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Abstract: For a visual/inertial integrated system, the calibration of extrinsic parameters plays a crucial
role in ensuring accurate navigation and measurement. In this work, a novel extrinsic parameter
calibration method is developed based on the geometrical constraints in the object space and is
implemented by manual swing. The camera and IMU frames are aligned to the system body frame,
which is predefined by the mechanical interface. With a swinging motion, the fixed checkerboard
provides constraints for calibrating the extrinsic parameters of the camera, whereas angular velocity
and acceleration provides constraints for calibrating the extrinsic parameters of the IMU. We exploit
the complementary nature of both the camera and IMU, of which the latter assists in the checkerboard
corner detection and correction while the former suppresses the effects of IMU drift. The results of
the calibration experiment reveal that the extrinsic parameter accuracy reaches 0.04◦ for each Euler
angle and 0.15 mm for each position vector component (1σ).

Keywords: visual/inertial integrated system; extrinsic parameter calibration; corner detection;
motion blur

1. Introduction

Visual/inertial integrated systems have been used across many contexts, including indoor [1–3],
underwater [4], space environments [5], and taking some measurement tasks [6,7]. To achieve accurate
navigation and measurement, camera and inertial sensor frames should be aligned to the carrier frame
in a process often called extrinsic parameter calibration or alignment. In this process, a coordinate
transforming relationship is established between the sensor frame and the system body frame. Without
calibrating the extrinsic parameters, the navigation errors will be coupled with the misalignment
errors [8].

Previous studies have developed theoretical models of the camera [9] and the inertial measurement
unit (IMU) [10–12], based on which the extrinsic parameters of visual/inertial integrated systems have
been calibrated. These parameters are generally calibrated in three ways. First, these parameters
are calibrated based on the corresponding rotation differences. Given that both the camera and IMU
can evaluate their own rotations, a calibration method that minimizes the overall matching error of
the rotation matrix between the visual and inertial coordinate systems in multiple rotations has been
proposed in [13], whereas You et al. [14] developed a calibration method that relies on the angular
velocity differences between the IMU and camera in the subsequent rotations. Second, these parameters
are calibrated based on the vertical direction constraint. Given that the gravity and vertical line are
measured by an IMU and camera in the same direction (i.e., vertical direction), a calibration method
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that uses this direction as reference has been proposed in [15–17]. Third, these parameters are calibrated
based on filtering or optimization. In vision-aided inertial navigation, the coordinate transforming
relation between the IMU and camera is estimated. The methods developed by Mourikis et al. [18] and
Kelly and Sukhatme [19] estimate the extrinsic parameters based on the extended Kalman filter (EKF)
and the unscented Kalman filter, respectively. In addition, Kaminer et al. [20] proposed a method
based on nonlinear, globally stable filters, while Yang and Shen [21] proposed an optimization-based
calibration method.

Most of these methods align the camera frame to the IMU frame. However, in some cases where
a high-precision operation is required, the visual/inertial system should be aligned to the system
body frame and not to the IMU frame. In addition, when a carrier, such as a spacecraft, is too heavy
to conduct a calibration operation, the before mentioned methods cannot fully solve the problem.
Previous studies have attempted to address this problem by aligning the sensors frame to the system
body frame. For instance, Wendel and Underwood [22] aligned the line scanning cameras to the
ground vehicle frame and achieved an accuracy of 0.06 m in translation and 1.05◦ in rotation, while
Shi et al. [23] aligned three cameras to the body system frame and achieved 0.6 mm and 0.1◦ translation
and rotation accuracies, respectively. Only the camera frame is aligned to the body frame and the
accuracy can be further improved. Given that self-integrated and some commercial IMUs lack a
mechanical interface. Foxlin and Naimark [24] aligned the IMU to the system body frame defined by a
mechanical interface by rolling on a flat surface and then aligned the camera to the system body frame
by using a calibration device. However, the accuracy of the extrinsic parameters is not clearly shown.
Pittelkau [25] proposed a method for aligning an inertial sensor assembly of three fiber-optic gyros,
two star trackers, and a camera to a spacecraft by using an alignment Kalman filter, but this method
has only been validated via simulation.

We present an extrinsic parameter calibration method that uses IMU and camera measurements
to align the IMU and camera frames to the system body frame defined by the mechanical interface.
This method offers two advantages. First, the sensor frames are aligned to the carrier frame through
the mechanical interface without requiring a complex calibration process. Second, this method can be
seen as a standard calibration step for factory production and user operation. The operation process
of calibration is not complex. Fix a checkerboard on the wall within the field of view of the camera,
fix the integrated system on a two-axis turntable, and then manually control this turntable to swing
around its two axes. The checkerboard is in the camera’s field of view all the time.

