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Abstract: Gait assessment and quantification have received an increased interest in recent years.
Embedded technologies and low-cost sensors can be used for the longitudinal follow-up of various
populations (neurological diseases, elderly, etc.). However, the comparison of two gait trials remains
a tricky question as standard gait features may prove to be insufficient in some cases. This article
describes a new algorithm for comparing two gait trials recorded with inertial measurement units
(IMUs). This algorithm uses a library of step templates extracted from one trial and attempts to detect
similar steps in the second trial through a greedy template matching approach. The output of our
method is a similarity index (SId) comprised between 0 and 1 that reflects the similarity between the
patterns observed in both trials. Results on healthy and multiple sclerosis subjects show that this new
comparison tool can be used for both inter-individual comparison and longitudinal follow-up.

Keywords: inertial measurement units; gait analysis; biomedical signal processing; pattern
recognition; step detection; physiological signals

1. Introduction

Gait semiology is of major importance in neurological practice, as abnormalities are associated
with high comorbidities. The quantification of gait using inertial measurement units (IMUs) has
become a democratic method for the follow-up of subjects with locomotion alterations in healthcare.
The use of such embedded technologies has already shown its usefulness in the detection of postural
strategies during walking [1], partitioning gait during the stance phase [2] or motor supplementation
for switch-activated simulators [3]. However, these clinical applications require the detection of
steps within the IMU signals. Spatio-temporal gait parameters can also be extracted for the healthy or
disabled and stored in databases that enable a longitudinal follow-up of patients with gait disorders due
to ageing [4], orthopedic or rheumatic diseases [4–6] or neurological alterations [4,7–9]. It has proven
useful to help clinicians refine the description of individual gait disorder and strengthen their insights
into the patients’ movements and compensation patterns. This quantification of characteristics related
to altered gait using signals from IMUs that are collected inside databases allows inter-individual
comparisons to assess the distance of the patients’ gait from a control group [10] or intra-individual
comparisons for longitudinal follow-up [11,12]. Common gait features most often rely on basic

Sensors 2019, 19, 3089; doi:10.3390/s19143089 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/19/14/3089?type=check_update&version=1
http://dx.doi.org/10.3390/s19143089
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 3089 2 of 17

statistics such as averages or standard deviations over a whole exercise [13,14]. On the one hand,
they provide useful and interpretable information for the clinician. On the other hand, they have
not proven sensitive enough for detecting subtle changes in several pathologies [4,15,16]. Besides,
they display high inter-session variability for diseases that present with day-to-day changes [17].
To assure robustness of these parameters, it is usually necessary to increase the number of steps within
a trial [18–20]. However, repeated measures or treadmill exercises are incompatible with common
clinical practice in patients with limited walking perimeter, which is frequent in neurological practice.
In order to obtain a more integrative perspective, some authors resort to global indexes, which are
composed of several parameters [21,22]. These scores are promising but careful consideration should
be given to their evolution inasmuch as the absence of evolution of a multicomponent score does not
necessarily reflect the reproducibility of the gait pattern between two measurements [20]. Indeed,
maintaining a steady value of an overall score over time may mask gait adaptations. For instance,
gait velocity may be maintained despite a decreased step length if the cadence increases concomitantly.
What is more, these parameters heavily rely on accurate step detection, which is problematic in severely
altered steps: Some patients may require manual painstaking and time-consuming detection [23]. It is
therefore key to evaluate this detection or be exempt from it.

Progressive multiple sclerosis (pMS) is one of the disorders that benefits heavily from the use of
IMUs in routine clinical practice to assess indices of the disease evolution [24–26]. IMUs have been
applied to reliably monitor patients’ health status with regard to their risk of falling [27], their physical
abilities [28,29] or the neuromotor strategies used to adapt to their disability [22,30–32]. However,
patients suffering from severe pMS may impose high constraints both on measurements, which should
be short and controlled to abstract from fatigue and day-to-day variations, and processing, which
should adapt to very abnormal patterns and confounders such as false gait events triggered off by
loading and unloading of walking aids.

