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Abstract: There is a large risk of damage, triggered by harsh ocean environments, associated
with offshore structures, so structural health monitoring plays an important role in preventing the
occurrence of critical and global structural failure from such damage. However, obstacles, such as
applicability in the field and increasing calculation costs with increasing structural complexity, remain
for real-time structure monitoring offshore. Therefore, this study proposes the comparison of cosine
similarity with sensor data to overcome such challenges. As the comparison target, this method
uses the rate of changes of natural frequencies before and after the occurrence of various damage
scenarios, including not only single but multiple damages, which are organized by the experiment
technique design. The comparison method alerts to the occurrence of damage using a normalized
warning index, which enables workers to manage the risk of damage. By comparison, moreover,
the case most similar with the current status is directly figured out without any additional analysis
between monitoring and damage identification, which renders the damage identification process
simpler. Plus, the averaged rate of errors in detection is suggested to evaluate the damage level more
precisely, if needed. Therefore, this method contributes to the application of real-time structural
health monitoring for offshore structures by providing an approach to improve the usability of the
proposed technique.

Keywords: damage detection; cosine similarity; structural health monitoring; system identification;
structural integrity assessment

1. Introduction

In the history of offshore operations, various hazards have led to accidents with severe
consequences, ranging from oil spills to the death of people. Among them, structural problems,
such as damage and failure triggered by fatigue, corrosion, wear, etc., are considered as one of the
main causes. For example, it is officially known that the root cause of the capsizing of the Alexander L.
Kielland platform was a crack on a brace induced by fatigue [1], as shown in Figure 1. On this point,
structural health monitoring (SHM) and damage detection can be an effective solution to prevent such
hazardous events.
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turbines, aircrafts, and so on. For instance, a new approach to detect the tendon damage of pre-
stressed concrete (PSC) bridges based on a convolutional auto-encoder has recently been proposed, 
and it is applicable for multiple vehicles under severe damage conditions [5]. One very popular 
approach to traditional SHM is vibration-based damage detection [6] using modal parameters, such 
as natural frequencies and mode shapes. In recent years, the classical technique has evolved into 
statistical time series SHM methods [7], and is further faced with the beginning of the big data, which 
is still quite challenging [8], but may be more applicable to real-time SHM during operation. 

For big data relevant SHM, several studies have been performed lately. Above all, the concept 
and procedure of SHM were comparatively analyzed in aspects of the big data, and the process of 
the big data relevant SHM was summarized, including data cleansing, dimensionality reduction, data 
fusion and feature extraction, feature classification, outlier detections, and prediction [9]. Cremona 
and Santos categorized SHM into two approaches, inverse and forward strategies [10]. While the 
former was introduced as the most popular method, today, based on model updating or system 
identification (SI), the latter was mentioned as the opposite of the previous approach because it only 
requires measured data but not any numerical or analytical model. Therefore, it was considered that 
the data-driven method is very prospective since it would be more suitable for the real-time analysis 
of large-scale structures for SHM as well as being more involved with the philosophy of big data [10]. 
As an example of relevant research, a fully data-driven SHM method for bridges was recently 
presented, which applied tensor analysis techniques to acquire multi-dimensional sensor data for 
data fusion and feature extraction [11]. 
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Moreover, an innovative trial for an unmanned and automated system in current offshore
development, for instance, the Valemon and K-15 platform [3], would obviously increase the necessity
of an automatic SHM based on real-time field monitoring during operation. In fact, accurate and
time-continuous structural integrity monitoring technology will be needed to support immediate
and correct decision-making of the new system since the unmanned condition would make action
delayed in any unexpected situation, compared to the conventional management by workers residing
on the platform.

On the other hand, SHM technology has not yet reached an adequate stage for complete real-time
integrity diagnosis of an offshore structure [4], although this research field is growing. In fact, SHM
has developed a wide range of applications in industrial fields, e.g., buildings, bridges, wind turbines,
aircrafts, and so on. For instance, a new approach to detect the tendon damage of pre-stressed concrete
(PSC) bridges based on a convolutional auto-encoder has recently been proposed, and it is applicable
for multiple vehicles under severe damage conditions [5]. One very popular approach to traditional
SHM is vibration-based damage detection [6] using modal parameters, such as natural frequencies
and mode shapes. In recent years, the classical technique has evolved into statistical time series SHM
methods [7], and is further faced with the beginning of the big data, which is still quite challenging [8],
but may be more applicable to real-time SHM during operation.

For big data relevant SHM, several studies have been performed lately. Above all, the concept and
procedure of SHM were comparatively analyzed in aspects of the big data, and the process of the big
data relevant SHM was summarized, including data cleansing, dimensionality reduction, data fusion
and feature extraction, feature classification, outlier detections, and prediction [9]. Cremona and Santos
categorized SHM into two approaches, inverse and forward strategies [10]. While the former was
introduced as the most popular method, today, based on model updating or system identification (SI),
the latter was mentioned as the opposite of the previous approach because it only requires measured
data but not any numerical or analytical model. Therefore, it was considered that the data-driven
method is very prospective since it would be more suitable for the real-time analysis of large-scale
structures for SHM as well as being more involved with the philosophy of big data [10]. As an example
of relevant research, a fully data-driven SHM method for bridges was recently presented, which
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applied tensor analysis techniques to acquire multi-dimensional sensor data for data fusion and feature
extraction [11].