Our novelties are that,

1. In this study, we exploit the complementary nature of IMU and camera to improve the calibration
accuracy. The camera measurements can suppress the inertial propagation drift, whereas
the motion parameters evaluated by IMU can accurately extract the feature points under a
smearing effect. We exploit the complementary nature of these two components to improve the
calibration accuracy.

2. The method for IMU aided checkerboard corner correction under motion blur is introduced,
which is the tip step to improve accuracy of camera calibration. We use the IMU to evaluate the
motion parameters, and use these motion parameters to eliminate the effects of motion blur in
image. It is described in Section 2.3. The extrinsic parameters are evaluated based on EKF, and
the rotation angle is evaluated using camera measurement to suppress IMU’s drift.

3. The calibration process can be a standard calibration step for factory production and user
operation. The turntable is the standard equipment for IMU calibration, and the checkerboard
is the standard device for camera calibration. So, the cost is low, and the calibration process is
simple and convenient. Our experiment results indicate that our proposed method is valid and
achieves a fair level of accuracy. Our method can also align the camera frame to the IMU frame.
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The rest of this paper is organized as follows. Section 2 introduces the mathematical model and
the proposed calibration method. Section 3 presents the simulation and the real-world experiment.
Section 4 concludes the paper.

2. Calibration Method

The main idea of the proposed calibration method is shown in Figure 1, which can help understand
the part of the calibration. There are four step of this calibration. Firstly, “Preparation”, the following
preparations should be performed before the system calibration:

The checkerboard should be fixed in an appropriate location that can be observed by the cameras
while the system rotates along with the turntable;

The intrinsic parameters of the camera and IMU should be calibrated;
The visual/inertial system should be fixed on the turntable.

Secondly, “data acquisition”, the turntable is controlled manually to rotate around two orthogonal
axes, such as the x and y axes, for the checkerboard image acquisition by camera and the inertial data
acquisition by IMU, respectively.

Thirdly, “blur correction”, the motion blur exits in the checkerboard image. The checkerboard
corners are detected with the aid of IMU to achieve higher accuracy.

Finally, “estimator”, we estimate the extrinsic parameters based on EKF.
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Figure 1. Extrinsic calibration process.

The main idea of this calibration method is that establish the equations that provide the extrinsic
parameters and solve these equations. To better understand the method, the basic measurement models
of the IMU and camera are described in the Section 2.1. Because the calibration operation process is
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swinging motion, the detailed measurement equations of IMU and camera under swinging motion are
described in Section 2.2. We exploit the complementary nature of IMU and camera to improve the
calibration accuracy, the method of inertial aided checkerboard corner extraction under motion blur is
described in Section 2.3. And the extrinsic parameters are evaluated based on EKF, which is shown
in Section 2.4. The rotation angle of turntable is evaluated by camera measurement to suppress the
IMU’s drift.

2.1. Measurement Model

The measurement model for IMU is formulated as follows (The superscripts and subscripts F, B, I,
and V represent the frame of checkerboard, system body, IMU, and camera, respectively, while F0, B0,
I0, and V0 represent the frame fixed on the earth and coincident to the frame of checkerboard, system
body, IMU, and camera in its initial pose, respectively).

fI
meas = aI

true − gI + ba + na

ωI
meas = ωI

true + bg + ng
, (1)

where aI
true is the true specific force excluding gravity,ωI

true is the true angular velocity, gI is the gravity
expressed in the IMU frame, ba and bg are the bias errors of the accelerometer and gyro, respectively,
and na and ng are the process white Gaussian noises of the accelerometer and gyro, respectively. Both
ba and bg show minimal changes within a short period.

We use the ideal pinhole model as the measurement model for the camera that maps a 3D point
PF

(
xF, yF, zF

)
to a 2D image p(u, v) as [26]

zc


u
v
1

 =

αx γ u0 0
0 αy v0 0
0 0 1 0


[

CV
F tV

FV
0 1

][
PF

1

]
=

[
M 0

][ CV
F tV

FV
0 1

][
PF

1

]
, (2)

where zc is the camera frame optic axis coordinate of point P, αx, and αy are the scale factors of the u
and v axes of the image plane, respectively, γ is the non-orthogonal factor of the image plane axes,(
u0, v0

)
is the pixel coordinate of the camera principal point, CV

F is the 3 × 3 rotation matrix, tV
FV is the

3D translation vector, and M is the intrinsic parameter matrix. In the actual situation, the principal
point, focal length deviation, distortion, and other error factors should be considered based on the ideal
camera model. These parameters can be acquired via an intrinsic calibration, such as by employing
Zhang’s method [27].