In this study, a new metric to compare two gait trials recorded with IMUs, which we called
“similarity index” (SId), is introduced. It aims at overcoming previously mentioned withdrawals
of statistical methods in pathologies such as pMS. The SId is an asymmetrical metric that takes as
input two gait trials and computes an index, comprised between 0 and 1, that assesses the similarity
between them. It is hypothesized that such a metric provides a valid characterization of a change
in gait patterns between two measurements, and can therefore be used either for inter-individual
comparison or longitudinal follow-up.

First, the SId is compared between pairs of trials of increasing distance. Second, it is evaluated
against more conventional features to estimate its capacity to assess changes in gait. Eventually,
its ability to indicate the level of confidence of the underlying step detection is appraised.

2. Data, Protocol and Subjects

2.1. Protocol

Two XSens® sensors (Xsens® Technologies, Enschede, the Netherlands)—hereafter XS—were
placed on the participant’s body (one on the dorsal part of each foot) using Velcro bands. The XS
showed high reliability at heel impact for the ankle joint in the sagittal plane (inter-correlation
coefficient (ICC) > 0.8) [33]. With a standard error of the mean (SEM) below 3°, between- and
within-rater reliability of kinematic variables obtained from XS across joints and planes, its consistency
is comparable to or better than that obtained from optoelectronic motion capture systems [34].
The GaitRite® mat—hereafter GR—exhibits strong concurrent validity [35,36] and excellent reliability
(with ICC > 0.8) for most temporo-spatial gait parameters in both young and older subjects [37–39].
The GR can be used to assess people with altered gait with good reliability even though walking ability
does influence it. The ICCs for the older subjects [37] or patients with neurological diseases [40,41] can
be somewhat lower but are still adequate for measuring step parameters of gait in these populations.
Based on this data, GR is used in this paper as the gold standard. The data were sampled at 100 Hz
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for the XS and at 120 Hz for the GR. Both systems were synchronized in time by using the PC clock
connected to the XS. Participants performed four walks of 12 m with a U-turn (6 m on the way in and
6 m on the way out): Two at the first visit (M0) and again two at the second visit six months later (M6).
The choice of a six-month period between measurement was driven by the fact that patients from the
pMS group undergo routine evaluation of their gait every six months. The protocol is schematized in
Figure 1.

Beginning of 
active surface

End of active 
surface

6m
7m

Beginning of 
walk

Y-axis

Angular speed 
around the Y-axis

XSens® 
sensors

Figure 1. Measurement protocol. The XSens® sensors (XS) inertial measurement units and the
GaitRite® mat (GR) are synchronized by using the PC clock connected to the inertial measurement
units. The active surface (green) is covered with pressure sensors. The rest of the mat (grey) is inactive
and does not detect any pressure from the subject.

2.2. Subjects

Twenty-two patients with progressive multiple sclerosis (pMS) and ten young healthy subjects
(HS) were enrolled in this longitudinal study. The characteristics of the subjects are displayed in Table 1.
pMS patients were consecutively recruited from the outpatient clinic of Percy Hospital (Clamart, France)
between June 2018 and September 2018. The inclusion criteria for participation in this cohort required
patients to be at least 18 years old, be diagnosed with primary progressive or secondary progressive
multiple sclerosis according to the 2010 International Panel criteria [42], be capable of walking 20 m
with U-turn and be free of any other conditions that affect gait. HS participants were recruited from
the hospital and research unit staff between June 2018 and September 2018. The inclusion criteria
were: No report of falls in the past five years prior to inclusion and no disease that could affect their
walk. The sex ratio was comparable between the two groups and no major differences were seen
between other anthropometric characteristics. pMS patients were aged 58 (±11) years old and the
HS group mean age was 26 (±2) years old. The two groups were not matched for age as one aim
of this analysis was to analyze the performance of the algorithm on two opposite groups, one with
highly altered steps (pMS) and one with the most normal steps. Severity of the disease was evaluated
using the Expanded Disease Status Scale (EDSS) [43], which is a score of 0 to 10, ranging from normal
neurological examination (0) to total impotence (9.5) or even death (10). Included participants in the
pMS group had an EDSS between 3.0 and 6.5, as disabilities greater than 7.0 impede walking even a
few steps. Seven out of the 22 participants had an advanced disease requiring permanent walking aid
(cane(s), walker and/or human help). Two patients needed human help to perform the walking test.
All subjects provided a written informed consent prior to their inclusion. The study protocol followed
the principles of the Declaration of Helsinki and was approved by the Ethics Committee “Protection
des Personnes Nord Ouest III” under the ID RCB: 2017-A01538-45.
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Table 1. Baseline characteristics of patients with progressive multiple sclerosis (pMS) and healthy
subjects (HS). For the age, height, weight, BMI, Multiple Sclerosis Walking Scale (MSWS) and Fatigue
Impact Scale (FIS), the mean and the standard deviation (SD) are displayed. For the Expanded Diseases
Status Scale (EDSS) and the functional scores (subscores of EDSS), the statistics are reported as median
and interval quartile range (IQR).