From a technical point of view based on data science, meanwhile, Matarazzo, et al. showed that
the calculation accuracy of modal parameters and damage diagnosis was not improved proportionally
with the number of sensors [12]. As an example, it was shown that an 8 and 10 sensor scheme
with proper SHM techniques is enough to identify a simple beam’s modal properties and structural
damages, respectively [12]. Conversely speaking, however, it could be unfavorable for complicated
structures. In detail, the sizes of big data for SHM can be exorbitantly large depending on the number
of members of the structure because output-only SI, i.e., operational modal analysis (OMA), and
algorithms generally require computational costs that increase cubically and linearly with the number
of sensor channels and samples, respectively. Moreover, most offshore structures consist of lots of
members, which means that the number of required sensors would be a lot as well. Consequently, it
causes huge computing costs to increase proportionally with the structural complexity.

To overcome this challenge, two different approaches are possible. One of them is to improve
the efficiency of data driven SHM, for example, to make data analytic techniques consume less time.
Another way is a hybrid method of the conventional inverse SHM and data processing methods to
make the procedure of damage detection more suited for real-time SHM. As for the first, there are some
relevant research studies were performed. Cai and Mahadevan proposed the MapReduce technique for
image data-based online SHM [13]. Moreover, Salehi, et al. showed that it is possible to detect damage
from discretized, noisy, and delayed signals from wireless sensor networks (WSNs) by using artificial
intelligence, particularly pattern recognition and machine learning, with a probabilistic approach [14].
It is obvious that this new data driven SHM would broaden the applicability of real-time SHM to real
fields, but it thus far, it has not been demonstrated that the technique works well for multiple damages.
Further, Sen, et al. proposed an effective data driven SHM method to detect small local damage,
like cracks and corrosions, on a pipe using semi-supervised and supervised machine learning [15]. This
is helpful in on-the-spot inspection over several candidates of places where damages are likely to occur
but would not be suitable for global SHM for offshore structures. Regarding the hybrid approach, on
the other hand, new trials in recent days are briefly summarized. Above all, the fourth-order voltage
statistical moments (FVSMs) method based on piezoelectric measurement with a spectral element
model (SEM) was proposed [16]. The method successfully identified additional mass as well as crack
damages from voltage output in the time domain. However, a total computation cost of almost 5000
s, including a differential evolution algorithm (DEA) to find the optimal solution for damages, is
likely to be relatively huge for real-time SHM. In addition, a damage identification method using
only the first vibration mode data was proposed by Jahangiri et al., and the core idea of it is that it
harnesses the relative discrepancy function (RDF) comprised of relative differences of the natural
frequency and mode shape vector as the object function to identify optimal damage scenarios [17].
It was numerically validated that the method could detect single and multiple damages on several truss
and frame structures as examples. However, experiments are essentially needed to assure whether
the algorithm is applicable to real structures. Lastly, libraries of normal and degradation patterns
from a large available historical database were used to evaluate similarities for fault detection [18].
To be more specific, this method basically came from the non-parametric approach for pattern analysis
and prediction. The merit of this is, hence, that it is less cost-consuming in damage evaluation than
the output-only SI if there are sufficient data accumulated from lots of identical objects during past
operation. This manner can be categorized as a kind of similarity-based method, which is directly
involved with the main topic of this paper. In the case of the offshore industry, however, almost
every offshore structure is customized for their mission and environmental condition in the design
and manufacturing process, which in turn makes the structural characteristics of individuals very
distinctive. This makes accumulated data from other past cases less applicable. Plus, most offshore
fields are far from onshore networks. Therefore, an advantage of an online network system would not
be applied to manage massive amounts of data.
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In order to solve these obstacles, Min et al. proposed a cosine similarity-based damage detection
method for a single damage [19]. The method estimates cosine similarity compared to a database
consisting of sensitivities of rates of change of natural frequencies corresponding to decreases of the
elastic modulus of each element. However, the ability to figure out multi-damages is required for
damage detection, with a view to application for real structures. Therefore, this paper proposes an
improved method capable of monitoring multiple damages simultaneously. In detail, rates of change of
natural frequencies themselves under multiple damage conditions are comprised of the database called
a damage estimation matrix for similarity comparison, instead of their sensitivities for an individual
element, and the rate of errors, on average, is suggested for more accurate identification of damage
severities. The database is built from a well-designed numerical model with appropriate design of
experiment (DOE) methods but not from historical databases. Ultimately, this method pursues a more
convenient estimation for real-time damage evaluation in offshore fields by utilizing cosine similarity
with the operational modal analysis technique rather than data-driven SHM. Consequently, the manner
proposed in this paper provides candidates of possible damage scenarios inclusive of severities and
locations in the order of similarity from simple and fast calculation. Thus, this enables anyone in the
field to take responsibility to recognize and treat potential risks for damage. Therefore, this approach
also contributes to grafting real-time SHM onto remote offshore operations, where it is difficult to
monitor structural integrity in traditional ways due to the poor accessibility of SHM experts, as well as
the capability of multiple damage detection.