2.2. Extrinsic Parameter Calibration Method for a Visual/Inertial Integrated System

The physical quantities that should be calibrated include the following:

1. The translation matrices CV
B and CI

B, which occur between the system body frame and the camera
frame as well as between the system body frame and the IMU frame, respectively.

2. The position vectors tB
BV and tB

BI, which are derived from the camera and IMU principal points to
the origin of the system body frame, respectively.

Given that IMU can measure angular velocity and acceleration vectors during rotation, the
constraint equations of inertial vectors and the extrinsic parameters of IMU can be established. When
the turntable rotates around by one axis, the position vector and Euler angle along the rotation axis
cannot be computed. However, when the turntable rotates by around two orthogonal axes, extrinsic
parameters of IMU can be computed. Fortunately, IMU calibration is generally performed by using a
turntable with two or three orthogonal axes.

Camera calibration generally involves the use of a checkerboard. In the calibration process,
both the intrinsic parameters and the translation matrix and position vector between the camera
and checkerboard frames can be computed. By turning the turntable, the constraint equation can be
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established based on the relationship between the extrinsic parameters of camera and the change in
the camera position and attitude. The constraint equations of the visual/inertial system are described
as follows.

In general, when the Coriolis acceleration is ignored during rotation, the accelerometer
measurement is

fI = aI
n + aI

τ + gI + ba

= CI
B

(
aB

n + aB
τ + gB

)
+ ba

, (3)

where aB
n =

[
ΩB

]2
tB

BI is the radial acceleration, aB
τ = EBtB

BI is the tangential acceleration, gI is the

gravitational acceleration expressed in the IMU frame, and CI
B is the translation matrix from the system

body frame to the IMU frame, which can be calculated by the Euler angle ψI
B.

ΩB and EB are skew-symmetric matrices defined as

ΩB =
[
ωB
×

]
=


0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

, EB =
[
εB
×

]
=


0 −εz εy
εz 0 −εx
−εy εx 0

, (4)

where ωB =
[
ωx ωy ωz

]T
is the angular velocity vector, and εB =

[
εx εy εz

]T
is the angular

acceleration vector.
Therefore, the accelerometer measurement can be rewritten as

fI = CI
B

(
aB

n + aB
τ + gB

)
+ ba

= CI
BCB

B0

[((
ΩB0

)2
+ EB0

)
tB0

B0I0
+ CB0

I0
gI0

]
+ ba

= CI
BCB

B0

[((
ΩB0

)2
+ EB0

)
tB

BI + CB
I gI0

]
+ ba

, (5)

where gI0 is the gravity accelerometer expressed in the {I0} frame and can be written as

gI0 = fI0 − ba, (6)

where fI0 is the accelerometer measurement in the initial pose. Therefore, ba must be initially evaluated
to determine gI0 . The gyro measurement is formulated as

ωI = CI
Bω

B = CI
BCB

B0
ωB0 . (7)

An integrated system rotates with a two-axis turntable. When turntable rotates around the x axis,
we have

CB
B0

=


1

cos βx sin βx

− sin βx cos βx

, fI
x = fI, ωI

x = ωI, (8)

where βx is the rotation angle of the turntable when rotating around the x axis.
However, when rotating around the y axis, we have

CB
B0

=


cos βy sin βy

1
− sin βy cos βy

, fI
y = fI, ωI

y=ω
I, (9)

where βy is the rotation angle of the turntable when rotating around the y axis.
βk, k = x, y, can be computed by integrating the gyro measurement, but an accumulation error is

observed. This error is then evaluated based on the camera measurement in the Kalman process.
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The camera measurement can be formulated as

z =
[

ux vx uy vy

]T[
ux vx

]
=

[
ux,1 · · · ux,n vx,1 · · · vx,n

][
uy vy

]
=

[
uy,1 · · · uy,n vy,1 · · · vy,n

] , (10)

where subscripts x and y indicate that the turntable rotates around the x and y axes, respectively,
(
ui, vi

)
is the pixel coordinate of each checkerboard corner, and n is the number of checkerboard corners.

The value of
(
ui, vi

)
can be computed as

[
ui
vi

]
= zi

[
xi
yi

]
, where


xi
yi
zi

 = M


xV

i
yV

i
zV

i

,


xV
i

yV
i

zV
i

 = PV
i = CV

V0
P

V0
i − tV

V0V , (11)

(
uV

i , vV
i

)
can be defined as [

uV
i

vV
i

]
= zV

i

[
xV

i
yV

i

]
, (12)

and P
V0
i and tV

V0V in Equation (11) can be written as

P
V0
i = C

V0
F PF

i + t
V0
V0F

tV
V0V = CV

B

(
tB

BV −CB
B0

tB
BV

) , (13)

where PF
i is the 3D coordinate of the ith checkerboard corner in the checkerboard frame. In Equations (8)

and (9), CB
B0

can be computed based on the rotational angle of the turntable and correspond to the
rotation of the turntable around the x and y axes, respectively.