pMS (n = 22) HS (n = 10)

Sex (M/F) 9/13 4/6

Age (years) 58 (11) 26 (1)

Height (m) 1.71 (0.09) 1.72 (0.09)

Weight (kg) 71.2 (16.6) 58.2 (10.9)

BMI (kg/m2) 24.3 (5.1) 21.0 (3.0)

EDSS 5.0 [3.5–6] -
EDSS—pyramidal 3.0 [3.0–3.8] -
EDSS—cerebellar 1.5 [0.0–3.0] -

EDSS—bulbar 0 [0.0–0.8] -
EDSS—sensitive 2.0 [1.0–2.0] -
EDSS—cognitive 1.0 [0.0–2.0] -

MSWS 65.0 (17.3) -

FIS 43.4 (24.9) -

Use of walking aid for the walk test (/total number) 7/22 0/10
Cane (1 or 2) 4 -

Walker 1 -
Human help 1 -

Cane + human help 1 -

3. Method

We now define the similarity index (SId) between two gait trials. Let us consider two gait trials:

• One train trial denoted itrain and composed of both GR data and XS data.
• One test trial denoted itest, only composed of XS data.

The aim of the algorithm presented in this section is to compute a similarity index SIditest |itrain
,

comprised between 0 and 1, that will assess the proximity between trials itrain and itest. This metric is
based upon the following question: How well can the group of steps present in trial itrain predict those
observed in trial itest ?

The computation of this index is based on three main stages, detailed below and illustrated in
Figure 2.

1. The GR and XS data from trial itrain are used to build a library of templates Ptrain;
2. This library is used to detect the steps in trial itest, according to a greedy template-based approach

inspired by [44];
3. The Pearson coefficients between the detected steps in itest and the patterns in Ptrain used for their

detection are merged to compute the similarity index SIditest |itrain
.



Sensors 2019, 19, 3089 5 of 17

Construction of the library of templates1
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𝒊𝒕𝒓𝒂𝒊𝒏

GaitRite step annotations :
Initial Contact : black

Final Contact : red

XSens data Library of templates
𝑷𝒕𝒓𝒂𝒊𝒏

Use of the library to detect the steps2

𝑷𝒕𝒓𝒂𝒊𝒏

Test trial
𝒊𝒕𝒆𝒔𝒕

Pattern 𝑝𝑠

Step s

Step 𝑠 detected with Pattern 𝑝𝑠 𝑐𝑠 = 𝑐𝑜𝑟𝑟(𝑝𝑠, 𝑠)

Figure 2. Main stages for the computation of the similarity index (SId). First, the GR and XS data from
the trial itrain are used to build a library of templates Ptrain. In the second stage, the library is used
to detect the steps in the trial itest, according to a greedy template-based approach inspired by [44].
Each detected step s is associated with one template ps. The correlation coefficients cs between the
steps s and their associated templates ps are then averaged to obtain the similarity index SIditest |itrain

.

3.1. Construction of the Library of Templates

Let us consider a train gait trial itrain composed of GR and XS data. We first use the GR
recordings to extract the exact timings for initial contacts (ICs) and final contacts (FCs). This process
is automatically performed thanks to the GR software. Only the steps occurring while the subject
is on the active surface of the instrumented mat are used; steps occurring during the U-turn are not
considered. Then, we use the XS synchronized data to build the library of templates. We consider
for each right/left foot XS sensor the Y-axis angular velocities (swing in the direction of the walk)
and construct a library of templates by extracting the steps in the XS signals. More precisely, given
a step identified with the GR with the initial contact time tIC and final contact time tFC, we consider
the XS signal xtrain corresponding to the adequate foot and define the pattern p = xtrain[tIC : tFC].
This pattern p can be seen as a signal of length Np = tFC − tIC + 1 that represents the typical angular
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velocity of a foot during a step. The process is iterated for all the steps and for both feet: Each step
identified with the GR forms a different pattern p. All patterns corresponding to the trial itrain are
stored in a library Ptrain.

