, 19, 3105 10 of 17

Vertical length (m)
0 20 40 60 80 100

H
or

iz
on

ta
l l

en
gt

h 
(m

)

-20

0

20

40

60

80

100

120 Actual distance d
Estimated distance from raw data
Adjusted distance

(a) Distance refinement results.

Error mean η
0 5 10 15 20 25 30

A
ve

ra
ge

 e
rr

or
 (

m
)

0

5

10

15

20

(b) Average error versus η when ξ ∼ Exp(1/η).

Figure 3. Examples of distance calibration. (a) Distance refinement results; (b) Average error versus η

when ξ ∼ Exp(1/η).

3.5. Data Transmission Strategy for Localization Task

It is obvious that our data transmission strategy follows an event-driven mechanism. For a given
network, a node is called Nh-hops localizable if it can be localized by using only measurement
information at most Nh-hop references. In particular, the anchor nodes cooperatively estimate the
per-hop distance, i.e., the i-th anchor node calculates the per-hop distance and stores itself as

Phi =
∑i 6=j ||ai − aj||

∑i 6=j hi
(i, j = 1, · · · , N), (21)

where hi is the number of hops from the i-th anchor node to the j-th one. We denote N(i)
h as the

minimum hop count between the unknown node and the i-th anchor node, then the distance between
them can be roughly estimated by

d̄i = N(i)
h × Phi. (22)

If the value N(i)
h = 1, the distance estimation d̄i can be further simplified as (12). In the following,

we present a distributed protocol to locate a sensor node in the network. This protocol is an interactive
manner in which a localization task follows step-by-step procedures and stops when the BS obtains
the sensor location.
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We give some comments on Algorithm 1. Regarding the location request message, it contains
the identity of the normal sensor, its RSS record to its neighbor surface anchor, the depth information,
and the hop count to reach the anchor nodes. Hence, before sending the message, each normal sensor
estimates the least hop counts to each anchor node. In order to achieve a desire localization result,
we define a predefined threshold for the multilateration error. Localizability information diffuses
step-by-step paths following Section 3.2 and stops when the localization error reaches the threshold or
after a number of predefined iterations. In terms of energy saving, since sensor node only broadcasts
the packet when it senses an event, this data transmission mechanism can reduce the signaling cost
and the number of sending packets, while the BS has large storage and computational capability to
obtain more accurate results and to reduce the overheads over the sensors.

Algorithm 1 A framework of data transmission

1: A normal sensor senses an event, it broadcasts a localization request message towards the neighbor
anchor nodes over a period.

2: Surface anchor nodes receive the packet, they associate their locations with the message and
forward to the BS

3: When the anchor’s message reaches the BS, the distance d̄ is calculated according to (12) and is
stored at the BS.

4: The BS updates M entries of d̄ in the localization table and uses them for obtaining sensor location
according to Section 3.2 and adjusting the distance value according to Section 3.4.

4. Simulation Results

In this section, we aim to conduct several numerical simulations in order to assess the effectiveness
of the proposed localization scheme. Regarding the simulation parameter settings, we consider
a networks of Nnode nodes that are randomly deployed in a seabed of 1000 × 1000 × 600 m with
the same amount of energy. The minimum distance between the sensors and the minimum distance
between the anchor nodes are 36 m and 70 m, respectively. Other parameters are given in Table 1.
The sensors are deployed in different depths of water. We also assume that the distance between
normal sensors and the surface anchor nodes should meet the connectivity requirement.

Table 1. Parameter settings.

Parameter Value

Total number of nodes Nnode = 500
Maximum communication radius Rcom = 100 m

Anchor ratio AR = 3–12%
Geometrical spread coefficient k = 1.5

Multilateration type Trilateration, M = 3
Trilateration error δd = 36 m

Maximum hop counts Nh = 10

For example, Figure 4 shows a sensor deployment scenario given anchor nodes and normal nodes.
Our localization scheme is also based on several assumptions as follows. First, we generate a network
of Nnode randomly and uniformly deployed nodes in the predefined area of interest in which the
communication radius is adopted from Table 1. Anchor nodes are randomly distributed on the water
surface in which the distances among them should be equal to or greater than the preset parameter
and guarantee a cover of the surface of the seabed. Sensor nodes are deployed at various depths, thus,
they can report an event to the surface anchor nodes by a single hop or multiple hops.
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Figure 4. Deployment scenario example.

Second, an anchor node can obtain its global location either by using a GPS module or sharing
with the local neighboring nodes. In practice, the location measurement inevitably contains errors,
resulting in an inaccurate solution. We suppose that the effect of errors can be neglected, thus, the
multlateration technique can be applied on (11). For the movement trajectory of an anchor node
a = [xa, ya, 0]T , we adopt the noise model used in [18] to represent the noises in processing motion
and measurement phases. In this study, the noise is modeled as a function of time t as

ϕ(t) = 1.2 + 0.3 cos(0.4t). (23)

The change of the anchor coordinate coincides with the Bower’s function Φ = Φ(xa, ya, ϕ) [18].

