
sensors

Article

High-Speed Railway Intruding Object Image
Generating with Generative Adversarial Networks

Baoqing Guo 1,2,*, Gan Geng 1,2, Liqiang Zhu 1,2 , Hongmei Shi 1,2 and Zujun Yu 1,2

1 School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
2 Key Laboratory of Vehicle Advanced Manufacturing, Measuring and Control Technology,

Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
* Correspondence: bqguo@bjtu.edu.cn

Received: 22 May 2019; Accepted: 7 July 2019; Published: 11 July 2019
����������
�������

Abstract: Foreign object intrusion is a great threat to high-speed railway safety operations. Accurate
foreign object intrusion detection is particularly important. As a result of the lack of intruding foreign
object samples during the operational period, artificially generated ones will greatly benefit the
development of the detection methods. In this paper, we propose a novel method to generate railway
intruding object images based on an improved conditional deep convolutional generative adversarial
network (C-DCGAN). It consists of a generator and multi-scale discriminators. Loss function is
also improved so as to generate samples with a high quality and authenticity. The generator is
extracted in order to generate foreign object images from input semantic labels. We synthesize the
generated objects to the railway scene. To make the generated objects more similar to real objects,
on scale in different positions of a railway scene, a scale estimation algorithm based on the gauge
constant is proposed. The experimental results on the railway intruding object dataset show that
the proposed C-DCGAN model outperforms several state-of-the-art methods and achieves a higher
quality (the pixel-wise accuracy, mean intersection-over-union (mIoU), and mean average precision
(mAP) are 80.46%, 0.65, and 0.69, respectively) and diversity (the Fréchet-Inception Distance (FID)
score is 26.87) of generated samples. The mIoU of the real-generated pedestrian pairs reaches 0.85,
and indicates a higher scale of accuracy for the generated intruding objects in the railway scene.

Keywords: railway intruding object; image generating; image translation; GAN

1. Introduction

Foreign objects intruding railway clearance, such as pedestrians and large livestock, are a major
hazard to the safety of railway operations. It is of great significance to detect intruding foreign
objects quickly and accurately. Numerous intruding object samples are needed for detection algorithm
development and testing. However, foreign object intrusion events are rare in daily operation. At the
same time, experiments on operating high-speed railways are not permitted. Artificially generated
railway images with intruding objects will benefit detection algorithm development and testing.

At present, railway foreign object intrusion detection methods mainly include contact type
and non-contact type [1]. The contact detection method refers to the installation of a protective net
along the railway in order to achieve the physical isolation of the railway boundary; non-contact
methods include infrared, laser, and video surveillance. Video surveillance refers to the identification
of foreign objects intruding the railway clearance using image processing. This method is widely
used because of the advantages of being low cost, intuitive, and having a high accuracy. There are
many algorithms for foreign objects intrusion detection. Teng Z [2] proposed a super-pixel-based
railway foreign object intrusion detection algorithm, in which a support vector machine (SVM) was
used to classify foreign objects and improve the detection accuracy. Tao Y [3] proposed an improved

Sensors 2019, 19, 3075; doi:10.3390/s19143075 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-5436-6660
http://www.mdpi.com/1424-8220/19/14/3075?type=check_update&version=1
http://dx.doi.org/10.3390/s19143075
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 3075 2 of 22

feature fusion convolutional neural network for foreign object intrusion detection in a railway
shunting mode. It improved the detection efficiency and achieved a high accuracy through depthwise
convolution. Yang Liuxu [4] proposed a railway foreign objects intrusion detection algorithm based
on a fast background difference, which had a higher detection speed and was used for a demonstration
application in the Shanghai–Nanjing high-speed railway of China. Wang Ning [5] proposed a railway
intruding pedestrian classification algorithm based on an improved deep convolutional network,
in which the improved AlexNet was combined with a HOG feature; the training and classification test
on the railway intrusion foreign object datasets showed that it had a higher accuracy and real-time
performance. All of the detection methods require large quantities of railway objects intruding as
samples. The samples in the above algorithms were all obtained during a non-operational period
at night. Figure 1a,b are the images of the same scene at non-operational and operational periods,
respectively. The large gap makes it impossible to evaluate the existing detection methods during the
operational period. A large amount railway foreign object intruding images during operational period
are badly needed. But experiments for sample collection in operational period in daytime are not
permitted. Therefore, it is of great significance to study the method of sample generating.

Sensors 2019, 19, x 2 of 22

classify foreign objects and improve the detection accuracy. Tao Y [3] proposed an improved feature
fusion convolutional neural network for foreign object intrusion detection in a railway shunting
mode. It improved the detection efficiency and achieved a high accuracy through depthwise
convolution. Yang Liuxu [4] proposed a railway foreign objects intrusion detection algorithm based
on a fast background difference, which had a higher detection speed and was used for a
demonstration application in the Shanghai–Nanjing high-speed railway of China. Wang Ning [5]
proposed a railway intruding pedestrian classification algorithm based on an improved deep
convolutional network, in which the improved AlexNet was combined with a HOG feature; the
training and classification test on the railway intrusion foreign object datasets showed that it had a
higher accuracy and real-time performance. All of the detection methods require large quantities of
railway objects intruding as samples. The samples in the above algorithms were all obtained during
a non-operational period at night. Figure 1a and Figure 1b are the images of the same scene at non-
operational and operational periods, respectively. The large gap makes it impossible to evaluate the
existing detection methods during the operational period. A large amount railway foreign object
intruding images during operational period are badly needed. But experiments for sample collection
in operational period in daytime are not permitted. Therefore, it is of great significance to study the
method of sample generating.

(a) (b)

Figure 1. Comparison of images at non-operational and operational period: (a) railway intrusion
sample at night; (b) images in operational period.

In recent years, the methods of machine learning have achieved great performance in many field
[6–10]. In data generating, some physical models are available in some applications [11–13]. For
images generated with machine learning, Goodfellow et al. [14] proposed generative adversarial
networks (GAN) in 2014. GAN is derived from the Nash balance in game theory, and includes a
generator (G) and a discriminator (D). The generator and discriminator have a confrontational
relationship. They constantly optimize their parameters in the game in order to win and finally reach
the Nash balance. In recent years, with the emergence of conditional GAN (CGAN) [15] and deep
convolutional GAN (DCGAN) [16], GAN has gained widespread attention in the field of image
generating. A variety of derived models have been proposed for different types of tasks or
optimization methods. For example, Pix2pix [17], cycle-consistent adversarial networks (CycleGAN)
[18], and other improved models [19,20] are proposed in order to solve the problem of image-to-
image translation. Optimization methods such as Wasserstein GAN (W-GAN) [21] and least squares
(LS)-GAN [22] have been proposed to solve problems of training instability and mode collapse.
However, the GAN image generating method has the problem of low quality, and has not been used
in the field of railway intruding object image generating.

In this paper, we propose a novel railway intruding object image generating method of high
quality and authenticity, based on an improved conditional DCGAN (C-DCGAN), which consists of
a generator and multi-scale discriminators. We also present the loss function so as to promote the
quality and authenticity of the generated samples. For synthetizing the generated intruding objects
to a railway scene with a high scale accuracy, the scale sizes of the generated objects in the different
positions are calculated with the invariance of a gauge constant.

The major contributions include the following:

Figure 1. Comparison of images at non-operational and operational period: (a) railway intrusion
sample at night; (b) images in operational period.

In recent years, the methods of machine learning have achieved great performance in many
field [6–10]. In data generating, some physical models are available in some applications [11–13].
For images generated with machine learning, Goodfellow et al. [14] proposed generative adversarial
networks (GAN) in 2014. GAN is derived from the Nash balance in game theory, and includes
a generator (G) and a discriminator (D). The generator and discriminator have a confrontational
relationship. They constantly optimize their parameters in the game in order to win and finally
reach the Nash balance. In recent years, with the emergence of conditional GAN (CGAN) [15] and
deep convolutional GAN (DCGAN) [16], GAN has gained widespread attention in the field of image
generating. A variety of derived models have been proposed for different types of tasks or optimization
methods. For example, Pix2pix [17], cycle-consistent adversarial networks (CycleGAN) [18], and other
improved models [19,20] are proposed in order to solve the problem of image-to-image translation.
Optimization methods such as Wasserstein GAN (W-GAN) [21] and least squares (LS)-GAN [22] have
been proposed to solve problems of training instability and mode collapse. However, the GAN image
generating method has the problem of low quality, and has not been used in the field of railway
intruding object image generating.

In this paper, we propose a novel railway intruding object image generating method of high
quality and authenticity, based on an improved conditional DCGAN (C-DCGAN), which consists of
a generator and multi-scale discriminators. We also present the loss function so as to promote the
quality and authenticity of the generated samples. For synthetizing the generated intruding objects
to a railway scene with a high scale accuracy, the scale sizes of the generated objects in the different
positions are calculated with the invariance of a gauge constant.

The major contributions include the following:

Sensors 2019, 19, 3075 3 of 22

• A novel method for generating railway intruding object images is proposed based on an improved
conditional DCGAN (C-DCGAN).

• In consideration of the authenticity and quality of the generated intruding objects, the generator,
multi-scale discriminators, and novel loss function of the improved C-DCGAN model
were constructed.

• An intruding-object scales estimation algorithm based on a gauge constant is presented so as to
synthesize generated intruding objects to a railway scene with a high scale accuracy.

• A comprehensive evaluation strategy based on several metrics is proposed. With the experiments
on the railway intruding object dataset, the proposed method outperforms several state-of-the-art
methods and achieves a higher quality as well as diversity by metrics of pixel-wise accuracy, mean
intersection-over-union (mIoU), mean average precision (mAP), and a Fréchet-Inception Distance
(FID) score. The mIoU score of the generated–real pedestrian pairs reached 0.85, and shows the
high-scale accuracy of the intruding objects in the railway scene.

The rest of this paper is organized as follows. Section 2 introduces the latest research and the related
theories of GAN and image-to-image translation. The railway intruding object image synthesis method
based on the C-DCGAN model and gauge constant is proposed in Section 3. Section 4 evaluates
the authenticity and scale accuracy of the generated railway foreign objects by the experiments.
Section 5 draws conclusions and discusses future research works.

2. Related Work

In this section, we cover the works of GAN, and discuss the latest developments of image-to-
image translation.

2.1. Generative Adversarial Networks

GAN usually includes a generator (G) and a discriminator (D), which are two independent neural
networks. The generator takes a random noise (z) as the input. It learns the data distribution of the real
samples and generates realistic fake samples that confuse the discriminator. The discriminator uses the
real data (x) and the generated G(z) as an input to determine whether the input is a real sample (x) or
a generated one. The basic framework of GAN is shown in Figure 2.

Sensors 2019, 19, x 3 of 22

 A novel method for generating railway intruding object images is proposed based on an
improved conditional DCGAN (C-DCGAN).

 In consideration of the authenticity and quality of the generated intruding objects, the
generator, multi-scale discriminators, and novel loss function of the improved C-DCGAN
model were constructed.

 An intruding-object scales estimation algorithm based on a gauge constant is presented so as to
synthesize generated intruding objects to a railway scene with a high scale accuracy.

 A comprehensive evaluation strategy based on several metrics is proposed. With the
experiments on the railway intruding object dataset, the proposed method outperforms several
state-of-the-art methods and achieves a higher quality as well as diversity by metrics of pixel-
wise accuracy, mean intersection-over-union (mIoU), mean average precision (mAP), and a
Fréchet-Inception Distance (FID) score. The mIoU score of the generated–real pedestrian pairs
reached 0.85, and shows the high-scale accuracy of the intruding objects in the railway scene.

The rest of this paper is organized as follows. Section 2 introduces the latest research and the
related theories of GAN and image-to-image translation. The railway intruding object image
synthesis method based on the C-DCGAN model and gauge constant is proposed in Section 3. Section
4 evaluates the authenticity and scale accuracy of the generated railway foreign objects by the
experiments. Section 5 draws conclusions and discusses future research works.