3.2. Use of the Library to Detect the Steps

The library Ptrain is used to detect the steps for the trial itest (which does not necessarily belong to
the same subject and/or the same session). To that end, we consider the XS Y-axis angular velocity xtest

for trial itest. Each pattern p ∈ Ptrain is slid along signal xtest and for each possible shift we compute
the Pearson correlation coefficient. The final result is a matrix C of size NP × Ntest, where NP is the
number of templates in Ptrain and Ntest is the number of samples of signal xtest, where

∀ip ∈ J1, NP K, ∀it ∈ J1, NtestK c(ip, it) = corr
(

p, xtest[it : it + Np − 1]
)

, (1)

and corr(., .) is the Pearson correlation coefficient.
The matrix C is then processed with an iterative and greedy detection strategy, described in [44],

which detects steps by iteratively selecting the largest Pearson correlation coefficients in the matrix
until all of them are lower than a threshold λ = 0.6. The influence of threshold λ is discussed in [44]
and the value 0.6 insures that the algorithm does not consider irrelevant matches . The main idea
behind this procedure is that we select the best possible templates in train trial itrain to detect the steps
in test trial itest.

The output of the algorithm is a list of steps Sitest |itrain
(steps of trial itest detected with the library of

trial itrain). For each detected step s ∈ Sitest |itrain
, we also have access to the template ps ∈ Ptrain that was

used for the detection, and to the Pearson correlation coefficient cs between s and ps. Those additional
outputs, which were not investigated in [44], are actually of interest since:

• Knowledge on ps allows to characterize the step s. Since we know that ps was the template in
Ptrain that most resembled step s, any available information on ps can be used to understand the
shape, duration, length, etc., of step s. For instance, several steps detected with the same template
are likely to be similar.

• Coefficient cs informs us of how strongly ps and s matched. A cs close to 1 implies that a
pattern exists in Ptrain that is very close to the phenomenon observed in step s; in other words,
the confidence in step s is high. If, on the contrary, cs is small, no templates in Ptrain exactly fitted
the detected step s. This could mean that the locomotion of trial itrain is different than the one
of itest.

3.3. Similarity Index

In order to use this additional information for the gait characterization, we propose to introduce
a new parameter, called SId (similarity index). Given a library of template Ptrain and a test trial itest,
this quantity is defined as

SIditest |itrain
= mean

s∈Sitest |itrain

(cs). (2)

The SId is the mean of the Pearson correlation coefficients computed between detected steps
and their respective closest templates. This quantity measures the ability of trial itrain to detect the
steps in trial itest. It can be interpreted as a similarity index between trials itrain and itest (assuming
that if both trials were identical the step detection would be easy to perform and would produce large
Pearson coefficients). It can also be seen as a confidence index on the detection (if this index is close to
1, it means that all detected steps were very similar to the annotated steps in the library and thus are
likely to be well detected).

Note that the SId is not symmetrical, as using steps in trial itrain to detect the steps in trial itest

might not be the same as using steps in trial itest to detect the steps in trial itrain.
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3.4. Use of the SId Index in Various Configurations

According to the chosen train and test sets, the SId index can be used either for longitudinal
follow-up or inter-individual comparison. In this article, we consider four different configurations
referred to as A1–A4.

• A1 : Intra-individual intra-session. Two different trials belonging to the same subject and the
same session (M0|M0 or M6|M6).

• A2 : Intra-individual inter-session. Two trials belonging to the same subject but not to the same
session (M0|M6 or M6|M0).

• A3 : Inter-individual intra-group. Two trials belonging to different subjects of the same group
(pMS|pMS or HS|HS).

• A4 : Inter-individual inter-group. Two trials belonging to two subjects in different groups
(pMS|HS or HS|pMS).