2. Methodology

In general, SHM starts from measurement and monitoring so relevant topics have been actively
studied since not only are there many important issues in the step of signal processing, such as noises,
delay of signals, and missed signals, but also the types and characteristics of the measurement system
affect subsequent steps of SHM. For example, the type of sensors for SHM used in aircraft, ranging
from fiber optic sensor, piezoelectric, electro-magnetic, and laser sensors to nanomaterials, and their
monitoring principles were comprehensively enumerated and, in particular, applications of piezoelectric
transducer-based SHM for aircrafts were overviewed [20]. The applicability of piezoelectric wafer
active sensors (PWASs) under severe temperature and radiation conditions for SHM was thoroughly
proved [21]. The sensing range of a piezoelectric interface-based impedance monitoring system for
SHM was numerically and experimentally figured out on plate-type structures [22]. In addition,
Radzieński et al. utilized a laser vibrometer to detect hidden damage in composite plates and it
was verified that the material independency of the non-destructive method is an advantage of the
technique [23]. Regarding a pipe as an example of the structural types widely used for offshore and
aerospace structures, additionally, Wang et al. briefly summed up recent research trends and issues for
sensing and data processing, for instance, saturation and electromagnetic interference of piezoelectric
transducers as well as wiring [24]. Fiber Bragg grating (FBG) sensors were considered as the alternative
way instead of electronic sensors.

On the other hand, this study focuses on subsequent steps of the measurement and monitoring to
make the whole monitoring system more suitable for inspectors and operators offshore in recognizing
and identifying the occurrence of multiple damages regardless of the type of sensors. The entire
procedure can be summarized as shown in Figure 2. The initialization of the FE model update is
literally performed using the result of OMA at the first inspection. In particular, the shaded parts are
the main scope in this study.
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2.1. Damage Individualization: Damage Estimation Vector and Matrix

There are various types of damages, ranging from corrosion and degradation to cracking, and all
types of damages cause a loss of mass, change of material properties, and/or some kind of irreversible
deformation. The most popular way to describe them, in general, is to regard them as a decrease of
stiffness, in particular the elastic modulus. Thus, it is noted that this paper investigates it as well.

With a view to damage detection using similarity, comparison targets are needed, which are
correctly matched to how much a structure is damaged, and various types of responses and structural
characteristics may be theoretically available. Regardless of what is utilized for the comparison,
however, distinct features of an offshore structure rising from customization in design, and large and
small causes in manufacturing and installation may give rise to an uncertainty of the relation between
the targets and damage. Thus, the FE model must be necessarily updated to be fitted to an initial state
and subsequently, a database on the relation of the targets customized for the structure under discretized
damage conditions should be built. In this paper, this process is deemed as damage individualization.

Basically, structural dynamic properties, like natural frequencies or mode shapes, reflect the effect
of structural damage. This is fundamentally because damage leads to a change of the structure, and
subsequently to structural properties, such as stiffness and/or mass, and in turn, the dynamic properties.
In this paper, therefore, natural frequencies, one of the representative dynamic characteristics, are used
to evaluate damage. Particularly, the rate of change in a natural frequency before and after damage of
a pre-updated FE model is considered as Equation (1), and a vector comprised of them from the 1st to
nth mode, which is named the damage estimation vector (DEV) in this study, is utilized as a similarity
comparison target, as shown in Equation (2). For accurate damage identification, it is required the
DEVs are prepared under a variety of damage conditions as the comparison targets. Above all, lots of
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damage cases are designed depending on damage locations and severities based on DOE. Then, modal
analysis is carried out in accordance with DOE, and natural frequencies under the damage scenarios
are acquired. Afterwards, the DEVs are calculated from the natural frequencies and constructed as
a matrix named the damage estimation matrix (DEM), as shown in Equation (3). In other words,
the DEM is a matrix made up of DEVs and plays a role in a sort of damage indices:

zi, j =
f ∗i, j − f j

f j
, (1)

si =
∣∣∣ zi,1 zi,2 · · · zi, j · · · zi,n

∣∣∣T, (2)

S =
∣∣∣ s1 s2 · · · sm

∣∣∣T =


z1,1 z1,2

z2,1 z2,2

· · · z1,n
· · · z2,n

...
...

zm,1 zm,2

zi, j
...

· · · zm,n

, (3)

where i and m is an arbitrary index number and the total number of the designed damage conditions
respectively; j and n is an arbitrary and maximum available mode number, respectively; fj is the jth
natural frequency of the undamaged FE model; f ∗i, j is the jth natural frequency of the FE model in the
ith damage case; zi,j is the rate of change of the jth natural frequency under the ith damage condition;
si is the DEV for the ith damage case; and S is the DEM for all the designed damage conditions.

2.2. Damage Recognition: Normalized Warning Index and Damage Reflection Vector

During operation, a maintenance system of an offshore structure monitors any kind of structural
response, such as strain or acceleration. Regardless of whether it is monitored steadily or not and
regardless of the physical response measured, the collected data is inspected by the OMA techniques,
generally at regular time intervals, and natural frequencies are also cumulatively acquired, as shown
in Equation (4). Then, the rate of change in natural frequencies between two sequential inspection
cycles can be calculated by Equation (5), which is used as a warning index (WI) in this study.