2. Related Work

In this section, we cover the works of GAN, and discuss the latest developments of image-to-
image translation.

2.1. Generative Adversarial Networks

GAN usually includes a generator (G) and a discriminator (D), which are two independent
neural networks. The generator takes a random noise (z) as the input. It learns the data distribution
of the real samples and generates realistic fake samples that confuse the discriminator. The
discriminator uses the real data (x) and the generated G(z) as an input to determine whether the input
is a real sample (x) or a generated one. The basic framework of GAN is shown in Figure 2.

Real data x

Random
noise z Generator G(z)

Discriminator score Loss

Figure 2. Basic framework of generative adversarial networks (GAN).

The implementation method of GAN is to make the generator and discriminator conduct
confrontation training. The generator performs unsupervised learning without a large amount of
prior knowledge in order to generate realistic data to confuse the discriminator. The discriminator
cannot effectively distinguish whether the data is from real samples or generated ones. The generator
and discriminator eventually reach the Nash balance. The objective function of GAN is shown as
Equation (1).

() ()()()x ~ () ~ ()m in m ax , [log ()] [log 1]
data zp x z p zG D

V D G E D x E D G z= + − (1)

where, ()~ datax P x represents a sample from the real data, ()~ zz P z represents a generated sample,

and D(G(z)) represents the probability that the generated data is discriminated as a real sample.
However, this unsupervised learning without pre-modeling is too free. GAN has problems such

as difficult training, model collapse, and a poor learning effect. In order to solve these problems,
conditional GAN (CGAN) [15] is proposed so as to add a conditional variable (y) to both the generator

Figure 2. Basic framework of generative adversarial networks (GAN).

The implementation method of GAN is to make the generator and discriminator conduct
confrontation training. The generator performs unsupervised learning without a large amount of
prior knowledge in order to generate realistic data to confuse the discriminator. The discriminator
cannot effectively distinguish whether the data is from real samples or generated ones. The generator
and discriminator eventually reach the Nash balance. The objective function of GAN is shown
as Equation (1).

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1−D(G(z)))] (1)

where, x ∼ Pdata(x) represents a sample from the real data, z ∼ Pz(z) represents a generated sample,
and D(G(z)) represents the probability that the generated data is discriminated as a real sample.

Sensors 2019, 19, 3075 4 of 22

However, this unsupervised learning without pre-modeling is too free. GAN has problems such
as difficult training, model collapse, and a poor learning effect. In order to solve these problems,
conditional GAN (CGAN) [15] is proposed so as to add a conditional variable (y) to both the generator
and discriminator, as shown in Figure 3. Currently, the input noise (z) and conditional variable (y)
form a joint hidden layer of representation information, and can be input into the generator for guiding
data generating. Then, the optimization problem is transformed into a confrontational game with
a conditional probability.

Sensors 2019, 19, x 4 of 22

and discriminator, as shown in Figure 3. Currently, the input noise (z) and conditional variable (y)
form a joint hidden layer of representation information, and can be input into the generator for
guiding data generating. Then, the optimization problem is transformed into a confrontational game
with a conditional probability.

Condition
y Real data x

Random
noise z Generator G(z|y)

Discriminator score Loss

Figure 3. Basic framework of conditional GAN (CGAN).

In an image processing task, convolutional neural networks (CNNs) [23] imitate the human
visual perception mechanism, and use convolution operations to extract image features in order to
achieve an excellent performance. Deep convolutional GAN (DCGAN) combines GAN with CNN by
eliminating all of the pooling, using batch normalization (BN) and full convolutional structures, and
changing the activation functions. Much progress has been made in the fields of image target
detection [24], image dehazing [25], texture synthesis [26], and image translation [15].

In a GAN derivative model, the method proposed by Tobias Hinz [27] is closer to ours. The
proposed model allows for the object to be added anywhere in the image by learning the objects in
the bounding box. The SEIGAN [28] model is used for target segmentation and inpainting in the
background images. However, it needs a complex dataset of object samples in different backgrounds
for the model training.

In order to generate high-quality images, an optimization method of the model training is
especially important. Aimed at gradient disappearance in the training process, Arjovsky proposed
Wasserstein GAN (W-GAN) [21], which used Earth-Mover instead of Jensen-Shannon divergence as
the criterion for measuring the distance between the real and generated samples. Least squares GAN
(LS-GAN) [22] replaced the commonly used cross entropy loss function with the least squares loss to
solve problems such as unstable training processes and low image quality.

2.2. Image-to-Image Translation Based on GAN

Image-to-image translation is a state-of-the-art method to generate intruding object images from
the input semantic labels. Image-to-image is a derivative model based on CGAN, which changes the
input to an image. Phillip Isola et al. proposed a general framework for image translation of Pix2pix
[17]. The model translates the image from domain A to domain B with paired data training from both
domains. It uses U-net [29] as a generator and PatchGAN [17] as a discriminator. The details of the
generated image are improved obviously by a size of 256 × 256, but the quality of the generated
higher-size image is poor. In order to break the limitation of paired data, CycleGAN [18], DiscoGAN
[30], and DualGAN [31] models were proposed. CycleGAN is the most classic one, which contains
two generators and two discriminators for separating the image content from the style through a
loop-consistent mechanism. Only unpaired samples from both domains are needed in order to
complete training. However, the quality of the generated images is worse than the Pix2pix
framework. Because of the image blurring introduced by the alone use of L1 loss [32], the adversarial
loss is added so as to enrich the image details in many studies [33,34]. However, the quality of these
models for higher sizes is poor, and no reports show that they have been used in the field of railway
foreign object generating.

Figure 3. Basic framework of conditional GAN (CGAN).

In an image processing task, convolutional neural networks (CNNs) [23] imitate the human
visual perception mechanism, and use convolution operations to extract image features in order to
achieve an excellent performance. Deep convolutional GAN (DCGAN) combines GAN with CNN
by eliminating all of the pooling, using batch normalization (BN) and full convolutional structures,
and changing the activation functions. Much progress has been made in the fields of image target
detection [24], image dehazing [25], texture synthesis [26], and image translation [15].

In a GAN derivative model, the method proposed by Tobias Hinz [27] is closer to ours. The proposed
model allows for the object to be added anywhere in the image by learning the objects in the bounding
box. The SEIGAN [28] model is used for target segmentation and inpainting in the background images.
However, it needs a complex dataset of object samples in different backgrounds for the model training.

In order to generate high-quality images, an optimization method of the model training is
especially important. Aimed at gradient disappearance in the training process, Arjovsky proposed
Wasserstein GAN (W-GAN) [21], which used Earth-Mover instead of Jensen-Shannon divergence as
the criterion for measuring the distance between the real and generated samples. Least squares GAN
(LS-GAN) [22] replaced the commonly used cross entropy loss function with the least squares loss to
solve problems such as unstable training processes and low image quality.

2.2. Image-to-Image Translation Based on GAN

Image-to-image translation is a state-of-the-art method to generate intruding object images from
the input semantic labels. Image-to-image is a derivative model based on CGAN, which changes
the input to an image. Phillip Isola et al. proposed a general framework for image translation
of Pix2pix [17]. The model translates the image from domain A to domain B with paired data
training from both domains. It uses U-net [29] as a generator and PatchGAN [17] as a discriminator.
The details of the generated image are improved obviously by a size of 256 × 256, but the quality of the
generated higher-size image is poor. In order to break the limitation of paired data, CycleGAN [18],
DiscoGAN [30], and DualGAN [31] models were proposed. CycleGAN is the most classic one,
which contains two generators and two discriminators for separating the image content from the
style through a loop-consistent mechanism. Only unpaired samples from both domains are needed
in order to complete training. However, the quality of the generated images is worse than the Pix2pix
framework. Because of the image blurring introduced by the alone use of L1 loss [32], the adversarial
loss is added so as to enrich the image details in many studies [33,34]. However, the quality of these
models for higher sizes is poor, and no reports show that they have been used in the field of railway
foreign object generating.

Sensors 2019, 19, 3075 5 of 22

3. Methodology

In order to generate high-quality and realistic railway intruding object images, we combine CGAN
and DCGAN to construct a conditional DCGAN (C-DCGAN). The framework consists of the training
mode and application mode, as shown in Figure 4. In the training mode, the C-DCGAN model is
trained on the paired samples so as to learn the map from the semantic images to real images. In the
application mode, the trained generator is then extracted to translate the input semantic image to
a foreign object image in a higher size. At the same time, the scale of the generated foreign objects
in different railway positions is calculated based on the invariance of the gauge constant. The foreign
object is synthesized to the railway scene at pixel-level eventually.

Sensors 2019, 19, x 5 of 22

3. Methodology

In order to generate high-quality and realistic railway intruding object images, we combine
CGAN and DCGAN to construct a conditional DCGAN (C-DCGAN). The framework consists of the
training mode and application mode, as shown in Figure 4. In the training mode, the C-DCGAN
model is trained on the paired samples so as to learn the map from the semantic images to real images.
In the application mode, the trained generator is then extracted to translate the input semantic image
to a foreign object image in a higher size. At the same time, the scale of the generated foreign objects
in different railway positions is calculated based on the invariance of the gauge constant. The foreign
object is synthesized to the railway scene at pixel-level eventually.

Figure 4. Overview of the railway intruding object image generating algorithm. The conditional deep
convolutional GAN (C-DCGAN) model is first trained with image pairs of semantic labels and real
images. For application, the trained generator is used to translate the semantic labels to various real
images. The semantic image is also used to segment the objects’ contours in the railway scene. After
the object scale size is calculated at the position, the generated intruding object is synthesized to the
railway scene.

3.1. C-DCGAN Model

The C-DCGAN model contains a generator and a discriminator, both of which are convolutional
network structures for image feature information extracting.

The generator adopts a full convolutional structure, consisting of five convolutional layers as
encoders, nine residual modules (Resnet block) [35] as converters, and four deconvolutional layers
as decoders. Table 1 shows the architecture of the generator. Firstly, the input semantic image
preprocessed by one-hot encoding is input into the convolutional layers for encoding. The image is
downsampled by the convolution of a stride of two, instead of pooling for reducing the loss of feature
information. The convolutional layers extract the information from the feature maps and compress
them into a 32 × 32 × 1024 tensor. ResNet blocks are introduced to convert the image features. Each
residual module contains two convolutional layers, after which the feature map is directly added to
the input through a shortcut connection so as to reduce the information loss during the conversion
process. Meanwhile, the residual module can avoid the problems of degradation and gradient
disappearance in such a deep network training. The tensor size is kept unchanged by the residual
module layer. Then, the feature maps are upsampled by the deconvolutional layers and are restored
to low-level feature maps. Finally, the maps are restored to an actual image. It should be noted that
the ReLU activation function is used after each convolution layer, except the last one, to reduce the
possibility of gradient disappearance and over-fitting. The last convolution layer uses a Tanh
activation function. At the same time, in order to avoid gradient explosion and to speed up the
convergence of the model, the instance normalization layer is added after each convolution layer [36].

Figure 4. Overview of the railway intruding object image generating algorithm. The conditional
deep convolutional GAN (C-DCGAN) model is first trained with image pairs of semantic labels and
real images. For application, the trained generator is used to translate the semantic labels to various
real images. The semantic image is also used to segment the objects’ contours in the railway scene.
After the object scale size is calculated at the position, the generated intruding object is synthesized to
the railway scene.

3.1. C-DCGAN Model

The C-DCGAN model contains a generator and a discriminator, both of which are convolutional
network structures for image feature information extracting.