In order to investigate the properties of the SId index, we computed all SId between all trials of
all subjects and merged the SId values according to these four different configurations, as illustrated in
Figure 3.

Figure 3. Definitions of the different pairs of extraction/detection trials that are analyzed in the article.

3.5. Conventional Features

In addition to the SId, the following conventional gait parameters were computed:

• Average velocity: Velocity was computed for the way in (or the way out) as the total length of the
detection part of the GR divided by the total time of the way in (or the way out). The average
velocity was then the average of the velocity of the way in and the velocity of the way out.

• Step length: This parameter was extracted from the GR output.
• Step time: This parameter was computed as the average of the differences between the final

contact time and the initial contact times given by the GR.
• Double stance time: This parameter was computed as the average of the differences between

the final contact time of one foot and the initial contact times of the contralateral foot given by
the GR.

• Variation coefficient of step time: This parameter was computed as the standard deviation of the
differences between the final contact time and the initial contact times given by the GR divided
by the step time.

• Variation coefficient of double stance time: This parameter was computed as the standard
deviation of the differences between the final contact time of one foot and the initial contact times
of the contralateral foot given by the GR divided by the step time.
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Given two gait trials, we computed the differences between the parameter values and merged
these differences with the four different configurations illustrated in Figure 3.

3.6. Link to the Performance of the Step Detection

The similarity index (SId) can be interpreted as a confidence index for the step-detection algorithm.
Indeed, a large SId suggests that the patterns present in the train library fit those observed in the test
signal and are therefore likely to provide efficient detection. To investigate this question, we computed
the correlation between the SId values and some evaluation metrics commonly used for assessing
the performances of step-detection algorithms [44]. These metrics are based on the ground truth step
annotations provided by the GR.

• Precision (or positive predictive value). A detected step is counted as correct if the mean of its
start and end times lies inside an annotated step. An annotated step can only be detected one
time. If several detected steps correspond to the same annotated step, all but one are considered
as false. The precision is the number of correctly detected steps divided by the total number of
detected steps.

• Recall (or sensitivity). An annotated step is counted as detected if the mean of its start and end
times lies inside a detected step. A detected step can only be used to detect one annotated step.
If several annotated steps are detected with the same detected step, all but one are considered
undetected. The recall is the number of detected annotated steps divided by the total number of
annotated steps.

• F-measure (or F1 score). The F-measure is the harmonic mean of precision and recall.
• ∆Start. For a correctly detected step, this is the difference between the detected start time and the

annotated start time.
• ∆End. For a correctly detected step, this is the difference between the detected end time and the

annotated end time.
• ∆Duration. For a correctly detected step, this is the difference between the duration of the

detected step and the duration of the annotated step.

3.7. Statistics

All parameters were tested for normality using Shapiro-Wilks tests. Parametric tests were applied
for normal distributions and non-parametric tests were resorted to when this hypothesis was rejected.
Means and standard deviations (SD) were reported, except for ordinal distributions (EDSS) where
mean and interquartile range were reported.

3.7.1. Comparisons between Configurations

SId and change in gait conventional features were compared between configurations of pairs of
extraction/detection trials using the absolute difference between the mean value in the two groups.
For all these non-parametric variables, the Krustkall-Wallis test—a rank-based non-parametric test
used to assess more than two independent groups—was used. Rejection of the null-hypothesis was
followed by subsequent Wilcoxon tests to test differences in medians. All tests were corrected for
multiple comparisons using Bonferroni adjustment. For each group (HS and pMS, respectively),
the percentile score of SId from A2 was computed from the distribution of SId from A3. The percentile
score of SId from A2 was also computed from the distribution of SId from A4.

3.7.2. Correlations

SId was correlated to performance, accuracy and conventional gait features using Pearson moment
product correlation coefficients, which remains a valid method, even in the case of non-normal
datasets [45]. Pearson correlation coefficient is interpreted as very high for absolute values between 0.9
and 1.0, high for absolute values between 0.7 and 0.9, moderate for absolute values from 0.5 to 0.7, low
for absolute values from 0.3 to 0.5 and negligible for absolute values below 0.3 [46].
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Primary data analysis (extraction and detection process) was done using MATLAB® R2019a.
Statistical analysis was performed using R v3.5.1. All tests were corrected for multiple comparisons
using Bonferroni adjustment.