The measured data always includes uncertainties and variations due to a lot of causes, e.g., noise
or change of external factors, so the data and the WI can be thought of as a statistical random variable.
As mentioned before on the relation with the damage and structural dynamic properties, it is evident
that the damage results in unusual natural frequencies, which means that the occurrence of damage
makes the WI distinguishable compared to other previous normal WI values. In other words, from a
statistical point of view, the WI under a damaged condition is much more likely to be in the tail of
the probability distribution of the WIs as the random variable. Based on such an approach, the mean
value and standard deviation of the accumulated WIs until the pth inspection are calculated, and
then a normalized warning index (NWI) is computed by subtracting the mean to the pth WI then
dividing it by the standard deviation, as shown in Equation (6). Finally, the occurrence of damage
is recognized by comparing the NWI with a damage threshold, which is an appropriate value of
the random variable corresponding to the NWI. As an example, assuming that the random variable
follows the standard normal distribution and the damage threshold is 3, 2, and 1, the possibilities of a
damage corresponding to the threshold values is 99.87%, 97.7%, and 84%, respectively, referring to
the standard normal distribution table. Therefore, damage would be perceived if the NWI is larger
than the threshold value at the dth inspection, and in turn, the rates of changes in natural frequencies
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between the d−1th and dth inspections are vectorized, named the damage reflection vector (DRV) in
this study, as shown in Equation (7):

D =
∣∣∣ d1 d2 · · · dk · · · dp

∣∣∣T =


f 1
1 f 1

2
f 2
1 f 2

2

· · · f 1
n

· · · f 2
n

...
...

f p
1 f p

2

f k
j

...

· · · f p
n

, (4)

WIp
j =

f p
j − f p−1

j

f p−1
j

, (5)

NWIp
j =

WIp
j − µ

p−1
j

σ
p−1
j

, (6)

h =
∣∣∣ WId

1 WId
2 · · · WId

n

∣∣∣T =

∣∣∣∣∣ f d
1 − f d−1

1
f d−1
1

f d
2 − f d−1

2
f d−1
2

· · ·
f d
n− f d−1

n
f d−1
n

∣∣∣∣∣T, (7)

where k and p is an arbitrary cycle number and the most recent cycle number of the inspections,
respectively; fjk is the jth natural frequency at the kth inspection cycle; dk is the vector of the natural
frequencies at the kth inspection cycle; D is a matrix consisting of all the natural frequencies by the
most recent inspection; WIj

p is the warning index of the jth natural frequency at the pth inspection
cycle; d is the inspection cycle number when a damage is recognized; and h is the DRV at the time.

There are two benefits in this way. The first is that damage recognition can be done only based on
the tendency of the measured data. That is, a baseline FE model is not essential, at least to be aware of
the occurrence of damage. The second merit is, therefore, that it allows this method to be more broadly
applied to real structures. This is because damage can be identified even in the case that there is no
accurate baseline FE model due to an unclear structural state. The fact of the matter is, moreover, a lot
of structures are old and have not been thoroughly monitored for maintenance. Therefore, this method
could be extensively utilized in such cases, although it would be difficult to identify exact places and
levels of damages.

2.3. Damage Identification: Cosine Similarity and Rate of Errors in Detection

Once occurrence of damage is recognized, its locations and severities are identified as soon and as
accurately as possible. Basically, if the damage is exactly the same as one of the damage scenarios,
the DEV and DRV will be identical as well. That is, the similarity between the predefined DEM and
DRV can be used as a key parameter for damage identification. There are various similarity measures,
and Cha comprehensively classified them, ranging from an intersection family and an inner product
family to a fidelity family for comparison of probability density functions. In particular, the inner
product family embraces the inner product, harmonic mean, cosine, Humar–Hassebrook, and Jaccard,
and Dice coefficient [25]. These techniques have also been extensively applied to data mining in recent
years. Especially, the cosine similarity is one of the most popular methods to analyze the features and
tendency of vectorized data based on directional similarity [26]. Mathematically, it is calculated by
normalizing the dot product of two vectors, so the calculation is simple and intuitive. Plus, it also
provides a result listed in the order of similarity, i.e., ranking [27]. Hence, it was employed in this study
for similarity assessment of the DEM and DRV as shown in Equation (8). For instance, if fortunately,
the cosine similarity value is exactly 1, the angle between two vectors is 0, meaning that they have the
same direction. Therefore, accurate damage locations and severities might be directly identified. Even
if it does not, the method also helps an inspector to know which damage conditions among a variety of
cases in the DEM are more similar with the current structural status than the others. Thus, the most
possible damage scenarios would be found. Thus, this approach maximizes the usability of damage
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detection in operation and consequently improves the convenience of workers and inspectors in the
field, as well:

CSi =
si·h
‖si‖‖h‖

=

∑n
j=1 zi, jWId

j√∑n
j=1

(
zi, j

)2
√∑n

j=1

(
WId

j

)2
, (8)

where CSi is the cosine similarity value of the ith DEV for the damage.
On the other hand, the cosine value being exactly 1 is not a frequent occurrence because the