δxa = −
∂Φ
∂ya

; δya =
∂Φ
∂xa

. (24)

We also keep the same set of related parameters of [18]. Thus, the coordinate of the anchor node
at a certain time t is calibrated according to the previous coordinate and its motion change.

at = Φ(xt
a, yt

a, ϕt) ≈ at−1 + ∆Φ (25)

where ∆Φ = [δxa , δya , 0]T . Note that we only present a simple model for modeling the anchor
movement, but many complex observation models have been investigated to eliminate inconsistencies
and inaccurate data, which is out of the scope of this paper. Third, in order to reduce hardware cost and
to preserve network energy, only a small fraction of the nodes is location-aware. In this case, anchor
ratio (AR) is defined by the number of anchor nodes over the total number of sensors in the network.
Thus, when alternative anchor references are available, any subgroup can locate a normal sensor by
the multilateration to provide a desire result. Note that the AR can be selected according to the quality
performance metrics. It is often desired to be as low as possible. Thus, the AR is the minimum number
that guarantees a high accuracy given an acceptable error. Third, in order to accurately estimate the
unknown path loss factors in (7) and (8), the RSS should be sampled from distinct separate points in
space and the number of measurement pairs N is sufficient according to the total number of sensors.

In order to evaluate the performance of our proposed localization scheme, we consider the
following performance metrics. First, the root mean square error (RMSE) gives us information on
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the difference between the actual sensor position x and the estimated one x̂. The RMSE is evaluated
through the Monte Carlo simulations, i.e., for a number of runs Ns is defined by

RMSE =

√√√√ 1
Ns

Ns

∑
i=1
||x− x̂||22. (26)

In fact, we set the maximum number of repeated random samplings as the number of sensor
nodes. Second, for a given upper bound of the localization error ε, the corresponding cumulative
distribution function (CDF) of the average RMSE is given by

CDF(ε) = Pr(RMSE ≤ ε), (27)

where the right-hand side of (27) represents the probability that RMSE takes on a value less than or
equal to ε. Moreover, a good localization scheme should achieve a proper localization error in low AR
and its performance should be independent on the node density.

Figure 5 first illustrates the attenuation in (3) versus the frequency measured in dB when the
transmission range is the maximum. In the propagation model (2), there are two terms in the path
loss, which are determined by the distance d. The term 10γ log10(d/d0) determines the space spread,
and the term A(d, f ) represents the attenuation coefficient. As a result, the attenuation tends to
increase as frequency or distance increase, while the path loss simultaneously decreases in signal
power. The attenuation value almost hits zero at the frequency of f = 50 kHz. The figure it provides
us information on path loss-distance characteristics of the area. Hence, it is important to associate
collected data with locations for making the data set meaningful.
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Figure 5. Attenuation coefficient A(d, f ) versus frequency (top figure) and path loss versus distance
(bottom figure).

Figure 6a plots the probability of localization success at different water depth D. We observe
that the probability of localization success increases as either D increases or AR increases. This is
because of two possible reasons. First, as D increases, the value A(d, f ) becomes small and, thus, can
be ignored in the depth water. The sensor’s movement in the deep sea is smaller than that in the
shallow sea. Moreover, it has been shown that localization with multi-hop transmission can prevent
the propagation of localization errors and require low communication overheads [5]. Since we fixed
M = 3 in the simulation settings, we may increase the value of M in the multilateration procedure
to achieve a better performance. Thus, it needs to establish a specific upper bound for M in order to
balance the tradeoff between the computational cost and the localization accuracy. One suggestion is
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the development of a feedback control strategy based on the sensed data, where the knowledge of
having a specific value of M is not required.
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Figure 6. Localization performance of the proposed scheme. (a) CDF performance versus AR for
several water depths; (b) Probability of successful localization versus localization error for several ARs.

Figure 6b compares the CDF performance for a given upper bound of localization error ε.
For example, for given ε = 20 and AR = 3%, the probability that the average RMSE is lower than ε is
around 0.47. It is shown that increasing the AR will improve the RMSE performance. Based on the
results, we can choose an appropriate AR and a suitable upper bound of localization error to get an
acceptable RMSE. For instance, when AR = 12% and ε = 40, more than 85% of the average RMSE
value is smaller than ε. As we explained above, selecting a small value of AR provides a win–win
pricing deployment strategy, while guaranteeing a good RMSE. Thus, this result gives us evidence to
choose the appropriate AR for a given localization error bound.