The generator adopts a full convolutional structure, consisting of five convolutional layers as
encoders, nine residual modules (Resnet block) [35] as converters, and four deconvolutional layers
as decoders. Table 1 shows the architecture of the generator. Firstly, the input semantic image
preprocessed by one-hot encoding is input into the convolutional layers for encoding. The image
is downsampled by the convolution of a stride of two, instead of pooling for reducing the loss of
feature information. The convolutional layers extract the information from the feature maps and
compress them into a 32 × 32 × 1024 tensor. ResNet blocks are introduced to convert the image
features. Each residual module contains two convolutional layers, after which the feature map is
directly added to the input through a shortcut connection so as to reduce the information loss during
the conversion process. Meanwhile, the residual module can avoid the problems of degradation and
gradient disappearance in such a deep network training. The tensor size is kept unchanged by the
residual module layer. Then, the feature maps are upsampled by the deconvolutional layers and
are restored to low-level feature maps. Finally, the maps are restored to an actual image. It should
be noted that the ReLU activation function is used after each convolution layer, except the last one,
to reduce the possibility of gradient disappearance and over-fitting. The last convolution layer uses
a Tanh activation function. At the same time, in order to avoid gradient explosion and to speed up the

Sensors 2019, 19, 3075 6 of 22

convergence of the model, the instance normalization layer is added after each convolution layer [36].
The generator network is shown in Figure 5, where k means kernel size, n represents feature maps,
s means stride, d means dilation, and p is padding.

Sensors 2019, 19, x 6 of 22

The generator network is shown in Figure 5, where k means kernel size, n represents feature maps, s
means stride, d means dilation, and p is padding.

Figure 5. Architecture of the generator network with the corresponding kernel size (k), number of
feature maps (n), stride (s), and padding (p) indicated for each layer. Convolution is used to extract
the features. The features are transformed from the semantic domain to the real one in the ResNet
blocks. Low-level features are restored with the deconvolution, and the real image is ultimately
generated.

Table 1. Architecture of the generator.

Layer_Name Input_Size Filters Kernel_Size Stride Output_Size Others
ReflectionPad0 512 × 512 - - - 518 × 518 -

Conv1_0 518 × 518 64 7 × 7 1.1 512 × 512 -
Conv1_1 512 × 512 128 3 × 3 2.2 256 × 256 -
Conv1_2 256 × 256 256 3 × 3 2.2 128 × 128 -
Conv1_3 128 × 128 512 3 × 3 2.2 64 × 64 -
Conv1_4 64 × 64 1024 3 × 3 2.2 32 × 32 -

Conv 32 × 32 1024 3 × 3 1.1 32 × 32
ResNet blocks × 9 Conv 32 × 32 1024 3 × 3 1.1 32 × 32

Shortcuts 32 × 32 1024 3 × 3 1.1 32 × 32
Deconv3_0 32 × 32 512 3 × 3 2.2 64 × 64 -
Deconv3_1 64 × 64 256 3 × 3 2.2 128 × 128 -
Deconv3_2 128 × 128 128 3 × 3 2.2 256 × 256 -
Deconv3_3 256 × 256 64 3 × 3 2.2 512 × 512 -

ReflectionPad1 512 × 512 - - - 518 × 518 -
Conv4 518 × 518 3 7 × 7 1.1 512 × 512 -

The task of the discriminator is to discriminate between the real and generated samples at a
higher size, under the consideration of the image global and local features. A deeper network or a
larger convolution kernel can provide a larger receptive field for global features extracting, but there
is the disadvantage of over-fitting. In this paper, the multi-scale discriminators network is used,
which contains three discriminators models. They extract the features at original, 1/2, and 1/4 of the
downsampled scales, as shown in Figure 6. The architecture of the multi-scale discriminators network
is shown in Table 2. Each discriminator includes convolution, instance normalization, and
LeakyReLU activation functions. The coarse-scale discriminator uses dilated convolution [37] instead
of ordinary convolution to reduce the information loss and make the receptive field exponentially
grow [38]. The fine scale discriminator focuses on the local detail information and guides the
generator to produce finer images. The multi-scale discriminator network captures the image
information to the greatest extent for higher-size image discrimination.

Figure 5. Architecture of the generator network with the corresponding kernel size (k), number of
feature maps (n), stride (s), and padding (p) indicated for each layer. Convolution is used to extract the
features. The features are transformed from the semantic domain to the real one in the ResNet blocks.
Low-level features are restored with the deconvolution, and the real image is ultimately generated.

Table 1. Architecture of the generator.

Layer_Name Input_Size Filters Kernel_Size Stride Output_Size Others

ReflectionPad0 512 × 512 - - - 518 × 518 -
Conv1_0 518 × 518 64 7 × 7 1.1 512 × 512 -
Conv1_1 512 × 512 128 3 × 3 2.2 256 × 256 -
Conv1_2 256 × 256 256 3 × 3 2.2 128 × 128 -
Conv1_3 128 × 128 512 3 × 3 2.2 64 × 64 -
Conv1_4 64 × 64 1024 3 × 3 2.2 32 × 32 -

Conv 32 × 32 1024 3 × 3 1.1 32 × 32
ResNet

blocks × 9
Conv 32 × 32 1024 3 × 3 1.1 32 × 32

Shortcuts 32 × 32 1024 3 × 3 1.1 32 × 32

Deconv3_0 32 × 32 512 3 × 3 2.2 64 × 64 -
Deconv3_1 64 × 64 256 3 × 3 2.2 128 × 128 -
Deconv3_2 128 × 128 128 3 × 3 2.2 256 × 256 -
Deconv3_3 256 × 256 64 3 × 3 2.2 512 × 512 -

ReflectionPad1 512 × 512 - - - 518 × 518 -
Conv4 518 × 518 3 7 × 7 1.1 512 × 512 -

The task of the discriminator is to discriminate between the real and generated samples at
a higher size, under the consideration of the image global and local features. A deeper network or
a larger convolution kernel can provide a larger receptive field for global features extracting, but there
is the disadvantage of over-fitting. In this paper, the multi-scale discriminators network is used,
which contains three discriminators models. They extract the features at original, 1/2, and 1/4 of the
downsampled scales, as shown in Figure 6. The architecture of the multi-scale discriminators network
is shown in Table 2. Each discriminator includes convolution, instance normalization, and LeakyReLU
activation functions. The coarse-scale discriminator uses dilated convolution [37] instead of ordinary
convolution to reduce the information loss and make the receptive field exponentially grow [38].
The fine scale discriminator focuses on the local detail information and guides the generator to produce
finer images. The multi-scale discriminator network captures the image information to the greatest
extent for higher-size image discrimination.

Sensors 2019, 19, 3075 7 of 22
Sensors 2019, 19, x 7 of 22

Figure 6. Multi-scale discriminators network with the corresponding kernel size (k), number of
feature maps (n), stride (s), and padding (p) indicated for each layer.

Table 2. Architecture of the multi-scale discriminators.

Module Layers Input_Size Filters Kernel_Size Dilation Stride Output_Size

D1

Conv1_0 512 × 512 64 4 × 4 1 2.2 256 × 256
Conv1_1 256 × 256 128 4 × 4 1 2.2 128 × 128
Conv1_2 128 × 128 256 4 × 4 1 2.2 64 × 64
Conv1_3 64 × 64 512 4 × 4 1 1,1 63 × 63
Conv1_4 63 × 63 1 4 × 4 1 1.1 62 × 62

D2

Conv2_0 256 × 256 64 4 × 4 1 2.2 128 × 128
Conv2_1 128 × 128 128 4 × 4 1 2.2 64 × 64
Conv2_2 64 × 64 256 4 × 4 1 2.2 32 × 32
Conv2_3 32 × 32 512 4 × 4 1 1.1 31 × 31
Conv2_4 31 × 31 1 4 × 4 1 1.1 30 × 30

D3

Conv3_0 128 × 128 64 4 × 4 1 2.2 64 × 64
Conv3_1 64 × 64 128 4 × 4 2 2.2 32 × 32
Conv3_2 32 × 32 256 4 × 4 1 2.2 16 × 16
Conv3_3 16 × 16 512 4 × 4 2 1.1 15 × 15
Conv3_4 15 × 15 1 4 × 4 1 1.1 14 × 14

For the above multi-scale discriminators network, the GAN objective function is shown in
Equation (2).

()
1 2 3, , 1,2,3

min max ,GAN kG D D D k
L G D

=
 (2)

where k is the index of the discriminator models.
In order to generate more realistic images, a feature matching loss [39] is introduced into the loss

functions of each discriminator model. The feature maps of the generated and real images in each
layer are matched with Equation (3).

() () ()()s , 1i=1

1= , ,
T

i i
FM k kx

i

L E D s x D s G s
N

 −   (3)

where T is the index of the layers, iN represents the number of neurons in each layer, s represents
the input semantic label, x stands for the real image sample, and G(s) is the generated image. The L1
distance constrained loss function is used to avoid the smooth blurring of the image caused by the
L2 loss [40].

The perceptual loss [32] based on the pre-trained VGG16 model is added so as to guide clearer
image generating. The loss function is defined as Equation (4).

() ()()
11

1 -
N

i i
VGG

i i

L F x F G s
M=

 =    (4)

Figure 6. Multi-scale discriminators network with the corresponding kernel size (k), number of feature
maps (n), stride (s), and padding (p) indicated for each layer.

Table 2. Architecture of the multi-scale discriminators.

Module Layers Input_Size Filters Kernel_Size Dilation Stride Output_Size

D1

Conv1_0 512 × 512 64 4 × 4 1 2.2 256 × 256
Conv1_1 256 × 256 128 4 × 4 1 2.2 128 × 128
Conv1_2 128 × 128 256 4 × 4 1 2.2 64 × 64
Conv1_3 64 × 64 512 4 × 4 1 1,1 63 × 63
Conv1_4 63 × 63 1 4 × 4 1 1.1 62 × 62

D2

Conv2_0 256 × 256 64 4 × 4 1 2.2 128 × 128
Conv2_1 128 × 128 128 4 × 4 1 2.2 64 × 64
Conv2_2 64 × 64 256 4 × 4 1 2.2 32 × 32
Conv2_3 32 × 32 512 4 × 4 1 1.1 31 × 31
Conv2_4 31 × 31 1 4 × 4 1 1.1 30 × 30

D3

Conv3_0 128 × 128 64 4 × 4 1 2.2 64 × 64
Conv3_1 64 × 64 128 4 × 4 2 2.2 32 × 32
Conv3_2 32 × 32 256 4 × 4 1 2.2 16 × 16
Conv3_3 16 × 16 512 4 × 4 2 1.1 15 × 15
Conv3_4 15 × 15 1 4 × 4 1 1.1 14 × 14

For the above multi-scale discriminators network, the GAN objective function is shown in Equation (2).

min
G

max
D1,D2,D3

∑
k=1,2,3

LGAN(G, Dk) (2)

where k is the index of the discriminator models.
In order to generate more realistic images, a feature matching loss [39] is introduced into the loss

functions of each discriminator model. The feature maps of the generated and real images in each
layer are matched with Equation (3).

LFM = E(s,x)

T∑
i=1

1
Ni

[
‖Di

k(s, x) −Di
k(s, G(s))‖1

]
(3)

where T is the index of the layers, Ni represents the number of neurons in each layer, s represents
the input semantic label, x stands for the real image sample, and G(s) is the generated image. The L1
distance constrained loss function is used to avoid the smooth blurring of the image caused by the
L2 loss [40].

Sensors 2019, 19, 3075 8 of 22

The perceptual loss [32] based on the pre-trained VGG16 model is added so as to guide clearer
image generating. The loss function is defined as Equation (4).

LVGG =
N∑

i=1

1
Mi

[
‖Fi(x) − Fi(G(s))‖1

]
(4)

where i is the corresponding index of layers in the VGG network, and Mi denotes the elements number
in layer i.

In order to make the training more stable and to improve the quality of the generated images,
the least squares loss from LSGANS [22] is used. The final objective function is shown as Equation (5).

min
G


 max

D1,D2,D3

∑
k=1,2,3

LGAN(G, Dk)

+ λ1

∑
k=1,2,3

LFM(G, Dk) + λ2LVGG

 (5)

where λ1 and λ2 are weight of LFM and LVGG, respectively.
The training of the C-DCGAN model is an iterative process of the generators’ and discriminators’

optimizing. The training goal of the generator is to minimize the above objective function. The goal of
the discriminator is to maximize the above function. In order to maintain the balance and prevent
neither the discriminator nor generator from winning in the confrontation, the discriminator should be
updated once after the generator, updating k(k>1) times in the training process.