DEM includes not continuous but discretized, i.e., finite, damage cases even though the matrix is well
organized by the DOE technique. As circumstances require, hence, it would be additionally needed
to more precisely assess how much the elastic modulus decreases. For such needs, the real value of
the elastic modulus under the damaged condition is approximately estimated based on previously
defined parameters. To explain, the error rate of the DEV for the DRV, termed as the rate of errors in
detection (RED) in this paper, is proposed as Equation (9). The element of it for an arbitrary jth mode
is calculated under the assumption that the natural frequencies inspected before the damage are the
same as those of the undamaged structure, i.e., fjd−1 = fj, as shown in Equation (10). In detail, the error
rate, gi,j, for the jth mode indicates, as shown in Figure 3, the relation between the unknown elastic
modulus under damage and the elastic modulus of the comparison target case. This relationship also
exists in all available modes, so, as shown in Equation (11), the average of the elements of the vector,
gi, as a representative parameter named the rate of errors on average (REA) in this paper, is used to
estimate the reduced value of the Young’s modulus. More specifically, the top-ranked damage scenario
in the similarity comparison is identified, and damage cases that have the same damage locations but
different damage severities with the top-ranked case must also be ranked highly. Then, the REAs of
the cases within the same damage type are calculated and in turn, how much the REAs are affected
by the damage level for each individual damage location in the group is computed as well. Based
on the rate of changes of the REAs, the value of the elastic modulus that makes the REA zero can be
approximately found by various ways ranging from simple interpolation or extrapolation to various
regression or optimization methods:

gi =
si − h

h
=

∣∣∣∣∣∣ zi,1−WId
1

WId
1

zi,2−WId
2

WId
2

· · ·
zi, j−WId

j

WId
j

· · ·
zi,n−WId

n

WId
n

∣∣∣∣∣∣T, (9)

gi, j =
zi, j −WId

j

WId
j

=

f ∗i, j− f j

f j
−

f d
j − f d−1

j

f d−1
j

f d
j − f d−1

j

f d−1
j

=
f ∗i, j − f d

j

f d
j − f j

, (10)

ri =
1
n

n∑
j=1

gi, j, (11)

where gi is the rate of errors in detection (RED) of the ith DEV for the damage, gi,j is jth element of it,
and ri is the rate of errors on average (REA) for the ith DEV.
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2.4. Damage Scenarios and Meta-Modelling

An essential prerequisite task to perform all these processes heretofore described is to establish
damage scenarios because they are form the guideline to generate the DEV and DEM for the similarity
comparison. Basically, there are two considerations. The first is which locations, i.e., members or
elements of a structure, are selected as damaged, and another is how severe the individual damages
are. From a a fundamental point of view, there are an infinite number of cases for the two factors, so a
reasonable way to effectively organize them is required. To solve such issues, there are many available
DOEs, such as full factorial, central composite, Box–Behnken, Latin square, and Latin hypercube
method, and Cavazzuti (2013) described them in detail [28].

The matter of which method is more proper depends on the characteristics of the structure, e.g., the
number of total members or damageable parts. In this paper, the full factorial method is considered as
the priority since it is known as the most intuitive and understandable way, so it is likely to be suitable
for simple examples for verification. Briefly speaking, this method provides all possible combinations
with considered factors and their levels, so the total number of samples is the number of the levels
raised to the power of the number of the factors. In this paper, the latter corresponds to the number of
elements while the former corresponds to the number of damage severities (or damage levels). To
be more specific, let uss assume that there is a structure consisting of u elements, and the damage
severities per individual elements can be classified into v different levels, including the intactness.
Then, the total number of damage scenarios except the undamaged condition is calculated according to
the full factorial method, as shown in Equation (12). With a view to the reduction of the total number
of scenarios for simplicity, additionally assuming that damage can occur at maximum w locations at
the same time, the total damage cases are calculated as Equation (13):

m = vu
− 1, (12)

m =
w∑

l=1

(
uClvl

)
− 1, (13)

where m is the total number of designed damage conditions, u is the total number of elements (or
members) of a structure, v is the number of damage severities, w is the maximum number of damaged
locations, and l is the number of damaged locations from 1 to w.

On the other hand, elements of the DEM are basically calculated from the pre-updated FE model
in accordance with every single damage scenario. However, it would be time-consuming due to the
complexity of an offshore structure. One alternative method to reduce the computational cost in
computation is a meta-model, i.e., the surrogate model. There are various metamodeling methods
used in various fields, such as the neural network, and one of the most prevalent and traditional



Sensors 2019, 19, 3047 10 of 24

techniques is the response surface method (RSM). The method has also been employed for SHM
ranging from simulation model updating [29–34] to damage identification [35–44] in many studies.
In general, this approach approximately formulates a mathematical relation, especially polynomials,
matching inputs to outputs. Therefore, how well the input data represent the domain space of interest
and which type of math function is chosen to present the potential characteristics of a system are key
factors to ensure the correctness of a meta-model.