Meanwhile, PF
i is determined by the user, and

(
ui, vi

)
denotes the pixel coordinate of the

checkerboard corner in an image. If the number of checkerboard corners is >8, then C
V0
F and

t
V0
V0F can be evaluated by using least squares.

2.3. Checkerboard Corner Extraction Method under Motion Blur

During the working process of a digital camera, the shutter needs to open for a moment to project
light onto the photographic material. This brief moment is called the exposure time. Under highly
dynamic conditions, the relative pose between the camera and the object changes evidently during
the exposure time, thereby blurring or stretching the generated image [28]. The calibration of the
extrinsic parameters requires a rotation, especially for IMU. Therefore, for the camera measurements,
we must extract the checkerboard corners during rotation, but a motion blur may be generated in the
process. Conventional checkerboard corner detection methods compute the local optimum value [29]
with static images. Therefore, when noise and motion blur are present in an image, the errors in the
extraction results evidently increase.

We utilize inertial data to eliminate the smearing effect and then extract the checkerboard
corners with the aid of the IMU data. The corner detection algorithm is developed as follows. The
Lucy–Richardson method is used to rectify the blurred image in step A, and the conventional corner
detection method is used to find the corners’ pixel coordinates in step B. Given that checkerboard
corners are constrained on a few lines, we add a linear constraint to refine the checkerboard corner
location. Through the linear constraint, the corners’ pixel coordinates are refined in step C. Finally,
IMU measurement is used to correct the position of corner detected for movement in step D.
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• A. Pretreatment and smearing effect elimination.

We deblur the image using the Lucy–Richardson method [30–32]. The point–spread function
(PSF) is a 2D Gaussian model N

(
0, 0, σ2

x, σ2
y

)
, and σx and σy denote the standard deviations in the x

and y axes, respectively. If the velocity of the checkerboard expressed in the camera frame coincides
with the x axis, then a motion blur is only observed in the x axis. Therefore, the PSF can be written as
N

(
0, 0, σ2, 0

)
, and the corresponding covariance matrix is

C =

[
σ2

0

]
, (14)

where σ2 = ηωB, η is the scale factor, and ωB is the angular velocity of rotation.
When the cross angle between the velocity of the checkerboard is expressed in the camera frame

and the x axis of the camera frame is θ, the covariance matrix of PSF can be written as

Cθ = R(θ)CR(θ)T, (15)

where R(θ) =

[
cosθ sinθ
− sinθ cosθ

]
. θ can be evaluated by camera data.

Figure 2 compares the original and deblurred images and shows that the motion blur has been
effectively eliminated.
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• B. Corner detection.

This step is the same as that in the conventional method. The corners in the image, including the
complete checkerboard, are examined. Ix and Iy denote the x (horizontal) and y (vertical) components
of the 2D numerical gradient, and the first and second derivatives are computed as

Ix = ∂I
∂x , Iy = ∂I

∂y , Ixy = ∂I
∂x∂y

I45 = Ix cos
(
π
4

)
+ Iy sin

(
π
4

)
, I−45 = Ix cos

(
−
π
4

)
+ Iy sin

(
−
π
4

)
I45,x =

∂I45
∂x , I45,y =

∂I45
∂y , I45,45 = I45,x cos

(
−
π
4

)
+ I45,y sin

(
−
π
4

) . (16)
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The gradient direction is evaluated by

Cxy =
∣∣∣Ixy

∣∣∣− µ(|I45|+ |I−45|), C45 =
∣∣∣I45,45

∣∣∣− µ(|Ix|+
∣∣∣Iy

∣∣∣), (17)

where µ is the weight coefficient.
Cxy and C45 are computed for each pixel in the picture. Afterward, Cxy and C45 are determined—one

of which is valid—by minimizing the energy function proposed in [29]. Based on the threshold set in
advance and non-maxima suppression, the detection accuracy reaches the pixel level. The results are
presented in Figure 3a.

• C. Linear constraint refinement.

We can evaluate the lines of checkerboard based on the corners by using least squares. We assume that the
line equation is aix + b jy + ci j = 0 and that i and j represent the row and column numbers, respectively.

The cross points of these lines are then computed for the global optimization of the checkerboard
corners (Figure 3b; refer to the yellow ”+”). Figure 3c compares the results before and after refinement,
respectively. The error of some corners detected before the refinement has remarkably increased due to
motion blur.