3.2. Scale Estimation of Generated Intruding Object

In order to synthesize the generated intruding object image to the railway scene with a higher
scale accuracy, the ratio of the intruding object to gauge constant are used to estimate the pixel scale of
the generated objects in different positions in the railway image, shown as Equation (6).

s
g
=

sg
i

ni (6)

where s is the real size of objects, g is the gauge constant (1435 mm), sg
i represents the pixel number of

the generated objects in the ith position, and ni is the pixel number between two rails in the ith position,
as shown in Figure 7. For a certain category, s/g, sg

i/ni are all constant. When the pixel numbers between
rails ni are detected, the generated object pixel number (si

g) could be calculated at the same position.

Sensors 2019, 19, x 8 of 22

where i is the corresponding index of layers in the VGG network, and Mi denotes the elements
number in layer i.

In order to make the training more stable and to improve the quality of the generated images,
the least squares loss from LSGANS [22] is used. The final objective function is shown as Equation
(5).

() ()
1 2 3

1 2, , 1,2,3 1,2,3
min max , ,GAN k FM k VGGG D D D k k

L G D L G D Lλ λ
= =

  
+ +     

  (5)

where λ1 and λ2 are weight of LFM and LVGG, respectively.
The training of the C-DCGAN model is an iterative process of the generators’ and

discriminators’ optimizing. The training goal of the generator is to minimize the above objective
function. The goal of the discriminator is to maximize the above function. In order to maintain the
balance and prevent neither the discriminator nor generator from winning in the confrontation, the
discriminator should be updated once after the generator, updating k(k>1) times in the training
process.

3.2. Scale Estimation of Generated Intruding Object

In order to synthesize the generated intruding object image to the railway scene with a higher
scale accuracy, the ratio of the intruding object to gauge constant are used to estimate the pixel scale
of the generated objects in different positions in the railway image, shown as Equation (6).

s i
g
i

s
g n

= (6)

where s is the real size of objects, g is the gauge constant (1435 mm), sgi represents the pixel number
of the generated objects in the ith position, and ni is the pixel number between two rails in the ith
position, as shown in Figure 7. For a certain category, s/g, sgi/ni are all constant. When the pixel
numbers between rails ni are detected, the generated object pixel number (sig) could be calculated at
the same position.

Figure 7. Scale size estimation based on the gauge constant. n1, n2, and n3 represent the pixel numbers
between two rails at different positions. With the invariant s/g, the pixel numbers of the generated
objects at different positions of sg1, sg2, and sg3 can be calculated when n1, n2, and n3 are detected.

An overview of the algorithm for detecting the pixel number between the rails at different
positions is shown in Figure 8. Firstly, the rail lines are detected by the Hough transform after image
pre-processing. Then, the Hough transform is used again to detect the sleeper lines between the rails.
The pixel number between the two rails at a certain position can be obtained by the equation of the
rails and sleeper lines. The pixel number of the generated objects can be calculated by Equation (6).

Figure 7. Scale size estimation based on the gauge constant. n1, n2, and n3 represent the pixel numbers
between two rails at different positions. With the invariant s/g, the pixel numbers of the generated
objects at different positions of sg

1, sg
2, and sg

3 can be calculated when n1, n2, and n3 are detected.

An overview of the algorithm for detecting the pixel number between the rails at different
positions is shown in Figure 8. Firstly, the rail lines are detected by the Hough transform after image
pre-processing. Then, the Hough transform is used again to detect the sleeper lines between the rails.

Sensors 2019, 19, 3075 9 of 22

The pixel number between the two rails at a certain position can be obtained by the equation of the
rails and sleeper lines. The pixel number of the generated objects can be calculated by Equation (6).Sensors 2019, 19, x 9 of 22

Figure 8. Overview of the generated object size estimation algorithm. The rail line features are
highlighted with the pre-processing, including median filtering, histogram equalization,
morphological operation, and connected components labeling. Then, the edges are extracted by the
Canny. The rail lines are detected by Hough based on polar projection. Parallel sleepers are also
detected for the scale size calculation.

Because of the complicated railway scene and the many interference factors, it is necessary to
pre-process the image in order to highlight the rail. Firstly, median filtering is used to filter the noises
caused by vibration and other factors, and the rails after the larger threshold binarization and
histogram equalization are further highlighted. In order to solve the problem of partial “fracture”
caused by noise, the morphological close operation is used to the inverted image. The morphological
close operation reconnects the “broken” part of the rail and eliminates most of the white spots caused
by the ballasts, gravel, and plants, except for some independent white spots. They are eliminated
with the eight-connected components labeling method. Then, the Canny edge detection operator is
used to extract the edge of the rails for subsequent detection, as shown in Figure 9.

(a) (b)

(c) (d)

(e) (f)

Figure 9. Railway scene image pre-processing: (a) original railway scene; (b) median filtered and
binarization; (c) dilation; (d) erosion; (e) eight-connected components labeling; (f) Canny.

After pre-processing, the rail features are outstanding, but it is still difficult to directly detect all
of the rail lines. According to the perspective projective imaging model, parallel lines in the real world
are mapped into lines intersecting at a point in the image plane, which is called the vanishing point.
In a straight railway scene, all of the rails and sleepers are parallel to each other, respectively. The

Figure 8. Overview of the generated object size estimation algorithm. The rail line features are
highlighted with the pre-processing, including median filtering, histogram equalization, morphological
operation, and connected components labeling. Then, the edges are extracted by the Canny. The rail
lines are detected by Hough based on polar projection. Parallel sleepers are also detected for the scale
size calculation.

Because of the complicated railway scene and the many interference factors, it is necessary to
pre-process the image in order to highlight the rail. Firstly, median filtering is used to filter the noises
caused by vibration and other factors, and the rails after the larger threshold binarization and histogram
equalization are further highlighted. In order to solve the problem of partial “fracture” caused by
noise, the morphological close operation is used to the inverted image. The morphological close
operation reconnects the “broken” part of the rail and eliminates most of the white spots caused by the
ballasts, gravel, and plants, except for some independent white spots. They are eliminated with the
eight-connected components labeling method. Then, the Canny edge detection operator is used to
extract the edge of the rails for subsequent detection, as shown in Figure 9.

Sensors 2019, 19, x 9 of 22

Figure 8. Overview of the generated object size estimation algorithm. The rail line features are
highlighted with the pre-processing, including median filtering, histogram equalization,
morphological operation, and connected components labeling. Then, the edges are extracted by the
Canny. The rail lines are detected by Hough based on polar projection. Parallel sleepers are also
detected for the scale size calculation.

Because of the complicated railway scene and the many interference factors, it is necessary to
pre-process the image in order to highlight the rail. Firstly, median filtering is used to filter the noises
caused by vibration and other factors, and the rails after the larger threshold binarization and
histogram equalization are further highlighted. In order to solve the problem of partial “fracture”
caused by noise, the morphological close operation is used to the inverted image. The morphological
close operation reconnects the “broken” part of the rail and eliminates most of the white spots caused
by the ballasts, gravel, and plants, except for some independent white spots. They are eliminated
with the eight-connected components labeling method. Then, the Canny edge detection operator is
used to extract the edge of the rails for subsequent detection, as shown in Figure 9.

(a) (b)

(c) (d)

(e) (f)

Figure 9. Railway scene image pre-processing: (a) original railway scene; (b) median filtered and
binarization; (c) dilation; (d) erosion; (e) eight-connected components labeling; (f) Canny.

After pre-processing, the rail features are outstanding, but it is still difficult to directly detect all
of the rail lines. According to the perspective projective imaging model, parallel lines in the real world
are mapped into lines intersecting at a point in the image plane, which is called the vanishing point.
In a straight railway scene, all of the rails and sleepers are parallel to each other, respectively. The

Figure 9. Railway scene image pre-processing: (a) original railway scene; (b) median filtered and
binarization; (c) dilation; (d) erosion; (e) eight-connected components labeling; (f) Canny.

Sensors 2019, 19, 3075 10 of 22

After pre-processing, the rail features are outstanding, but it is still difficult to directly detect
all of the rail lines. According to the perspective projective imaging model, parallel lines in the real
world are mapped into lines intersecting at a point in the image plane, which is called the vanishing
point. In a straight railway scene, all of the rails and sleepers are parallel to each other, respectively.
The vanishing point model of the rails and sleepers is shown in Figure 10. The rails are intersected
at point O1, and the sleepers are intersected at point O2. The Hough transform is a commonly used
method for line detecting [41–43]. Here, we also used it to detect the two most significant straight
rail lines and to determine their vanishing point O1. As all of the parallel rails pass through the
vanishing point O1, the polar coordinate system can be established centered on the vanishing point.
The polar projection method counts the white pixel numbers of the lines passing through the vanishing
point in any direction. The peaks of the polar projection stand for the most obvious rails, as shown
in Figure 11a. The parallel rails are detected in Figure 11b.

Sensors 2019, 19, x 10 of 22

vanishing point model of the rails and sleepers is shown in Figure 10. The rails are intersected at point
O1, and the sleepers are intersected at point O2. The Hough transform is a commonly used method
for line detecting [41–43]. Here, we also used it to detect the two most significant straight rail lines
and to determine their vanishing point O1. As all of the parallel rails pass through the vanishing point
O1, the polar coordinate system can be established centered on the vanishing point. The polar
projection method counts the white pixel numbers of the lines passing through the vanishing point in
any direction. The peaks of the polar projection stand for the most obvious rails, as shown in Figure11a.
The parallel rails are detected in Figure 11b.

Figure 10. Vanishing point model for rails and sleepers [44].

(a) (b)

Figure 11. Parallel rails detection: (a) statistics of pixel numbers at different angles in polar projection;
(b) rails detection.

The sleeper area is segmented by the detected rails, and is pre-processed with the same steps for
the rails. In the railway scene, the length of the sleeper lines between the rails is much smaller than
the distance to the vanishing point. So, the lines of the sleeper can be considered approximately
parallel. The Hough transform is used again to detect the sleeper lines between the rails. The detected
lines are divided into 180 categories according to their slopes. The total length of the detected lines in
each category can be calculated by the following:

1
= ,(0,1,2,...,179)

N

i ij
j

S l i
=

= (7)

where N is number of detected lines in each category, and Si denotes the total length of the detected
lines (lij) in the ith category.

The category with the largest Si is the angular direction of the parallel sleepers. The pixel number
between the rails at different positions can be determined by the sleeper line segments. The pixel
number of generated objects in the same position can be calculated in Equation (6), and the scaled
objects and sleeper line segments are shown in Figure 12.

Figure 10. Vanishing point model for rails and sleepers [44].

Sensors 2019, 19, x 10 of 22

vanishing point model of the rails and sleepers is shown in Figure 10. The rails are intersected at point
O1, and the sleepers are intersected at point O2. The Hough transform is a commonly used method
for line detecting [41–43]. Here, we also used it to detect the two most significant straight rail lines
and to determine their vanishing point O1. As all of the parallel rails pass through the vanishing point
O1, the polar coordinate system can be established centered on the vanishing point. The polar
projection method counts the white pixel numbers of the lines passing through the vanishing point in
any direction. The peaks of the polar projection stand for the most obvious rails, as shown in Figure11a.
The parallel rails are detected in Figure 11b.

Figure 10. Vanishing point model for rails and sleepers [44].

(a) (b)

Figure 11. Parallel rails detection: (a) statistics of pixel numbers at different angles in polar projection;
(b) rails detection.

The sleeper area is segmented by the detected rails, and is pre-processed with the same steps for
the rails. In the railway scene, the length of the sleeper lines between the rails is much smaller than
the distance to the vanishing point. So, the lines of the sleeper can be considered approximately
parallel. The Hough transform is used again to detect the sleeper lines between the rails. The detected
lines are divided into 180 categories according to their slopes. The total length of the detected lines in
each category can be calculated by the following:

1
= ,(0,1,2,...,179)

N

i ij
j

S l i
=

= (7)

where N is number of detected lines in each category, and Si denotes the total length of the detected
lines (lij) in the ith category.