3. Verification

3.1. Example Structure: A Portal Frame

This paper validates the proposed method for the 2D portal frame structure illustrated in Figure 4,
referring to a recent study conducted by Umar et al. [45]. In the reference, modal tests were performed
in different damage cases as well as the intact state, and respective natural frequencies from the
first to fourth mode were measured. The elastic modulus of individual segments suitable for the
measured dynamic characteristics was figured out by two steps of the response surface methods in
sequence. In detail, the reference models, i.e., the baseline models, were primarily updated under
the undamaged condition. The models were named as F and FMS1 in the reference. Model F was
made based on only the measured natural frequencies whereas model FMS1 was obtained based on
both the frequencies and mode shapes. Then, another RSM process was started from the reference
state models for damage detection. In the entire procedure, all the FE models were comprised of 2D
elements. Especially, it is interesting that the Young’s modulus of model F is symmetrically distributed
as seen in Figure 5 [45], and the mean error of the natural frequencies for the measured data is much
smaller than the other models.
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Unlike the reference, on the other hand, the beam188 element in ANSYS Mechanical APDL was
utilized to model the structure in this paper. The elastic modulus of each segment was identified
using the genetic algorithm (GA) with MATLAB. The feasible region was bounded within 150 MPa
to 220 MPa, and the objective function was to minimize the root mean square of the error rates of
the natural frequencies as shown in Equation (14). Considering the symmetry of model F, as seen in
Figure 5, the baseline models were both symmetrically and independently optimized under the intact
condition in this paper. Afterwards, the cosine similarity-based damage detection was carried out for
the numerical and experimental results. Table 1 shows the measured natural frequencies [45], updated
natural frequencies under the undamaged condition, and the error rates per mode. The symmetric
model has relatively large errors compared to the independent model. However, it does not mean that
the independent model is more precise because it is just a natural result and, in general, the perspective
of optimization, because more variables provide better convergence. Table 2 shows the optimum
values of the elastic modulus of every segment:

minRMSERROR =

√√√√√
1
4

4∑
j=1


 f s

j − f m
j

f m
j


2, (14)

where fjs and fjm are the simulated and measured natural frequency at jth mode, respectively.

Table 1. Natural frequencies in the undamaged state [45] and the corresponding updated results.

Measured Symmetric Model Independent Model

NF (Hz) NF (Hz) Error Rate (%) NF (Hz) Error Rate (%)

1 4.53 4.53 0.00669 4.53 0.00104
2 17.6 17.59 –0.07901 17.59 –0.03555
3 28.3 28.28 –0.06045 28.3 0.00899
4 30.7 30.67 –0.10317 30.72 0.05276

Table 2. Optimal elastic modulus of the intact portal frame (GPa).

Segment 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Esym 186.0 205.9 172.2 202.7 174.4 180.1 165.9 178.6 165.9 180.1 174.4 202.7 172.2 205.9 186.0
Eind 186.9 204.9 179.4 202.1 178.5 201.3 177.1 163.4 213.5 173.2 152.9 195.9 165.3 207.7 181.8
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3.2. Numerical Validation

Two DEMs were constructed based on the updated models. The total number of designed
damage cases (m) was 39,824 with v = 3 (the damage level of 7.5%, 15%, and 22.5%) and w = 3 (the
maximum number of damaged locations), as shown in Equation (13). The damage level was defined
as Equation (15):

Damage level = 100×
EDS − EIS

EIS
(%), (15)

where EDS is the elastic modulus of any damaged segment, and EIS is the elastic modulus of the
segment in the intact state. In order to validate the numerical process of similarity comparison, three
damage states were given as seen in Table 3. Table 4 shows the top five cases and corresponding cosine
similarities of the independently updated reference model for the three damage states. As a result, it
was shown that the proposed method detects all three damage conditions.

Table 3. Damage location and severity for numerical validation.

State Segment Number Damage Level

DC1 1 −22.5%

DC3
1 −22.5%
4 −22.5%
9 −15.0%

Table 4. Damage cases ranked in the top five and the corresponding cosine similarities of the
independently updated baseline model.