4. Results

In this section, we investigate the ability of this index to effectively compare two trials.
To investigate the potential of SId as a gait biomarker, three different and complementary questions
are investigated:

• Comparison of SId based on these four configurations: Comparing SIds computed within the
same session (A1), SIds computed from different sessions of the same subject (A2), SIds computed
between subjects of the same group (A3) and SIds computed between groups (A4).

• Correlation of SId with more conventional features used to characterize gait (average velocity,
step length, step time, double stance time, variation coefficient of step time, variation coefficient
of double stance time).

• Correlation of SId with the detection performance of the step-detection algorithm.

4.1. Comparison of SId Based on Configurations

In this experiment, the values of SId are compared between the four configurations:
Intra-individual intra-session comparison (A1), intra-individual inter-session comparison (A2),
intra-group inter-individudal comparison (A3) and inter-group inter-individudal comparison (A4).
Boxplots are displayed in Figure 4. SId shows its highest values for the A1 comparison (HS: 0.99
(0.00), pMS: 0.97 (0.01)) and decreases from A1 to A4, both in the HS and the pMS group (p-value
of the Krustkall-Wallis test: <0.0001, p-value of the subsequent Wilcoxon tests: <0.0001 for all paired
comparisons). In particular, it shows that trials from a given subject are closer to each other than
to trials from another subject both in the HS group (mean difference: 0.046; p-value: <0.0001) and
in the pMS group (mean difference: 0.055; p-value: <0.0001). Comparisons of A3 (inter-individual
intra-group) and A4 (inter-individual inter-group) show that SIds obtained for intra-group comparison
are larger than inter-group ones in the HS group (mean difference: 0.190; p-value: <0.0001) but not in
the pMS group (mean difference: 0.070; p-value = 0.52).

For a given individual k inside the HS or the pMS groups, SIds for comparison of one trial to
another trial are reproduced in Table 2. This table shows that, on average, trials from a given subject are
closer to other trials from the same subject than to trials from other subjects. For HS subjects, SId from
A2 prediction belongs to the 90th (SD: 14) percentile of the distribution of SId from A3 prediction
and is always higher than SId from A4. For pMS subjects, SId from A2 prediction belongs to the 96th
(SD: 8) percentile of the distribution of SId from A3 prediction and the 99th (SD: 2) percentile of the
distribution of SId from A4.
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Figure 4. Comparison of SId predictions across configurations: Intra-individual intra-session prediction
(A1) vs. intra-individual inter-session prediction (A2) vs. intra-group inter-individual prediction (A3)
vs. inter-group inter-individual prediction (A4).

Table 2. Similarity index scores for comparing one gait trial depending on the training trial
(intra-individual inter-session, intra-group inter-individual, inter-group inter-individual). Means and
standard deviations are displayed for both pMS and HS groups.

HS pMS
Individual k Other Individual Individual k Other Individual

HS (individual k) 0.98 (0.01) 0.93 (0.07) - 0.75 (0.09)
pMS (individual k) - 0.89 (0.04) 0.94 (0.05) 0.87 (0.09)

4.2. Correlation of SId with Conventional Features

Comparisons were also carried out for the average walking velocity (Figure 5a), step length
(Figure 5b), step time (Figure 5c), double stance time (Figure 5d), coefficient of variation of step time
(Figure 5e) and coefficient of variation of double stance time (Figure 5f), which are classical gait
features [4]. After controlling for multiple comparisons, difference in average velocity (Figure 5a) and
differences in double stance time (Figure 5d) proved significantly higher in the A2 (intra-individual
inter-session) comparison as compared to the A1 (intra-individual intra-session) comparison in the HS
group (p-values of 0.002 and 0.003, respectively, with a threshold of 0.017) and the pMS group (p-values
< 0.001 and < 0.0001, respectively, with a threshold of 0.017). Difference in step length (Figure 5b)
was also higher in the A2 comparison as compared to the A1 comparison in the HS group (p-values
of 0.007, with a threshold of 0.017). All other comparisons of configurations were highly significant
(p-value < 0.0001).
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(a) (b)

(c) (d)

(e) (f)
Figure 5. Intra-individual intra-session prediction (A1) vs. intra-individual inter-session prediction
(A2) vs. intra-group inter-individual prediction (A3) vs. inter-group inter-individual prediction (A4)
for both cohorts : (a) Average walking velocity; (b) step time; (c) step length; (d) double stance time;
(e) coefficient of variation of step time; (f) coefficient of variation of double stance time.