The category with the largest Si is the angular direction of the parallel sleepers. The pixel number
between the rails at different positions can be determined by the sleeper line segments. The pixel
number of generated objects in the same position can be calculated in Equation (6), and the scaled
objects and sleeper line segments are shown in Figure 12.

Figure 11. Parallel rails detection: (a) statistics of pixel numbers at different angles in polar projection;
(b) rails detection.

The sleeper area is segmented by the detected rails, and is pre-processed with the same steps for
the rails. In the railway scene, the length of the sleeper lines between the rails is much smaller than the
distance to the vanishing point. So, the lines of the sleeper can be considered approximately parallel.
The Hough transform is used again to detect the sleeper lines between the rails. The detected lines are
divided into 180 categories according to their slopes. The total length of the detected lines in each
category can be calculated by the following:

Si =
N∑

j=1

li j, (i = 0, 1, 2, . . . , 179) (7)

where N is number of detected lines in each category, and Si denotes the total length of the detected
lines (lij) in the ith category.

The category with the largest Si is the angular direction of the parallel sleepers. The pixel number
between the rails at different positions can be determined by the sleeper line segments. The pixel
number of generated objects in the same position can be calculated in Equation (6), and the scaled
objects and sleeper line segments are shown in Figure 12.

Sensors 2019, 19, 3075 11 of 22

Sensors 2019, 19, x 11 of 22

Figure 12. Scaled objects and sleeper lines at different positions.

4. Experiments and Evaluations

In order to evaluate the authenticity, quality, and scale accuracy of the generated intruding
object images in the railway scene, we established a railway intruding object dataset for image
translation from semantic labels to real images, and a railway scene dataset as a background for image
synthesis. We conducted experiments to evaluate the generated intruding foreign objects images with
several metrics. Comparison results with other state-of-the-art methods (Pix2pix, CycleGAN, and
DualGAN) and model optimizations are also provided.

4.1. Datasets and Training Details

Potential intruding objects on railways mainly include pedestrians and large livestock (sheep,
horses, and cows). We first built a dataset of railway intruding object images derived from the public
database. The MS-COCO dataset is one of the most commonly used datasets for deep learning, which
includes 80-object categories and more than 200,000 labeled images [45]. The LIP dataset [46],
containing images of 19 human body parts semantic labels, is one of the commonly used datasets in
the field of pedestrian analysis. We built the dataset of railway intruding objects by the following
steps:

(1) Semantic labels and real images of specified categories (pedestrian, sheep, cow, and horse) are
extracted from the LIP and MS-COCO datasets.

(2) The extracted samples are resized to 512 × 512.
(3) According to the semantic labels, the objects are segmented from the background in the real

images to reduce the influence of the complex background features on training.
(4) We reset the pixel values of each category in the semantic labels.

Our dataset includes 11,615 semantic and real-image pairs of pedestrians, sheep, cows, and
horses, as shown in Figure 13. The contents of the dataset are shown in Table 3. For the training set,
we used 80% of random samples of each category. The remaining 20% of the samples we allocated to
be the validation sets.

Table 3. Dataset of railway intrusion objects.

Categories Number Size (Pi×els)
Pedestrian 4897 512 × 512

Sheep 1594 512 × 512
Cow 2055 512 × 512

Horse 3069 512 × 512

Figure 12. Scaled objects and sleeper lines at different positions.

4. Experiments and Evaluations

In order to evaluate the authenticity, quality, and scale accuracy of the generated intruding object
images in the railway scene, we established a railway intruding object dataset for image translation
from semantic labels to real images, and a railway scene dataset as a background for image synthesis.
We conducted experiments to evaluate the generated intruding foreign objects images with several
metrics. Comparison results with other state-of-the-art methods (Pix2pix, CycleGAN, and DualGAN)
and model optimizations are also provided.

4.1. Datasets and Training Details

Potential intruding objects on railways mainly include pedestrians and large livestock (sheep,
horses, and cows). We first built a dataset of railway intruding object images derived from the public
database. The MS-COCO dataset is one of the most commonly used datasets for deep learning,
which includes 80-object categories and more than 200,000 labeled images [45]. The LIP dataset [46],
containing images of 19 human body parts semantic labels, is one of the commonly used datasets in the
field of pedestrian analysis. We built the dataset of railway intruding objects by the following steps:

(1) Semantic labels and real images of specified categories (pedestrian, sheep, cow, and horse) are
extracted from the LIP and MS-COCO datasets.

(2) The extracted samples are resized to 512 × 512.
(3) According to the semantic labels, the objects are segmented from the background in the real

images to reduce the influence of the complex background features on training.
(4) We reset the pixel values of each category in the semantic labels.

Our dataset includes 11,615 semantic and real-image pairs of pedestrians, sheep, cows, and horses,
as shown in Figure 13. The contents of the dataset are shown in Table 3. For the training set, we used
80% of random samples of each category. The remaining 20% of the samples we allocated to be the
validation sets.

Table 3. Dataset of railway intrusion objects.

Categories Number Size (Pixels)

Pedestrian 4897 512 × 512
Sheep 1594 512 × 512
Cow 2055 512 × 512

Horse 3069 512 × 512

Sensors 2019, 19, 3075 12 of 22

Sensors 2019, 19, x 12 of 22

Figure 13. Samples of railway intruding object dataset.

The railway scene dataset was constructed based on surveillance videos along the high-speed
rail lines. The dataset contained different scenes, such as station throat areas, tunnel portals, railway
main lines, and so on, under different weather conditions. The samples of the railway scene dataset
are shown in Figure 14. The size of all of the samples is 1920 × 1080.

Figure 14. Samples of the railway scene dataset.

Our experiments were performed on an Intel(R) Core (TM) i7-6850CPU@3.2GHz processor,
16GB RAM, NVIDIA GeFore GTX Titan GPU, PyTorch deep learning framework. The parameters of
the C-DCGAN model training are shown in Table 4. The training process was carried out for 300
iterations. The learning rate of the optimizer was 0.002, and linearly attenuated to 0 after 100
iterations. In order to maintain a counterbalance, the ratio (k) of the updating times of the
discriminator to generator is 1:3. For avoiding the gradient disappearance during training, the
instance normalization method [36] was used.

Table 4. Parameters of conditional deep convolutional generative adversarial networks (C-DCGAN)
model training.

Size Batch Size λ1 λ2 k Optimizer Learning Rate Momentum
512 × 512 1 10 9 1:3 Adam 0.0002 0.5

After the 96 h of training, the generator was extracted in order to generate intruding objects from
the semantic labels. There were 8709 intruding objects of different categories that were generated.
Some samples of diversity are shown in Figure 15. Every single sample generation took 327 ms.

Figure 13. Samples of railway intruding object dataset.

The railway scene dataset was constructed based on surveillance videos along the high-speed
rail lines. The dataset contained different scenes, such as station throat areas, tunnel portals, railway
main lines, and so on, under different weather conditions. The samples of the railway scene dataset are
shown in Figure 14. The size of all of the samples is 1920 × 1080.

Sensors 2019, 19, x 12 of 22

Figure 13. Samples of railway intruding object dataset.

The railway scene dataset was constructed based on surveillance videos along the high-speed
rail lines. The dataset contained different scenes, such as station throat areas, tunnel portals, railway
main lines, and so on, under different weather conditions. The samples of the railway scene dataset
are shown in Figure 14. The size of all of the samples is 1920 × 1080.

Figure 14. Samples of the railway scene dataset.

Our experiments were performed on an Intel(R) Core (TM) i7-6850CPU@3.2GHz processor,
16GB RAM, NVIDIA GeFore GTX Titan GPU, PyTorch deep learning framework. The parameters of
the C-DCGAN model training are shown in Table 4. The training process was carried out for 300
iterations. The learning rate of the optimizer was 0.002, and linearly attenuated to 0 after 100
iterations. In order to maintain a counterbalance, the ratio (k) of the updating times of the
discriminator to generator is 1:3. For avoiding the gradient disappearance during training, the
instance normalization method [36] was used.

Table 4. Parameters of conditional deep convolutional generative adversarial networks (C-DCGAN)
model training.

Size Batch Size λ1 λ2 k Optimizer Learning Rate Momentum
512 × 512 1 10 9 1:3 Adam 0.0002 0.5

After the 96 h of training, the generator was extracted in order to generate intruding objects from
the semantic labels. There were 8709 intruding objects of different categories that were generated.
Some samples of diversity are shown in Figure 15. Every single sample generation took 327 ms.

Figure 14. Samples of the railway scene dataset.

Our experiments were performed on an Intel(R) Core (TM) i7-6850CPU@3.2GHz processor, 16GB
RAM, NVIDIA GeFore GTX Titan GPU, PyTorch deep learning framework. The parameters of the
C-DCGAN model training are shown in Table 4. The training process was carried out for 300 iterations.
The learning rate of the optimizer was 0.002, and linearly attenuated to 0 after 100 iterations. In order
to maintain a counterbalance, the ratio (k) of the updating times of the discriminator to generator is
1:3. For avoiding the gradient disappearance during training, the instance normalization method [36]
was used.

Table 4. Parameters of conditional deep convolutional generative adversarial networks (C-DCGAN)
model training.

Size Batch Size λ1 λ2 k Optimizer Learning Rate Momentum

512 × 512 1 10 9 1:3 Adam 0.0002 0.5

After the 96 h of training, the generator was extracted in order to generate intruding objects from
the semantic labels. There were 8709 intruding objects of different categories that were generated.
Some samples of diversity are shown in Figure 15. Every single sample generation took 327 ms.

Sensors 2019, 19, 3075 13 of 22

Sensors 2019, 19, x 13 of 22

Figure 15. Generated intruding objects from the input semantic labels.

4.2. Evaluation Metrics

For the railway intruding object image generating, we expected the generated samples to be of
high quality, authenticity, and diversity. In order to comprehensively evaluate the generated samples,
we employed four metrics.

To quantify the quality of the generated samples, we first adopted a similar evaluation protocol
to previous works [18]. A popular semantic segmentation model, DeepLabv3+ [47], trained on our
dataset, was used for semantic segmentation on the generated samples. Two standard semantic
segmentation scores were used, including pixel-wise accuracy (Pixel acc) and mean IoU. They can be
calculated by the comparison between the segmented label maps and the input ground truth label
maps. The Pixel acc and mean IoU scores measure the interpretability and quality of the generated
samples. The pre-trained DeelLabv3+ could obtain a close segmentation effect to that of the real
samples on the realistic generated ones.

Diversified samples are of great significance to railway intruding detection methods. For the
diversity assessment of the generated samples, we use the Fréchet-Inception Distance (FID) score [48],
which indicates the distributions of inception embeddings (activations from the penultimate layer in
the inception network) of the real and generated samples. A lower FID score shows a better diversity
of generated samples.

We are also concerned about the overall authenticity of the generated railway intruding object
image. So, the object detection network was used. Yolov3 [49] pre-trained with a MS-COCO dataset
is a state-of-the-art object detection network with an abundant knowledge of different real objects in
nature. It can be used as a judge to evaluate the authenticity and naturality of generated object images.
The recall, precision, and AP score are employed in order to evaluate the authenticity. Specifically,
the recall and precision could be calculated as Equation (8).

()
()

/

/

precision TP TP FP

recall TP TP FN

= +

= +
 (8)

where TP, FP, TN, and FN stand for true-positive, false-positive, true-negative, and false-negative,
respectively. Under different confidence thresholds, the two-dimensional curve with precision and
recall as the horizontal and vertical coordinates, respectively, can be plotted. The area under the curve
is the average precision (AP), considering both the precision and recall. Usually, the higher the
average precision is, the better the detection effect is. In our task, conversely, a higher average
precision indicates a higher authenticity of the generated foreign objects.

Figure 15. Generated intruding objects from the input semantic labels.

4.2. Evaluation Metrics

For the railway intruding object image generating, we expected the generated samples to be of
high quality, authenticity, and diversity. In order to comprehensively evaluate the generated samples,
we employed four metrics.