DC1 DC3

CS Case Seg. 1 Level 2 CS Case Seg. 1 Level 2

1 1.000000 3 1 −22.5 1.000000 1799
1 −22.5
4 −22.5
9 −15

2 0.999997 3251
1 −22.5

0.999996 12561
9 −15

11 −7.5 11 −22.5
14 −15 15 −7.5

3 0.999971 5113
2 −22.5

0.999903 9456
5 −15

9 −7.5 8 −15
14 −7.5 15 −22.5

4 0.999946 3242
1 −15

0.999878 9278
5 −22.5

11 −7.5 7 −22.5
14 −15 15 −15

5 0.999915 3255
1 −22.5

0.999818 3022
1 −7.5

11 −15 9 −22.5
14 −22.5 15 −7.5

1 Seg. is segment number. 2 Unit of level is percent (%).

3.3. Experimental Verification

3.3.1. Verification Process

Table 5 shows the two damage states inclusive of both single and multiple damages [45] and the
corresponding range of damage cases of DEM in this study. As seen in Figure 6 [45], the damages were
applied as saw cuts somewhere in the segments in Table 5, so no one knows the only and absolute
answer for the damage state due to inevitable uncertainties. The best way for verification is to use exact
information, such as widths, depths, and locations of the saw cuts on the coordinate system, but there
is no such detail in the reference. Thus, values of the Young’s modulus of each damaged segment
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should be evaluated as shown in Equation (14) in this paper. Considering the damages, constraints
were set to allow the elastic modulus of the damaged segments to be up to 50% lower than those under
the intact condition in Table 2. The lessened elastic modulus searched for by the GA and the reduction
rates are listed in Table 6. The reduction rates mean the damage severity corresponding to the damage
level in DRV and DEM in this study. Moreover, DRVs were calculated using Equation (7) from the
natural frequencies in Tables 1 and 7, which lists the natural frequencies in the test from [45], and in
turn, the cosine similarities for an individual damage case were computed. This entire procedure is
illustrated in Figure 7. Although there are four available modal data from the experimental results,
it was shown that there is a relatively large error between the natural frequencies of the measurement
and the updated models in the fourth mode as seen in Table 1. Hence, damage detection was conducted
on not only all available modal data but only the first to the third modal data. Therefore, a total of
three detection results within the top five ranked in cosine similarity were comparably analyzed, as
shown in Tables 8–10.

Table 5. Damage state [45] and the range of corresponding damage cases.

State Segment Number of Cuts Range of Damage Cases of DEM

DS1 1 5 1–3

DS3
1 5

1774–18004 5
9 4
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Table 6. GA results: elastic modulus (EDSx) and damage severities 1 of damaged segments (GPa, %).

Model Symmetric Model Independent Model

Segment 1 4 9 1 4 9

Units GPa % GPa % GPa % GPa % GPa % GPa %

IS 2 186.0 - 202.7 - 165.9 - 186.9 - 202.1 - 213.5 -
DS1 151.5 −18.57 - - - - 151.7 −18.85 - - - -
DS3 153.5 −17.45 166.3 −17.95 135.1 −18.55 154.3 −17.46 134.5 −33.48 213.4 −0.079

1 Damage severity = 100 × (EDSx − EIS)/EIS like Equation (15). 2 IS means the intact state.

Table 7. Natural frequencies of the damaged frame (Hz) [45].

Mode DS1 DS3

1 4.42 4.41
2 17.5 17.1
3 27.9 27.6
4 30.5 30.4
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Table 8. The top five damage cases in cosine similarity with the first to fourth natural frequencies of
the symmetric baseline model.

DS1 DS3

CS Case Seg. 1 Level 2 CS Case Seg. 1 Level 2

EDSx - - 1 −18.57 - -
1 −17.45
4 −17.95
9 −18.55

1 0.999934 2 1 −15 0.999880 1787
1 −15
4 −15
9 −15

2 0.999925 3 1 −22.5 0.999788 1800
1 −22.5
4 −22.5
9 −22.5

3 0.999785 160
1 −22.5

0.999779 1735

1 −15

4 −22.5
14 −7.5 7 −7.5

4 0.999764 1929
1 −22.5

0.999646 1789
1 −15

4 −7.5 4 −22.5
14 −22.5 9 −7.5

5 0.999755 52
1 −22.5

0.999511 3901

2 −22.5

4 −15
2 −7.5 9 −7.5

1 Seg. is segment number. 2 Unit of level is percent (%).

Table 9. The top five damage cases in cosine similarity with the first to third natural frequencies of the
symmetric baseline model.

DS1 DS3

CS Case Seg. 1 Level 2 CS Case Seg. 1 Level 2

EDSx - - 1 −18.57 - -
1 −17.45
4 −17.95
9 −18.55

1 0.999995 3 1 −22.5 0.999998 4643
2 −7.5
7 −22.5

10 −15

2 0.999995 2 1 −15 0.999984 10105
6 −15
7 −22.5

10 −7.5

3 0.999994 1060
1 −15

0.999975 2626
1 −15

2 −22.5 7 −22.5
5 −7.8 13 −7.5

4 0.999967 2081
1 −15

0.999958 2595
1 −15

5 −7.5 7 −7.5
10 −15 12 −22.5

5 0.999955 2072
1 −7.5

0.999957 2822
1 −22.5

5 −7.5 8 −15
10 −15 13 −15

1 Seg. is segment number. 2 Unit of level is percent (%).
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Table 10. The top five damage cases in cosine similarity with the first to fourth natural frequencies of
the independent baseline model.