• D. IMU-aided checkerboard corner modification

At time t, camera and IMU start collecting data simultaneously. The corners extracted have some delay
due to the motion blur in the image, with real data at time t + τ/2. τ is the exposure time of camera.
We can modify the corner coordinates with the inertial data. The details are presented as follows.

We consider the motion of camera in ∆t, and point P in the camera frame can be written as

PVt
t = CVt

F

(
PF

t + tF
FVt

)
and (18)

PVt+∆t
t+∆t = CVt+∆t

F

(
PF

t + tF
FVt+∆t

)
= CVt+∆t

Vt
CVt

F

(
PF

t + tF
FVt

+ tF
VtVt+∆t

)
= CVt+∆t

Vt
PVt

t + CVt+∆t
Vt

tVt
VtVt+∆t

, (19)

where

CVt+∆t
Vt

= I−ΩB
t ∆t =


1 ωt

z∆t −ωt
y∆t

−ωt
z∆t 1 ωt

x∆t
ωt

y∆t −ωt
y∆t 1


tVt

VtVt+∆t
= tVt

VtRt
−CVt

Vt+∆t
tVt+∆t

Vt+∆tRt
=

(
I−CVt

Vt+∆t

)
tVt

VtRt
= −ΩB

t tVt
VtRt

∆t = −ΩB
t tV

VR∆t

, (20)

where ΩB
t is ΩB =

[
ωB
×

]
at time t.

Equation (19) can be written as

PVt
t+∆t =

(
I−ΩB

t ∆t
)
PVt

t −
(
I−ΩB

t ∆t
)
ΩB

t tVt
VtRt

∆t

≈

(
I−ΩB

t ∆t
)
PVt

t −ΩB
t tV

VR∆t
. (21)

tV
VR =

[
tx ty tz

]T
is defined, and Equation (21) is expanded as

PVt
t+∆t =


1 ωt

z∆t −ωt
y∆t

−ωt
z∆t 1 ωt

x∆t
ωt

y∆t −ωt
x∆t 1




xVt
t

yVt
t

zVt
t

+


0 ωt
z∆t −ωt

y∆t
−ωt

z∆t 0 ωt
x∆t

ωt
y∆t −ωt

x∆t 0




tx

ty

tz

. (22)
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By substituting Equation (22) into Equation (12), we have

 uV
t+∆t

vV
t+∆t

 =


xVt

t +yVt
t ωt

z∆t−zVt
t ωt

y∆t+tyωt
z∆t−ωt

ytz∆t

xVt
t ωt

y∆t−yVt
t ωt

x∆t+zVt
t +txωt

y∆t−tyωt
x∆t

−xVt
t ωt

z∆t+yVt
t +zVt

t ωt
x∆t−txωt

z∆t+tzωt
x∆t

xVt
t ωt

y∆t−yVt
t ωt

x∆t+zVt
t +txωt

y∆t−tyωt
x∆t


=


uV

t +vV
t ω

t
z∆t−ωt

y∆t+(tyωt
z∆t−ωt

ytz∆t)/zVt
t

uV
t ω

t
y∆t−vV

t ω
t
x∆t+(txωt

y∆t−tyωt
x∆t)/zVt

t +1

−uV
t ω

t
z∆t+vV

t +ω
t
x∆t+(−txωt

z∆t+tzωt
x∆t)/zVt

t

uV
t ω

t
y∆t−vV

t ω
t
x∆t+(txωt

y∆t−tyωt
x∆t)/zVt

t +1


. (23)

Given that uV
t ω

t
y∆t− vV

t ω
t
x∆t +

(
txωt

y∆t− tyωt
x∆t

)
/zVt

t � 1 in this study, we have: uV
t+∆t

vV
t+∆t

 ≈

 uV
t + vV

t ω
t
z∆t−ωt

y∆t +
(
tyωt

z∆t−ωt
ytz∆t

)
/zVt

t
−uV

t ω
t
z∆t + vV

t +ωt
x∆t +

(
−txωt

z∆t + tzωt
x∆t

)
/zVt

t


=

[
uV

t
vV

t

]
+

 vV
t ω

t
z −ω

t
y +

(
tyωt

z −ω
t
ytz

)
/zVt

t
−uV

t ω
t
z +ωt

x +
(
−txωt

z + tzωt
x

)
/zVt

t

∆t

=

[
uV

t
vV

t

]
+

[
λ
ξ

]
∆t

. (24)

Moreover, given that M =


αx u0

αy v0

1

, we have


ut

vt

1

 =

αx u0

αy v0

1




uV
t

vV
t
1

 =

αxuV

t + u0

αyvV
t + v0

1

 and (25)


ut+∆t
vt+∆t

1

 =

αx u0

αy v0

1




uV
t+∆t

vV
t+∆t
1

 =

αxuV

t+∆t + u0

αyvV
t+∆t + v0

1

 =

αxuV

t + u0 + λαx∆t
αyvV

t + v0 + ξαy∆t
1

 =


ut

vt

1

+

λαx∆t
ξαy∆t

1

. (26)