To quantify the quality of the generated samples, we first adopted a similar evaluation protocol
to previous works [18]. A popular semantic segmentation model, DeepLabv3+ [47], trained on our
dataset, was used for semantic segmentation on the generated samples. Two standard semantic
segmentation scores were used, including pixel-wise accuracy (Pixel acc) and mean IoU. They can be
calculated by the comparison between the segmented label maps and the input ground truth label
maps. The Pixel acc and mean IoU scores measure the interpretability and quality of the generated
samples. The pre-trained DeelLabv3+ could obtain a close segmentation effect to that of the real
samples on the realistic generated ones.

Diversified samples are of great significance to railway intruding detection methods. For the
diversity assessment of the generated samples, we use the Fréchet-Inception Distance (FID) score [48],
which indicates the distributions of inception embeddings (activations from the penultimate layer
in the inception network) of the real and generated samples. A lower FID score shows a better diversity
of generated samples.

We are also concerned about the overall authenticity of the generated railway intruding object
image. So, the object detection network was used. Yolov3 [49] pre-trained with a MS-COCO dataset
is a state-of-the-art object detection network with an abundant knowledge of different real objects
in nature. It can be used as a judge to evaluate the authenticity and naturality of generated object images.
The recall, precision, and AP score are employed in order to evaluate the authenticity. Specifically,
the recall and precision could be calculated as Equation (8).

precision = TP/(TP + FP)
recall = TP/(TP + FN)

(8)

where TP, FP, TN, and FN stand for true-positive, false-positive, true-negative, and false-negative,
respectively. Under different confidence thresholds, the two-dimensional curve with precision and
recall as the horizontal and vertical coordinates, respectively, can be plotted. The area under the
curve is the average precision (AP), considering both the precision and recall. Usually, the higher the

Sensors 2019, 19, 3075 14 of 22

average precision is, the better the detection effect is. In our task, conversely, a higher average precision
indicates a higher authenticity of the generated foreign objects.

The scale accuracy of the generated intruding objects at different positions in the railway scene is
essential to the authenticity of the synthesized samples. The intersection-over-union (IoU) is introduced
in order to evaluate the scale accuracy of the generated objects. The IoU score refers to the overlap
rate between the candidate and the groundtruth boxes, as shown in Figure 16 and Equation (9).
The groundtruth and candidate boxes correspond to the real intruding objects and the generated ones
at the same positions, respectively. In our task, a higher mean-IoU (mIoU) score indicates a higher
scale accuracy of generated objects in a railway scene.

IoU =
area(C)∩ area(G)

area(C)∪ area(G)
(9)

Sensors 2019, 19, x 14 of 22

The scale accuracy of the generated intruding objects at different positions in the railway scene
is essential to the authenticity of the synthesized samples. The intersection-over-union (IoU) is
introduced in order to evaluate the scale accuracy of the generated objects. The IoU score refers to the
overlap rate between the candidate and the groundtruth boxes, as shown in Figure 16 and Equation
(9). The groundtruth and candidate boxes correspond to the real intruding objects and the generated
ones at the same positions, respectively. In our task, a higher mean-IoU (mIoU) score indicates a
higher scale accuracy of generated objects in a railway scene.

Figure 16. Intersection-over-union (IoU).

() ()
() ()

=



area C area G
IoU

area C area G
 (9)

4.3. Model Optimization

We optimized our C-DCGAN model based on the reference of previous works [17,18,22,29,50]
and extensive experiments. As for the generator, with the loss functions and multi-scale
discriminators fixed, we compared our generator with the following classical architectures: U-net [29]
and CRN [50]. A case of six ResNet blocks was also tested. The semantic segmentation scores by each
architecture are reported in Table 5. The highest scores of 80.458 show the best quality of generated
samples by the nine-blocks generator. The 3 × 3 kernel size in the convolutional and deconvolutional
layers and the building block of double 3 × 3 convolutions (instead of the bottleneck) of the proposed
generator are proved in order to be better performers by comparison with other alternatives.

Table 5. Semantic segmentation scores of different generators. IoU—intersection-over-union.

Architectures Pixel Acc (%) Mean IoU
U-net 74.094 0.403
CRN 68.259 0.428

Ours (6 blocks) 76.549 0.547
Ours (9 blocks) 80.458 0.651

Multi-scale discriminators were compared with the conditions of one- or two-scale
discriminators on our dataset. With the fixed nine-blocks generator and the full loss function, Table
6 shows the results, indicating that multi-scale discriminators improve the quality of the generated
samples significantly. The dilated convolutions in the coarse scale improved the scores slightly.

Table 6. Semantic segmentation scores of different discriminators.

Architectures Pixel Acc (%) Mean IoU
Single D 72.142 0.504

Double Ds 76.981 0.591
Triple Ds (without dilated conv) 79.452 0.640

Ours (with dilated conv) 80.458 0.651

We also studied the optimization of the loss functions. We added the feature matching the loss
and VGG loss on the basis of GAN loss, respectively. The results of the different combinations on our
dataset are shown in Table 7. It shows that the feature matching loss obviously improves the quality
of generating, and that VGG loss enhanced the results slightly. Our final implementation achieved

Figure 16. Intersection-over-union (IoU).

4.3. Model Optimization

We optimized our C-DCGAN model based on the reference of previous works [17,18,22,29,50]
and extensive experiments. As for the generator, with the loss functions and multi-scale discriminators
fixed, we compared our generator with the following classical architectures: U-net [29] and CRN [50].
A case of six ResNet blocks was also tested. The semantic segmentation scores by each architecture are
reported in Table 5. The highest scores of 80.458 show the best quality of generated samples by the
nine-blocks generator. The 3 × 3 kernel size in the convolutional and deconvolutional layers and the
building block of double 3 × 3 convolutions (instead of the bottleneck) of the proposed generator are
proved in order to be better performers by comparison with other alternatives.

Table 5. Semantic segmentation scores of different generators. IoU—intersection-over-union.

Architectures Pixel Acc (%) Mean IoU

U-net 74.094 0.403
CRN 68.259 0.428

Ours (6 blocks) 76.549 0.547
Ours (9 blocks) 80.458 0.651

Multi-scale discriminators were compared with the conditions of one- or two-scale discriminators
on our dataset. With the fixed nine-blocks generator and the full loss function, Table 6 shows the results,
indicating that multi-scale discriminators improve the quality of the generated samples significantly.
The dilated convolutions in the coarse scale improved the scores slightly.

Table 6. Semantic segmentation scores of different discriminators.

Architectures Pixel Acc (%) Mean IoU

Single D 72.142 0.504
Double Ds 76.981 0.591

Triple Ds (without dilated conv) 79.452 0.640
Ours (with dilated conv) 80.458 0.651

Sensors 2019, 19, 3075 15 of 22

We also studied the optimization of the loss functions. We added the feature matching the loss
and VGG loss on the basis of GAN loss, respectively. The results of the different combinations on our
dataset are shown in Table 7. It shows that the feature matching loss obviously improves the quality of
generating, and that VGG loss enhanced the results slightly. Our final implementation achieved the
best quality. Several combinations of weights (λ1, λ2) were tested, and the settings of 10 λ1 and 9 λ2

achieved the best results.

Table 7. Semantic segmentation scores of different losses.

Architectures Pixel Acc (%) Mean IoU

Only GAN loss 70.843 0.457
GAN loss + feature matching loss 77.824 0.602

GAN loss+ VGG loss 72.176 0.483
Ours 80.458 0.651

4.4. Evaluation and Comparison

Evaluations of the generated intruding objects and the synthesized samples were provided with
the metrics mentioned above. Meanwhile, we compared the proposed method with state-of-the-art
methods, Pix2pix [17], CycleGAN [18], and DualGAN [31], on our dataset.

With the same input semantic labels as ours, the generated samples by other methods are shown
in Figure 17. Subjectively, the quality and diversity of the samples generated by our method are better
than that of other methods. The semantic segmentation scores on the generated samples by different
methods are reported in Table 8. The Pixel acc and mean IoU scores of our method are the highest,
indicating that the samples generated by our method have a better quality than those by other methods
on the pixel-level.

Sensors 2019, 19, x 15 of 22

the best quality. Several combinations of weights (λ1, λ2) were tested, and the settings of 10 λ1 and 9
λ2 achieved the best results.

Table 7. Semantic segmentation scores of different losses.

Architectures Pixel Acc (%) Mean IoU
Only GAN loss 70.843 0.457

GAN loss + feature matching loss 77.824 0.602
GAN loss+ VGG loss 72.176 0.483

Ours 80.458 0.651

4.4. Evaluation and Comparison

Evaluations of the generated intruding objects and the synthesized samples were provided with
the metrics mentioned above. Meanwhile, we compared the proposed method with state-of-the-art
methods, Pix2pix [17], CycleGAN [18], and DualGAN [31], on our dataset.

With the same input semantic labels as ours, the generated samples by other methods are shown
in Figure 17. Subjectively, the quality and diversity of the samples generated by our method are better
than that of other methods. The semantic segmentation scores on the generated samples by different
methods are reported in Table 8. The Pixel acc and mean IoU scores of our method are the highest,
indicating that the samples generated by our method have a better quality than those by other
methods on the pixel-level.

Figure 17. Generated samples: (from left to right) input semantic labels, and the generated samples
by the C-DCGAN, Pix2pix, CycleGAN, and DualGAN, respectively.

Table 8. Semantic segmentation scores of generated samples by different methods.

 Pix2pix CycleGAN DualGAN Ours Real Samples
Pixel acc (%) 72.653 63.441 63.885 80.458 85.782

Mean IoU 0.441 0.347 0.358 0.651 0.724

For the quantitative evaluation of diversity, the FID scores of different methods are listed in
Table 9. The FID score of our method is 26.8, which is apparently lower than those of the other
methods. The lowest FID score indicated that the samples generated by our method have the most
diversity, which is of great significance to object-intruding detection.

Figure 17. Generated samples: (from left to right) input semantic labels, and the generated samples by
the C-DCGAN, Pix2pix, CycleGAN, and DualGAN, respectively.

Table 8. Semantic segmentation scores of generated samples by different methods.

Pix2pix CycleGAN DualGAN Ours Real Samples

Pixel acc (%) 72.653 63.441 63.885 80.458 85.782
Mean IoU 0.441 0.347 0.358 0.651 0.724

For the quantitative evaluation of diversity, the FID scores of different methods are listed in Table 9.
The FID score of our method is 26.8, which is apparently lower than those of the other methods.

Sensors 2019, 19, 3075 16 of 22

The lowest FID score indicated that the samples generated by our method have the most diversity,
which is of great significance to object-intruding detection.

Table 9. Fréchet-Inception Distance (FID) scores of the different methods.

Pix2pix CycleGAN DualGAN Ours Real Samples

FID 45.42 47.13 48.62 26.87 13.59

With the method described in Section 3.2, 2529 railway intruding object images of different
categories and positions, with our method, were synthesized as a generated railway object intruding
images dataset, shown as Figure 18. As a contrast, a real railway object intruding images dataset was
collected at a non-operational railway line, as shown in Figure 19. As a result of the limitation of
the experimental conditions, only pedestrian intruding images were collected. The dataset includes
1265 images of pedestrians with a variety of postures and clothes colors. For evaluating the global
authenticity of the synthesized images, both the generated and real railway object intruding images
datasets were input into the pre-trained Yolov3 network, respectively. The average precision (AP) of
each dataset was calculated, as shown in Table 10. In addition, in order to evaluate the authenticity
of the generated images under a global coarse scale and local fine scale, the datasets were input into
Yolov3 with different sizes. The detection results are shown in Figure 20.

Sensors 2019, 19, x 16 of 22

Table 9. Fréchet-Inception Distance (FID) scores of the different methods.