Figure 7 shows performance comparison between the proposed scheme and other methods in
terms of (a) the impact of water depth and (b) the influence of node density. In this section, there
are two other schemes we would like to compare with, which are second-order cone programming
(SOCP) [6] and WLS [7]. The localization ratio versus water depth is shown in Figure 7a. From the
simulation results, we observe that our proposed scheme achieves more stable performance in different
water depths than the others. As D increases, the SOCP scheme has a slightly higher localization ratio,
because the geometry relationship among the nodes changes slowly and the attenuation coefficient can
be neglected at deeper water depths. We also study in Figure 7b the localization performance in terms
of the number of nodes for a given area, where AR is fixed at 10%. The proposed scheme identifies
about 9–18% non-localizable nodes, while about 12–21.71% in SCOP and 15.19–30.11% in WLS. This is
because the two conventional approaches suffer from the ranging estimator errors that arise from the
RSS measurement inaccuracy, while in our approach, the distance is obtained from a learning model,
then it is refined to remove the unwanted errors.
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Figure 7. Comparison between the localization schemes. (a) Impact of water depth; (b) Influence of
node density.

Remark 1 (Summary of findings). This remark ends with a summary to provide a big picture and facilitates
understanding. In this paper, we study the RSS localization problem based on an event-driven mechanism for
UWSNs. In recent years, this issue has drawn remarkable attention from an increasing number of researchers.
A localization task refers to the estimation procedure of an ordinary sensor node in a network. In order to design
a good localization, we consider the localization issue based on various properties as the following.

• Regarding network topology, we consider a geometric model to reflect how a sensor network observes
an event over the physical space. In particular, normal sensor nodes are placed at different depths to
cover the area of interest. Anchor nodes are deployed on a sea surface and drift with water motions. A
network node collects measurements and delivers back to a BS for analysis, thus, it resolves the computation
limitations of sensor nodes. It has been shown that this network topology is able to obtain accurate and
reliable results. One problem is the communication cost of transmitting data back to the BS. Thus, a good
localization strategy should reduce the number of sending packets.

• In terms of the measurement model, a practical RSS model was considered in (2). Thus, a precise distance
was obtained for estimating the unknown sensor node more accurately. In Section 3, we showed how to
transform RSS measurements for the location of a normal node. This step typically takes place among the
target node and its neighbor anchors. Depending on the number of hop counts Nh, we name the process as
Nh localization estimation. Moreover, errors are often inevitable and unpredictable for RSS-based ranging
techniques. Thus, the location refinement was proposed in Section 3.3 to improve the accuracy of the
localization scheme.

• Through analyses and simulation results, we address some effectiveness of the proposed scheme as follows.
First, as we presented in Section 2.2, since each normal sensor is equipped with a pressure sensor, the 3D
localization problem can be reduced to the 2D space. Moreover, by establishing a regression model between
RSS–distance for a given upper error bound, we can balance the network complexity and the response
time during the localization process. Second, the proposed localization scheme is based on an event-driven
mechanism, so that it can save the energy for the sensor nodes because it is not required to be fully awake.

5. Conclusions

This paper has studied an event-driven RSS-based localization in UWSNs. Based on the establish
model system from a centralized perspective, we constructed and proposed a fast localization algorithm
by exploiting a linear fitting model for an RSS–distance relationship among the sensors. In order to
mitigate the impact of errors in distance estimation, we also developed a method for sequentially
computing and refining the relative distance. Simulation results show that the localization accuracy
has been improved.
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Based on the results, we make the following discussions. First, in our problem formulation, we
use the Thorp model to simulate the attenuation coefficient factor. This value only depends on the
distance and the frequency and, thus, may not incorporate dynamic propagation changes in water
depth and random wave motions. Therefore, in order to predict the sensor location more accurately,
we need to investigate other nonlinear models that represent the changes in the range, the depth and
the form of the ocean waves. In our paper, we obtain the RSS variance and the path loss exponent value
by learning from a certain number of samples in the first stage, then, the coordinates of a sensor are
estimated iteratively in the second stage. In general, it is necessary to estimate the path loss exponent
and the location jointly, therefore, it is legitimate to use the information (9). Although our localization
scheme requires a prior learning process to obtain a good regression model, it returns a better and more
stable performance through several case studies. Thus, depending on the purpose of the applications,
we can choose the model with the desire accuracy. Moreover, in order to efficiently apply a localization
scheme in UWSNs, features and challenges of underwater acoustic signals should be integrated with
localization designs.
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3D three-dimensional
AR anchor rate
BS base station
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MLE maximum likelihood estimator
PRF polynomial regression fit
RMSE root mean square error
RSS received signal strength
SOCP second-order cone programming
UWSN underwater wireless sensor network
WLS weighted least squares
WSN wireless sensor network
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