When ∆t = −τ/2, we can modify the coordinates of the checkerboard corners, thereby eliminating
the smearing effect.
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The corner extraction accuracy can be significantly enhanced by using the above checkerboard 
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Figure 3. Image process. The pictures in the bottom row show the details of the pictures presented in
the upper row. (a) Roughly detected checkerboard corners (refer to the red “※”); (b) refined results
with a linear constraint (refer to the yellow “+”); and (c) results after (refer to the yellow “+”) and
before refinement (the red “+”).

The image process algorithm is summarized as Table 1.

Table 1. Checkerboard Corner Detection under Motion Blur.

Inputs: Camera and IMU measurements

Output: Coordinates of checkerboard corners

Algorithm:
1. Deblur the image with the aid of inertial data.
2. Roughly extract the checkerboard corners based on the equation of the second gradient.
3. Refine the corners through the linear constraint.
4. Modify the checkerboard corners with IMU-aided.

The corner extraction accuracy can be significantly enhanced by using the above checkerboard
corner detection algorithm, especially when a smearing effect exists.

2.4. Description of the Estimator

There are many methods that can solve the equations that provide the extrinsic parameters, such
as EKF [33,34], genetic algorithm [35], and so on. Here, we utilize an EKF for calibrating the extrinsic
parameters. The EKF algorithm is briefly introduced in Table 2. The state vector x includes the extrinsic
parameters (translation vectors tI

BI, tV
BV and Euler angle ψI

B, ψV
B ), the IMU bias (ba and bg), the camera

initial parameter (tV0
FV0

and ψV0
F ), and the rotation angle (δβR). Meanwhile, the measurement vector
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includes the accelerometer (fI
x and fI

y) and gyro (ωI
x and ωI

y) measurements as well as the extracted
checkerboard corners (ux,vx, uy, and vy).

Table 2. EKF updating process.

1. State Equation

x =

[
xI
xV

]
, xI =

[
tI

BI ψI
B ba bg

]T
, xV =

[
tV

BV ψV
B tV0

FV0
ψV0

F δβR
]T

2. Measurement Model

z =

[
zI
zV

]
, zI =

[
fI
x ωI

x fI
y ωI

y
]T

, z=
[

ux vx uy vy
]T

3. Updating

x̂−j =Φ j−1x̂+j , P−j =Φ j−1P+
j−1ΦT

j−1+Q j−1, Φ=

[
ΦI 012,14

014,12 ΦV

]
,

Q=
[

QI 012,14
014,12 QV

]
,K j=P−j H j

(
H jP

−

j HT
j +R j

)−1
, x̂+j = x−j +K jδz j, P+

j =
(
I−K jH j

)
P−j , P=

[
PI PIV

PT
IV PV

]

3. Simulation and Real-World Experiment

3.1. Simulation

A simulation test is designed to validate the performance of the extrinsic parameter calibration
method. During the simulation, the turntable is assumed to demonstrate swinging motions around
the x and y axes. The swinging rule is ωk = Ak sin(2π fk + ϕk) +ωk0, where k = x, y, ωk denotes the
angular velocity, Ak and fk denote the swinging amplitude and frequency, respectively, and ϕk and ωk0
denote the initial phase and swinging center, respectively. The swinging parameters of the simulation
are defined in Table 3.

Table 3. Swinging parameters.

Rotation Axis X Axis Y Axis

Amplitude (deg/s) 50 10
Frequency (Hz) 2 3
Initial phase (◦) 90 90

Swinging center (deg/s) 0 0

The true values for simulation data of the visual/inertial integrated system are defined in Table 4.

Table 4. The true values for simulation data.

Parameters Value

Euler angle ψI
B (◦) [−0.57, 0.57, 0.57]

Translation tB
BI (m) [0.05, −0.05, 0.05]

Euler angle ψV
B (◦) [0.57, −0.57, 0.57]

Translation tB
BV (m) [0.10, 0.10, 0.10]

Euler angle ψV0
F (◦) [5.73, 5.73, 5.73]

Translation tV0
F (m) [0.10, 0.10, 1.10]

Gravity accelerometer gI0 (m/s2) [0.10, 9.70, 0.10]

Given the parameters in Tables 3 and 4, the true measurement of the gyroscope and accelerometer
can be simulated by using the dynamics equation. The true measurement of the camera (pixel
coordinates of the checkerboard corners) can be simulated by using the image model. When the errors
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in Table 5 are added into the ideal measurement data, real inertial sensor and camera outputs can be
generated. The sampling rates of the IMU and camera are 100 Hz and 10 Hz, respectively.