 Pix2pix CycleGAN DualGAN Ours Real Samples
FID 45.42 47.13 48.62 26.87 13.59

With the method described in Section 3.2, 2529 railway intruding object images of different
categories and positions, with our method, were synthesized as a generated railway object intruding
images dataset, shown as Figure 18. As a contrast, a real railway object intruding images dataset was
collected at a non-operational railway line, as shown in Figure 19. As a result of the limitation of the
experimental conditions, only pedestrian intruding images were collected. The dataset includes 1265
images of pedestrians with a variety of postures and clothes colors. For evaluating the global
authenticity of the synthesized images, both the generated and real railway object intruding images
datasets were input into the pre-trained Yolov3 network, respectively. The average precision (AP) of
each dataset was calculated, as shown in Table 10. In addition, in order to evaluate the authenticity
of the generated images under a global coarse scale and local fine scale, the datasets were input into
Yolov3 with different sizes. The detection results are shown in Figure 20.

(a) (b)

(c) (d)

Figure 18. Samples of generated railway objects intruding on the image’s dataset. (a) A generated
pedestrian in railway. (b) Three generated pedestrians on a railway. (c) Two generated pedestrians
on a railway. (d) A generated horse on a railway.

Figure 18. Samples of generated railway objects intruding on the image’s dataset. (a) A generated
pedestrian in railway. (b) Three generated pedestrians on a railway. (c) Two generated pedestrians on
a railway. (d) A generated horse on a railway.

Sensors 2019, 19, 3075 17 of 22Sensors 2019, 19, x 17 of 22

(a) (b)

Figure 19. Samples of real railway objects intruding images dataset. (a) A real pedestrian on a railway.
(b) Two real pedestrians on a railway.

Figure 20. Detection results of generated intruding objects using our method.

Table 10. Detection results of generated and real datasets. AP—average precision.

Categories Input Size Datasets Amount AP

Pedestrian

320
Real 1265 0.534

Generated 1198 0.578

416
Real 1265 0.656

Generated 1198 0.691

608
Real 1265 0.823

Generated 1198 0.847

Horse
320 Generated

447
0.625

416 Generated 0.721
608 Generated 0.829

Cow
320 Generated

472
0.611

416 Generated 0.695
608 Generated 0.844

Sheep
320 Generated

412
0.592

416 Generated 0.631
608 Generated 0.818

As shown in Table 10, for pedestrians in a coarse scale of 320 × 320 input size, and 1198 generated
intruding pedestrian images, the AP is 0.578, which is close to the 0.534 of the 1265 real ones. At finer
sizes of 416 × 416 and 608 × 608, the AP of the generated intruding pedestrian images were 0.691 and
0.847, respectively. The AP of the real ones were 0.656 and 0.823. The little gap of AP between the
two datasets indicates the authenticity of the generated pedestrians by our method. As a result of the
lack of contrasting real livestock samples, only the AP of the generated ones were calculated. For the
horses, cows, and sheep, their APs were higher than that of the pedestrians at different input sizes,

Figure 19. Samples of real railway objects intruding images dataset. (a) A real pedestrian on a railway.
(b) Two real pedestrians on a railway.

Sensors 2019, 19, x 17 of 22

(a) (b)

Figure 19. Samples of real railway objects intruding images dataset. (a) A real pedestrian on a railway.
(b) Two real pedestrians on a railway.

Figure 20. Detection results of generated intruding objects using our method.

Table 10. Detection results of generated and real datasets. AP—average precision.

Categories Input Size Datasets Amount AP

Pedestrian

320
Real 1265 0.534

Generated 1198 0.578

416
Real 1265 0.656

Generated 1198 0.691

608
Real 1265 0.823

Generated 1198 0.847

Horse
320 Generated

447
0.625

416 Generated 0.721
608 Generated 0.829

Cow
320 Generated

472
0.611

416 Generated 0.695
608 Generated 0.844

Sheep
320 Generated

412
0.592

416 Generated 0.631
608 Generated 0.818

As shown in Table 10, for pedestrians in a coarse scale of 320 × 320 input size, and 1198 generated
intruding pedestrian images, the AP is 0.578, which is close to the 0.534 of the 1265 real ones. At finer
sizes of 416 × 416 and 608 × 608, the AP of the generated intruding pedestrian images were 0.691 and
0.847, respectively. The AP of the real ones were 0.656 and 0.823. The little gap of AP between the
two datasets indicates the authenticity of the generated pedestrians by our method. As a result of the
lack of contrasting real livestock samples, only the AP of the generated ones were calculated. For the
horses, cows, and sheep, their APs were higher than that of the pedestrians at different input sizes,

Figure 20. Detection results of generated intruding objects using our method.

Table 10. Detection results of generated and real datasets. AP—average precision.

Categories Input Size Datasets Amount AP

Pedestrian

320
Real 1265 0.534

Generated 1198 0.578

416
Real 1265 0.656

Generated 1198 0.691

608
Real 1265 0.823

Generated 1198 0.847

Horse
320 Generated

447
0.625

416 Generated 0.721
608 Generated 0.829

Cow
320 Generated

472
0.611

416 Generated 0.695
608 Generated 0.844

Sheep
320 Generated

412
0.592

416 Generated 0.631
608 Generated 0.818

As shown in Table 10, for pedestrians in a coarse scale of 320 × 320 input size, and 1198 generated
intruding pedestrian images, the AP is 0.578, which is close to the 0.534 of the 1265 real ones. At finer
sizes of 416 × 416 and 608 × 608, the AP of the generated intruding pedestrian images were 0.691 and
0.847, respectively. The AP of the real ones were 0.656 and 0.823. The little gap of AP between the
two datasets indicates the authenticity of the generated pedestrians by our method. As a result of the
lack of contrasting real livestock samples, only the AP of the generated ones were calculated. For the

Sensors 2019, 19, 3075 18 of 22

horses, cows, and sheep, their APs were higher than that of the pedestrians at different input sizes,
respectively. The reason is that they are realistic and usually bigger than pedestrians. The experiment
results show that our method could generate railway object intruding images with a high authenticity.
The confusion matrices are shown in Table 11, with the 0.5 confidence threshold and 0.5 IoU threshold
of the pre-trained Yolov3 model. The values on the horizontal ordinate are the category prediction
results and the missed ones. The vertical axis shows the true categories. The higher values on the
diagonal indicate the naturalness and authenticity of the generated samples by our method.

Table 11. Confusion matrices of generated samples using Yolov3.

Prediction

Pedestrian Horse Cow Sheep

True labels

Pedestrian 868 48 61 68
Horse 20 319 38 25
Cow 25 29 335 19

Sheep 24 20 15 328

There were 2529 generated samples by other methods that were also synthesized to the same
railway scene. The synthesized railway intruding object images were feed to the pre-trained Yolov3
with size of 416 × 416. The AP scores of the different methods are reported in Table 12, for quantitative
evaluation. The scores of Pix2pix and our method are obviously higher than those of CycleGAN and
DualGAN. It indicates that models of supervised learning such as Pix2pix and ours have a better
performance than the unsupervised ones. Our method produced the highest mAP of 0.685, which is
much better than any of the other models, indicating that our method is superior to the other three
models on our dataset.

Table 12. AP scores of the generated samples using a different method.

Models AP-Pedestrian AP-Sheep AP-Cow AP-Horse mAP

Pix2pix 0.625 0.558 0.593 0.627 0.601
CycleGan 0.501 0.498 0.519 0.526 0.511
DualGan 0.516 0.511 0.508 0.522 0.514

Ours 0.691 0.631 0.695 0.721 0.685

In order to evaluate the scale accuracy of the generated objects, a pedestrian walked along the rail
from far to near. The pedestrians are annotated as groundtruth boxes at different positions, as shown on
the left in Figure 21. The generated pedestrians were synthesized to the railway scene at corresponding
positions to the candidate boxes, as shown on the right in Figure 21. The corresponding groundtruth
and candidate boxes were considered as a pedestrian pair. The mIoU scores of the single, double,
and multiple pedestrians at different positions are shown in Table 13.

Sensors 2019, 19, x 18 of 22

respectively. The reason is that they are realistic and usually bigger than pedestrians. The experiment
results show that our method could generate railway object intruding images with a high
authenticity. The confusion matrices are shown in Table 11, with the 0.5 confidence threshold and 0.5
IoU threshold of the pre-trained Yolov3 model. The values on the horizontal ordinate are the category
prediction results and the missed ones. The vertical axis shows the true categories. The higher values
on the diagonal indicate the naturalness and authenticity of the generated samples by our method.

Table 11. Confusion matrices of generated samples using Yolov3.

 Prediction
 Pedestrian Horse Cow Sheep

True labels

Pedestrian 868 48 61 68
Horse 20 319 38 25
Cow 25 29 335 19

Sheep 24 20 15 328

There were 2529 generated samples by other methods that were also synthesized to the same
railway scene. The synthesized railway intruding object images were feed to the pre-trained Yolov3
with size of 416 × 416. The AP scores of the different methods are reported in Table 12, for quantitative
evaluation. The scores of Pix2pix and our method are obviously higher than those of CycleGAN and
DualGAN. It indicates that models of supervised learning such as Pix2pix and ours have a better
performance than the unsupervised ones. Our method produced the highest mAP of 0.685, which is
much better than any of the other models, indicating that our method is superior to the other three
models on our dataset.

Table 12. AP scores of the generated samples using a different method.

Models AP-Pedestrian AP-Sheep AP-Cow AP-Horse mAP
Pix2pix 0.625 0.558 0.593 0.627 0.601

CycleGan 0.501 0.498 0.519 0.526 0.511
DualGan 0.516 0.511 0.508 0.522 0.514

Ours 0.691 0.631 0.695 0.721 0.685

In order to evaluate the scale accuracy of the generated objects, a pedestrian walked along the
rail from far to near. The pedestrians are annotated as groundtruth boxes at different positions, as
shown on the left in Figure 21. The generated pedestrians were synthesized to the railway scene at
corresponding positions to the candidate boxes, as shown on the right in Figure 21. The
corresponding groundtruth and candidate boxes were considered as a pedestrian pair. The mIoU
scores of the single, double, and multiple pedestrians at different positions are shown in Table 13.

Figure 21. Scale evaluation of real and generated pedestrians. (Left) Real pedestrians (groundtruth
boxes) and (right) generated pedestrians (candidate boxes) at corresponding positions.

Figure 21. Scale evaluation of real and generated pedestrians. (Left) Real pedestrians (groundtruth
boxes) and (right) generated pedestrians (candidate boxes) at corresponding positions.

Sensors 2019, 19, 3075 19 of 22

Table 13. IoU scores of pedestrian pairs.

Pedestrians Position Pair numbers mIoU

Single
Far 198 0.889

Middle 213 0.875
Close 189 0.821

Double
Far 197 0.891

Middle 230 0.862
Close 196 0.812

Multiple
Far 195 0.857

Middle 205 0.861
Close 214 0.814

Total — 1837 0.854

In Table 13, For a single pedestrian at a close, middle, and far distance in a railway scene, a real
pedestrian and a generated one at a corresponding position were considered as a pair. The IoU
score was used to evaluate the scale overlap between them. The IoU scores of 600 pedestrian pairs
in different distances were calculated. With the increase of distance, the mIoU decreases. The lowest
(0.821) in the far distance is still at a high level, indicating the scale size accuracy of the generated
pedestrians. In cases of double and multiple pedestrians, the mIoU scores of the different distances
also remained at a high level. The total mIoU (0.854) indicates that the generated pedestrians have
a similar scale size to the real ones at different corresponding positions, which ensures the authenticity
of the synthesized samples.

5. Conclusions

In this paper, a novel method for generating railway intruding object images of a high quality
and authenticity is proposed. The method is based on an improved conditional DCGAN (C-DCGAN),
which consists of a generator and multi-scale discriminators. For synthetizing the generated intruding
objects to a railway scene with a high scale accuracy, an intruding objects scales estimation algorithm
based on the gauge constant is also presented. The experimental results on the railway intruding object
dataset show that the generated railway intruding object images are of a high quality, diversity, and scale
accuracy, and they can be used for the training and testing of the intruding detection algorithm.