To investigate how SId would correlate to change in these conventional features, SId, as measured
for each intra-group comparison (A1, A2, A3), was correlated to variation between the respective train
trial and test trial for each of the following conventional gait features: The average walking velocity
(Figure 6a), step time (Figure 6b), step length (Figure 6c), double stance time (Figure 6d), coefficient of
variation of step time (Figure 6e) and coefficient of variation of double stance time (Figure 6f).
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Figure 6. Correlation of SId to conventional features: (a) Average walking velocity; (b) step length;
(c) step time; (d) double stance; (e) coefficient of variation of step time; (f) coefficient of variation of
double stance time.

For both groups, low correlations were observed for difference in the average walking velocity
(Figure 6a) (HS: r = −0.38, p-value: < 0.0001; pMS: r = −0.31, p-value: < 0.0001), double stance time
(Figure 6d) (HS: r = −0.35, p-value: < 0.0001; pMS: r = −0.13, p-value: < 0.0001) and the variation
coefficient of step time (Figure 6e) (HS: r = −0.14, p-value: 0.004; pMS: r = −0.13, p-value: < 0.0001).
Moderate to high correlations were observed for difference in step time (Figure 6c) (HS: r = −0.74,
p-value: < 0.0001; pMS: r = −0.56, p-value: < 0.0001). Additional low correlation was seen for pMS
participants for the difference in step length (Figure 6b) (r = −0.13, p-value: < 0.0001) and the variation
coefficient of double stance time (Figure 6f) (r = −0.13, p-value: < 0.0001).

4.3. Correlation to Performance of the Step Detection

Performance and accuracy scores, along with their correlations to SId, are reported in Table 3.
In the HS group, SId correlates moderately to the F-measure, ∆Start and ∆Duration, and weakly to
∆End. In the pMS group, SId correlates moderately to the F-measure and strongly to ∆Start and
∆Duration, while a very low correlation is found with ∆End.

Table 3. Correlations between SId and the F-measure and accuracy scores for the step detected.
All configurations are pooled together and reported as mean (SD).

HS (n = 10) pMS (n = 22)
Value Pearson p-Value Value Pearson p-Value

F-measure 0.843 (0.213) 0.560 <0.0001 0.934 (0.130) 0.548 <0.0001
∆Start 0.18 (0.164) −0.580 <0.0001 0.154 (0.170) −0.781 <0.0001
∆End 0.066 (0.087) −0.306 <0.0001 0.026 (0.035) −0.084 0.0001

∆Duration 0.234 (0.209) −0.548 <0.0001 0.173 (0.179) −0.771 <0.0001
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5. Discussion

This study shows that SId is a valid metric to compare two gait trials both between different
subjects or between two visits of a same subject to track changes in gait. In addition, in our small
sample of patients, SId seems to give an insight into the performance of the underlying template-based
step-detection method.