Table 5. Sensor errors.

Gyro Noise (deg/h) Accelerometer Noise (µg)

Constant Random Constant Random

x axis 0 20 0 200
y axis 0 20 0 200
z axis 0 20 0 200

Camera Noise (Pixel)

Constant Random

u axis 0 1
v axis 0 1

The alignment errors are shown in Figure 4, whereas the alignment error statistics are listed in
Table 6. The calibration method can evaluate the extrinsic parameters correctly. The attitude error is
<0.03◦ for each Euler angle, and the position error is <0.10 mm for each position vector component.
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Table 6. Results and deviation of simulation.

Rotation Error 1 Position Error

Matrix Euler Angle Mean (◦) Std 2 (◦) Vector Component Mean (mm) Std (mm)

CI
B

φI 0.0011 0.0236
tB

BI

tB
BI,x −0.0462 0.1048

θI 0.0010 0.0213 tB
BI,y −0.0108 0.0907

ψI −0.0003 0.0223 tB
BI,z 0.0219 0.0922

CV
B

φV −0.0022 0.0256
tB

BV

tB
BV,x 0.0183 0.0993

θV 0.0008 0.0253 tB
BV,y −0.1221 0.0956

ψV 0.0016 0.0253 tB
BV,z 0.0244 0.0690

1 The error is the different between the simulation results and the true value. 2 Std is the standard deviation.

3.2. Real-World Experiment

3.2.1. Experiment Setting

A calibration experiment is conducted to confirm the validity of the proposed method and to
evaluate the accuracy of the system. Figure 5 shows the experiment architecture, whereas Table 7
presents the main devices. The system body frame coincides with the turntable frame for the sake of
simplicity because the mechanical interface of the turntable frame is clearly defined.

The experiment is designed as follows. First, frames {I0}, {V0}, and {B0} are defined to coincide at
the initialization time. The system body, camera, and MIMU coordinates are fixed with the turntable,
camera, and MIMU, respectively. Second, the turntable is manually controlled to rotate around its
axes, whereas the visual/inertial integrated system moves along with the turntable.
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Table 7. Major devices involved in the experiment.

Device Manufacturer Model Main Parameters

Camera Dalsa Image, Canada FA-21-1M120
Resolution: 1024 × 1024
Refresh rate: 10 frames/s

Lens respective scale factor: 1600; FOV ~45◦

MIMU SBG Systems, France Ellipse-A2-G4 Accelerometer: 8 g full scale, 20 µg in-run bias Instability;
Gyro: 450 deg/s full scale, 8 deg/h in-run bias instability

Turntable
Aircraft Industry

Precision Engineering
Institute, China

902-1 Accuracy of angular position: 8′’ in both axes

The intrinsic parameters obtained through Zhang’s method [27] are shown in Table 8.
The calibration achieved an accuracy of 0.08 pixel based on 18 images.
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Table 8. Calibration result of intrinsic parameters of camera.

Parameter αx αy u0 v0 γ k1 k2 P1 P2
1

Calibration result 1123.0114 1123.9004 527.7581 527.8911 0 −0.1027 0.1738 0.0012 0.0014
error 0.4994 0.4916 0.5249 0.6548 0 0.0008 0.0035 0.0001 0.0001

1 k1 and k2 are the radial distortion of the lens, while P1 and P2 are the tangential distortion.

3.2.2. Experiment Results and Discussion

The test results are presented in this section. The extrinsic calibration results before and after the
checkerboard corner modification are nearly similar. The standard uncertainty of the modified method
(0.15 mm) (Table 10) is lower than that of the unmodified method (0.18 mm) (Table 9). The camera
measurement residuals of the two methods are different as shown in Figure 6. The measurement
residuals’ 3σ bound of the method based on a linear constraint is approximately 0.193 pixels, whereas
the measurement residuals’ 3σ bound of the unmodified method is approximately 0.220 pixels. Thus,
the motion blur correction described in Section 2.3 is effective.

Table 9. Results and deviation of the experiment based on the unmodified corner detection method.

Rotation Matrix Position Vector

Matrix Euler
Angle

Calibration
Result (◦)

Error 1 1σ
(◦)

Vector Component Calibration
Result (mm)

Error 1σ
(mm)

CI
B

φI −0.537 0.0166
tB

BI

tB
BI,x −102.781 0.133

θI −2.183 0.0168 tB
BI,y −246.875 0.145

ψI 0.480 0.0185 tB
BI,z −1.362 0.108

CV
B

φV −1.176 0.0372
tB

BV

tB
BV,x −77.434 0.147

θV 0.085 0.0488 tB
BV,y −229.920 0.113

ψV −0.175 0.0178 tB
BV,z 39.264 0.184

1 The error is evaluated via the standard deviation (the same below).
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for methods before and after modification, respectively.