However, there are still some limitations for our method. The proposed method could only
generate limited categories of intruding objects. Meanwhile, the quality of the generated image could
be further improved.

In future works, we plan to enrich our railway intruding object dataset with more categories,
such as running, climbing guardrail, and so on. We will develop a test platform for railway intruding
object detection algorithms based on our method. Furthermore, we want to try the Hough and polar
projection methods in applications of road-following and traffic analysis.

Author Contributions: Conceptualization and methodology, G.G., B.G. and L.Z.; formal analysis and data
curation, B.Q. and H.S.; software and validation, G.G. and L.Z.; writing (original draft), G.G.; writing (review and
editing), B.G. and Z.Y.; resources, Z.Y. and H.S.

Funding: This research was supported by China Energy (SHGF-17-56-9), the National Key Research and
Development of China (2016YFB1200402), and the Research of National Railway Administration of China
(AJ2019-033).

Acknowledgments: We would like to thank the China Academy of Railway Sciences Corporation Limited for
providing the experimental data.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2019, 19, 3075 20 of 22

References

1. Guo, B.Q.; Zhu, L.Q.; Shi, H.M. Intrusion detection algorithm for railway clearance with rapid DBSCAN
clustering. Chin. J. Sci. Instrum. 2012, 33, 15–21.

2. Zhu, T.; Liu, F.; Zhang, B. Visual railway detection by superpixel based intracellular decisions.
Multimed. Tools Appl. 2016, 75, 2473–2486.

3. Ye, T.; Wang, B.; Song, P.; Li, J. Automatic Railway Traffic Object Detection System Using Feature Fusion
Refine Neural Network under Shunting Mode. Sensors 2018, 18, 1916. [CrossRef] [PubMed]

4. Guo, B.Q.; Yang, L.X.; Shi, H.M. High-speed Railway Clearance Intrusion Detection Algorithm with Fast
Background Subtraction. Chin. J. Sci. Instrum. 2016, 37, 1371–1378.

5. Guo, B.Q.; Wang, N. Pedestrian intruding railway clearance classification algorithm based on improved
deep convolutional network. Opt. Precis. Eng. 2018, 26, 3040–3050.

6. Pławiak, P.; Acharya, U.R. Novel deep genetic ensemble of classifiers for arrhythmia detection using ecg
signals. Neural Comput. Appl. 2019, 1–25. [CrossRef]

7. Pławiak, P. An estimation of the state of consumption of a positive displacement pump based on dynamic
pressure or vibrations using neural networks. Neurocomputing 2014, 144, 471–483. [CrossRef]

8. Rzecki, K.; Sośnicki, T.; Baran, M.; Niedźwiecki, M.; Król, M.; Łojewski, T.; Acharya, U.R.; Yildirim, Ö.;
Pławiak, P. Application of Computational Intelligence Methods for the Automated Identification of Paper-Ink
Samples Based on LIBS. Sensors 2018, 18, 3670. [CrossRef]

9. Rzecki, K.; Pławiak, P.; Niedźwiecki, M.; Sośnicki, T.; Leśkow, J.; Ciesielski, M. Person recognition based on
touch screen gestures using computational intelligence methods. Inf. Sci. 2017, 415, 70–84. [CrossRef]

10. Książek, W.; Abdar, M.; Acharya, U.R.; Pławiak, P. A novel machine learning approach for early detection of
hepatocellular carcinoma patients. Cogn. Syst. Res. 2019, 54, 116–127.

11. Svendsen, D.H.; Martino, L.; Campos-Taberner, M.; García-Haro, F.J.; Camps-Valls, G. Joint gaussian processes
for biophysical parameter retrieval. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1718–1727. [CrossRef]

12. Fang, H.; Liang, S. A hybrid inversion method for mapping leaf area index from modis data: Experiments
and application to broadleaf and needleleaf canopies. Remote Sens. Environ. 2005, 94, 405–424. [CrossRef]

13. Fang, H.; Liang, S. Retrieving leaf area index with a neural network method: Simulation and validation.
IEEE Trans. Geosci. Remote Sens. 2003, 41, 2052–2062. [CrossRef]

14. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y.
Generative Adversarial Nets. In Proceedings of the Advances in Neural Information Processing Systems,
Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680.

15. Mirza, M.; Osindero, S. Conditional generative adversarial. In Proceedings of the Neural Information
Processing Systems (NIPS), Montreal, QC, Canada, 8–13 December 2014.

16. Radford, A.; Metz, L.; Chintala, S. Unsupervised Representation Learning with Deep Convolutional
Generative Adversarial Networks. In Proceedings of the International Conference on Learning
Representations (ICLR), San Juan, PR, USA, 2–4 May 2016.

17. Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA,
22–25 July 2017; pp. 5967–5976.

18. Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent
adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy,
22–29 October 2017; pp. 2242–2251.

19. Ledig, C.; Theis, L.; Huszar, F.; et al. Photo-Realistic Single Image Super-Resolution Using a Generative
Adversial Network. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy,
22–29 October 2017.

20. Bousmails, K.; Silberman, N.; Dohan, D.; Erhan, D.; Krishnan, D. Unsupervised pixel-level domain adaptation
with generative adversarial networks. In Proceedings of the IEEE International Conference on Computer
Vision, Venice, Italy, 22–29 October 2017; pp. 94–105.

21. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein GAN. arXiv 2017, arXiv:1701.07875.
22. Mao, X.D.; Li, Q.; Xie, H.R.; Lau, R.Y.K.; Wang, Y.; Smol-ley, S.P. Least squares generative adversarial networks.

In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017;
pp. 2813–2821.

http://dx.doi.org/10.3390/s18061916
http://www.ncbi.nlm.nih.gov/pubmed/29895810
http://dx.doi.org/10.1007/s00521-018-03980-2
http://dx.doi.org/10.1016/j.neucom.2014.04.026
http://dx.doi.org/10.3390/s18113670
http://dx.doi.org/10.1016/j.ins.2017.05.041
http://dx.doi.org/10.1109/TGRS.2017.2767205
http://dx.doi.org/10.1016/j.rse.2004.11.001
http://dx.doi.org/10.1109/TGRS.2003.813493

Sensors 2019, 19, 3075 21 of 22

23. Lecun, Y.; Bengio, Y. Convolutional Networks for Images, Speech, and Time Series. In Handbook of Brain
Theory & Neural Networks; MIT Press: Cambridge, MA, USA, 1995.

24. Li, J.N.; Liang, X.D.; Wei, Y.C.; Xu, T.F.; Feng, J.S.; Yan, S.C. Perceptual generative adversarial networks for
small object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Honolulu, HI, USA, 21–26 July 2017.

25. Engin, D.; Genç, A.; Ekenel, H.K. Cycle-Dehaze: Enhanced CycleGAN for Single Image Dehazing.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City,
UT, USA, 18–22 June 2018; pp. 938–946.

26. Yu, S.Q.; Han, Z.; Tang, Y.D.; Wu, C.D. Texture synthesis method based on generative adversarial networks.
Infrared Laser Eng. 2018, 47, 1–6.

27. Hinz, T.; Heinrich, S.; Wermter, S. Generating Multiple Objects at Spatially Distinct Locations. In Proceedings
of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

28. Ostyakov, P.; Suvorov, R.; Logacheva, E.; Khomenko, O.; Nikolenko, S.I. SEIGAN: Towards Compositional Image
Generation by Simultaneously Learning to Segment, Enhance, and Inpaint. arXiv 2018, arXiv:1811.07630.

29. Ronneberger, O.; Fischer, P.; Brox, T. U–Net: Convolutional Networks for Biomedical Image Segmentation.
In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted
Intervention, Munich, Germany, 5–9 October 2015; Springer: Berlin, Germany, 2015; pp. 234–241.

30. Kim, T.; Cha, M.; Kim, H.; Lee, J.K.; Kim, J. Learning to discover cross-domain relations with generative adversarial
networks. In Proceedings of the International Conference on Machine Learning, Sydney, NSW, Australia, 6–11
August 2017; pp. 1857–1865.

31. Yi, Z.; Zhang, H.; Tan, P.; Gong, M. Dualgan: Unsupervised dual learning for image-to-image translation.
In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017;
pp. 2868–2876.

32. Justin, J.; Alexandre, A.; Li, F.F. Perceptual Losses for Real-Time Style Transfer and Super-Resolution.
In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands,
8–16 October 2016; pp. 694–711.

33. Kaneko, T.; Hiramatsu, K.; Kashino, K. Generative Attribute Controller with Conditional Filtered Generative
Adversarial Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Honolulu, HI, USA, 22–25 July 2017; pp. 7006–7015.

34. Wang, X.L.; Gupta, A. Generative Image Modeling using Style and Structure Adversarial Networks. In Proceedings
of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 318–335.

35. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegan, NV, USA, 26 June–1 July 2016;
pp. 770–778.

36. Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Instance Normalization: The Missing Ingredient for Fast Stylization.
arXiv 2016, arXiv:1607.08022.

37. Kudo, Y.; Aoki, Y. Dilated convolutions for image classification and object localization. In Proceedings of the
international conference on Machine Vision Applications, Nagoya, Japan, 8–12 May 2017; pp. 452–455.

38. Yu, F.; Koltun, V. Multi-Scale Context Aggregation by Dilated Convolutions. arXiv 2015, arXiv:1511.07122.
39. Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A.; Chen, X. Improved techniques for

training gans. In Proceedings of the 30th Conference on Advances in Neural Information Processing Systems,
Barcelona, Spain, 5–10 December 2016; pp. 2234–2242.

40. Liu, M.; Tuzel, O. Coupled Generative Adversarial Networks. arXiv 2016, arXiv:1606.07536.
41. Kahaki, S.M.M.; Nordin, J.; Ashtari, A.H. Incident and traffic-bottle-neck detection algorithm

in high-resolution remote sensing imagery. ITB J. Inf. Commun. Technol. 2012, 6, 151–170. [CrossRef]
42. Kahaki, S.M.M.; Fathy, M.; Ganj, M. Road-Following and Traffic Analysis using High-Resolution Remote

Sensing Imagery. In Proceedings of the 3rd International Workshop on Intelligent Vehicle Controls and
Intelligent Transportation Systems Held in Conjunction with ICINCO 2009, Milan, Italy, 4–5 July 2009;
pp. 133–142.

43. Kahaki, S.M.M.; Nordin, J.; Ashtari, A.H. Incident detection algorithm based on radon transform using
high-resolution remote sensing imagery. In Proceedings of the IEEE 2011 International Conference on
Electrical Engineering and Informatics (ICEEI), Bandung, Indonesia, 17–19 July 2011; pp. 1–5.

http://dx.doi.org/10.5614/itbj.ict.2012.6.2.4

Sensors 2019, 19, 3075 22 of 22

44. Kim, H.T.; Song, W.S.; Choi, H.; Kim, T.J. A Vanishing Point Detection Method Based on the Empirical
Weighting of the Lines of Artificial Structures. J. KIISE 2015, 42, 642–651. [CrossRef]

45. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Zitnick, C.L. Microsoft COCO: Common Objects in Context.
European Conference on Computer Vision. In Proceedings of the European Conference on Computer,
Zurich, Switzerland, 6–12 September 2014; pp. 740–755.

46. Look into Person: Self-supervised Structure-sensitive Learning and A New Benchmark for Human Parsing.
arXiv 2017, arXiv:1703.05446.

47. Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image
segmentation. arXiv 2017, arXiv:1706.05587.

48. Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. GAN strained by a two time-scale
update rule converge to a local Nash equilibrium. arXiv 2018, arXiv:1706.08500.

49. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525.

50. Chen, Q.; Koltun, V. Photographic image synthesis with cascaded refinement networks. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 1520–1529.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.5626/JOK.2015.42.5.642
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Generative Adversarial Networks
	Image-to-Image Translation Based on GAN

	Methodology
	C-DCGAN Model
	Scale Estimation of Generated Intruding Object

	Experiments and Evaluations
	Datasets and Training Details
	Evaluation Metrics
	Model Optimization
	Evaluation and Comparison

	Conclusions
	References