First, SId showed decreasing values from intra-individual intra-session (A1) to intra-individual
inter-session (A2) to intra-group inter-individual (A3) to inter-group inter-individual (A4) trial
comparisons for both the HS group and the pMS group. The difference in SId between A1 and A2
was expected for pMS individuals, for which symptoms vary from day to day depending, for instance,
on the level of exercise and physical therapy or the weather (Uhtoff effect [47–49]). This higher
change in HS participants between trials of different sessions compared to between trials of a same
session was also true for conventional features. Average velocity and double stance time, as well
as step length in the HS group, both displayed a higher difference when comparing inter-session
with intra-session trials. Still, for all features, the difference in A2 remains within the standard error
mean for inter-session comparison as found in the literature [50–52]. Furthermore, the hierarchy of
variability in gait parameters is also found in the literature in intra-class correlation coefficients for
both healthy subjects [19,53] and mixed groups of patients and subjects [10].What is more, SId shows
high variability in between-cohort comparisons as compared to intra-cohort comparison for the HS
group but not for the pMS group. Two participants from the pMS cohort can then be as distant as one
participant from the pMS cohort and one participant from the HS cohort. One explanation is that pMS
patients present with a wide range of gait alterations both in terms of the types of symptoms (which
can relate to balance deficit, spasticity, decreased muscular strength, etc.) and severity of symptoms.
In that regard, it can be observed in Figure 4 and Table 2 that the SId for the detection of steps from
HS individuals using steps from pMS individuals seems lower than the detection of steps from pMS
individuals using steps from HS individuals, which illustrates the non-symmetrical characteristic of
the SId. This difference may be due to the durations of the steps that are different for HS and pMS
subjects [23,54,55]. Due the greedy aspect of the matching procedure, it is easier for the algorithm to
detect one large step with several small steps than the opposite. Therefore, higher SId values can be
achieved by using HS templates to detect pMS steps than the opposite. One other explanation might
that the noise level is larger for pMS subjects, thus creating noisy templates that are more difficult to
match than HS smoother templates.

Second, as mentioned above, lower SId was associated with increased difference in step time
between the train and test trial, a parameter which also showed strong correlation with disease
severity as measured using the Expanded Disease Status Scale [16,23,54–56]. The SId has, therefore,
potential to give insight into the evolution of the disease, without needing any pre-processing and step
detection. However, even though most of them were significant, only low correlations were found for
the differences in other conventional features that are usually used to characterize gait. As a matter of
fact, very high variability in the difference of conventional features is seen, and one ought to be careful
in drawing conclusions before larger and longer studies are carried out.

Third, SId has been shown to provide key information on the underlying step-detection algorithm.
One major drawback of automatic step-detection algorithms is that it is tricky to assess their
performances in real-life conditions. In particular, when confronted with different types of gait
or cohorts, their accuracy may drop, which can have consequences if they are used in a clinical context.
As a matter of fact, most of the algorithms designed for a particular type of subject may suffer from
degraded performance in other cohorts [57]. Thanks to its construction, a large SId between two
trials means that templates used to detect the steps were close to these latter. Very low SId values can
therefore be interpreted as a discrepancy between the train and test trial, which is likely to cause a
poor step detection. Indeed, we showed in Table 3 a correlation between SId and performance as well
as accuracy scores. The SId values are therefore linked to the confidence in the underlying detection
algorithm, and could be used to report that the model used in the detection process does not suit the
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tested data. If several libraries of templates were available (e.g., one for each cohort or one for each
gait disability), the SIds could be used to select the most appropriate library and thus improve the
step-detection performances. These perspectives shall be investigated in future studies.

Eventually, these results can be applied to a wide range of pMS individuals, with mild as well as
severe diseases. Indeed, as patients using walking aids were also included, the conclusions also apply
to patients with EDSS 6 and 6.5, which fills a gap in the literature [23]. Comparisons of SId between
other populations should be informative to compare distances between gaits of patients disabled by
different Neurological illness and participates in the development of a new taxonomy. New matching
procedures may also be implemented, for instance, by using Dynamic-Time Warping (DTW), which
allows to match time series of different lengths. In particular, the use of this technique dedicated to
template matching may be useful in the context of step detection and recognition [58].

Our study has limitations. First, sampling fluctuations may have occurred due to the small sample
size, particularly of HS. Recruiting young healthy subjects was difficult due to the necessity of a six
month time period between both measurements. In particular, strong variability was found when
correlating conventional features with the SId. Even though results were significant, the clouds of
points are sparse.

6. Conclusions

In this article, we introduced a novel algorithm for comparing inertial signals of two gait trials.
The output parameter, a metric referred to as the similarity index (SId), is comprised between 0 and 1
and reflects how similar two gait trials are. This parameter shows promising results for the longitudinal
follow-up of participants, as it is sensitive to changes in gait features. Larger studies are needed to
confirm the potential of SId as a predictor of changes and a longer follow-up time could also allow
assessment of its prognostic value. Besides, as the SId correlates to the performance and accuracy of
the underlying step-detection algorithm, it provides immediate feedback of the detection, which is a
key aid for decision making.
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