The difference of IMU calibration parameters before and after modification is not significant.
The camera measurements can suppress the angle integral error due to IMU’s drift, and increase the
accuracy of IMU extrinsic parameters calibration results. Thus, more accuracy camera measurements
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will lead to more accuracy IMU extrinsic parameters calibration results. But the accuracy of IMU
extrinsic parameters calibration results is closed before and after checkerboard corner modification,
through compare the results in Tables 9 and 10. There may be three reasons explain it.

1. For camera measurements, the rotation angle is computed based on all the checkerboard
corners’ pixel coordinates. The effects of motion blur are eliminate by involve all corners into
computation process.

2. The calibration process is not long, so the effect of accumulation error is not significant.
3. There are system errors exits, such as the non-orthogonal of rotation axes, and the time delay of

data acquisition, which also influence the error level.

Table 10 and Figure 7 summarize the experiment results. The origin of the MIMU frame is
discussed in the sbg-IMU user manual, while that of the camera is the optical center of the lens.
Therefore, the translation vector between the MIMU and camera can be roughly evaluated. The results
that are evaluated based on the mechanical structure coincide with those that are evaluated by
using EKF.

Table 10. Results and deviation of the experiment based on the modified corner detection method.

Rotation Matrix Position Vector

Matrix Euler
Angle

Calibration
Result (◦)

Error 1σ
(◦) Vector Component Calibration

Result (mm)
Error 1σ

(mm)

CI
B

φI −0.536 0.0163
tB

BI

tB
BI,x −102.752 0.128

θI −2.183 0.0165 tB
BI,y −246.966 0.146

ψI 0.480 0.0186 tB
BI,z −1.321 0.107

CV
B

φV −1.197 0.0320
tB

BV

tB
BV,x −77.091 0.117

θV 0.085 0.0376 tB
BV,y −229.742 0.103

ψV −0.187 0.0205 tB
BV,z 38.294 0.128
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The experiment results, the existing problems and possible reasons, the strategies for improving
the results, and some directions for future work are presented below:

1. IMU and camera frames are aligned to the system body frame. The standard deviations of the
three-axis position error are (0.13, 0.15, 0.11) mm and (0.12, 0.10, 0.13) mm for the MIMU and
camera, respectively. Meanwhile, the standard deviations of the three-axis Euler angle error are
(0.02◦, 0.02◦, 0.02◦) and (0.03◦, 0.04◦, 0.02◦) for the MIMU and camera, respectively. Compare the
difference between the method with corner correction and without corner correction. We find the
camera extrinsic parameters’ accuracy of former is higher than the latter (Tables 9 and 10), and the
camera measurement residuals of former is lower than the latter (Figure 6). It indicates the corner
correction described in Section 2.3 is effective. The reasons why the difference of IMU calibration
parameters before and after modification is not significant have been briefly discussed.

2. There are three errors affecting the calibration accuracy. Firstly, the calibration errors of IMU and
camera intrinsic parameters, which affect the measurements’ accuracy. At present, a reasonable
choice of camera calibration method ensures that imaging accuracy reaches the sub-pixel level,
and IMU is factory calibrated. Secondly, the time delay between the IMU and camera data
acquisition, which affects the calibration accuracy and stability of filter. We align the data by the
time label (both IMU and camera data are marked on the time label, respectively), and don’t
evaluate the time delay exactly. Thirdly, we ignore the non-orthogonality of the turntable axes,
and the turntable has been factory calibrated. Further research on a solution without orthogonal
axes could be performed.

3. We can observe the convergence of each parameter in the EKF process. The experiment results
show that the method is valid and is not restricted in the Kalman filter. Some optimal algorithms,
such as the particle filter and Levenberg–Marquardt algorithm can also be used. The calibration
parameters are obtained, and the complete visual/inertial integrated system is established. Future
research may focus on the calibration in the navigation process, and the proposed method may
be seen as a standard calibration step in factory production and user operation.
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4. Conclusions

An extrinsic parameter calibration method for a visual/inertial integrated system is developed
based on a swinging motion. A checkerboard corner detection algorithm is then utilized to detect
checkerboard corners with a smearing effect. The extrinsic parameter calibration method is developed
based on the imaging model and dynamic equation. This method is validated by performing a
simulation and a real-world experiment, which results highlight the effectiveness of the proposed
method. This method can also be seen as a standard calibration step and used for visual/inertial
systems, especially for visual and inertial navigation integrated systems.
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