DS1 DS3

CS Case Seg. 1 Level 2 CS Case Seg. 1 Level 2

EDSx - - 1 −18.85 - -
1 −17.46
4 −33.48
9 −0.079

1 0.999970 2198
1 −22.5

0.999839 11,500
7 −7.5

5 −7.5 11 −22.5
14 −15 12 −7.5

2 0.999951 5113
2 −22.5

0.999744 12,155
8 −15

9 −7.5 11 −15
14 −22.5 15 −15

3 0.999950 3242
1 −15

0.999607 4964
2 −7.5

11 −7.5 8 −15
14 −15 15 −15

4 0.999908 3255
1 −22.5

0.999570 2951
1 −15

11 −15 9 −22.5
14 −22.5 12 −15

5 0.999904 3251
1 −22.5

0.999540 12,158
8 −15

11 −7.5 11 −22.5
14 −15 15 −15

1 Seg. is segment number. 2 Unit of level is percent (%).

3.3.2. Result of Cosine Similarity Comparison and Damage Detection

In this part, the results of the cosine similarity are listed in Tables 8–10. In particular, the highest
five damage scenarios in cosine similarity rankings were enumerated. Among the top five cases in the
tables, the two top-ranking damage cases are regarded as the results of the cosine similarity-based
damage detection in this paper. Figures 8–14 comparatively depict a bar-type graph. In all the figures
below, plot (a) presents the predicted elastic modulus under the damaged states using the GA, and plot
(b) and (c) display the top one and two damage cases in cosine similarity, respectively. The blue bars
mean correctly detected results whereas the red bars mean false detection.
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cases among the five, respectively. In this approach, the result only on DS1 makes sense because there 
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incorrect segment): (a) Predicted damage from the GA (black color); (b) top one damage case using the
first to fourth natural frequencies; (c) top two damage case the first to fourth natural frequencies.
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incorrect segment): (a) Predicted damage from the GA (black color); (b) top one damage case using the
first to third natural frequencies; (c) top two damage case using the first to third natural frequencies.
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First, Table 8 displays the results of cosine similarity when the symmetric baseline model was
used with the first to fourth natural frequencies. According to the table, there are suitable damage cases
corresponding to the damages in the high ranking. To explain, damage case 2 and 3 ranked as first and
second for DS1 and damage case 1787, 1800, and 1789 ranked as first, second, and fourth for DS3 are in
the appropriate range of damage scenarios out of the DEM as explained in Table 5. Figures 8 and 9
result from Table 8. To be specific, damage locations for both DS1 and DS3 were exactly identified.
Furthermore, the top-ranked damage scenarios were correctly matched to all the damage states DS1
and DS3. It epitomizes the merit of this method in the accuracy of damage detection. In addition to
this, the damage levels figured out by the GA were also placed between the damage levels of the first
and the second damage cases for both DS1 and DS3, which shows the possibility that damage severity
would be evaluated more accurately by the RED or REA although more studies are needed to find the
most appropriate method, such as regression and inter- or extrapolation, as well as proper weighting
factors among the high ranked damage scenarios.

On top of that, these cases could be comparable to the results of model F in the reference. In fact,
these are the only possible pairs for result comparison with the reference, as natural frequencies
ranging from the first to fourth, except the mode shapes, were utilized for the model update and for
damage detection. Thus, the results correspond to each other. Specifically, the Y-axis in Figure 10
was modified from the stiffness reduction factor (SRF) in the reference, which is 1 − E’/E, where E
and E’ is the Young’s modulus before and after damage, respectively, to the damage level, which is
expressed as a percentage with the opposite sign of the SRF. With respect to the damage levels, in fact,
a direct comparison would not make sense because of the different element types of FE models as
well as different optimization algorithms used for each other. Despite the limitation, the performance
of the damage detection method presented in this paper is obviously noticeable even only for the
identification of damage locations. In comparison to Figure 10a, showing that the fault damage was
detected at segment 14 under DS1, for example, Figure 8b,c represents that this method figured out
the correct damage location without an overestimation of damaged places. Moreover, Figure 9b,c
show that the proposed method identified all the multiple damaged segments accurately while, in the
reference, the damage on segment 7 was falsely judged instead of segment 9, which is truly damaged
under DS3 in Figure 10b. This indicates the contribution of the proposed method to accurate global
damage identification.

Meanwhile, Table 9 represents the top five damage cases with the first to third natural frequencies
of the symmetric baseline model and Figures 10 and 11 describe the two detected damage cases among
the five, respectively. In this approach, the result only on DS1 makes sense because there are no
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damage cases suitable for DS3 in the top five and the order of the rankings is different compared to
Table 8, despite the same baseline model. The reason for this failure is the different range of orders of
natural frequencies used to compute the cosine similarity. While the baseline model (EIS) and the two
damaged models (EDSx) were optimized based on the first to fourth natural frequencies by using the
GA, the similarity was calculated except for the fourth frequency. The difference leads to the error
of dot products in the calculation of the cosine similarity since all elements out of the two frequency
vectors play an equal role in the operator. Therefore, it is required that the same orders of natural
frequencies are used to update the baseline model and in the calculation of cosine similarity to detect
multiple damages accurately. Conversely, there is a question about why the damage scenarios out of
the reasonable range were highly ranked in the case of DS1. One possible cause is the damage location.
Segment 1 is most close to one of the fixed points, which has the most to do with the first mode
and natural frequency. That is, the damage near the points would be less sensitive to higher natural
frequencies. In fact, it would be a fundamental phenomenon in general structure dynamics rather than
a special issue in this method. Therefore, it is evidence that this method provides convincing outcomes.

On the other hand, there is no damage scenario closely involved with the two damage states in
the top five as seen in Table 10. Compared to Table 8, Table 10 comes from the independent baseline
model while the same range from the first to fourth natural frequencies was utilized to make the
baseline models and similarity estimation. That is, the symmetrically updated baseline model is better
than the independently updated model in this example. However, it does not mean that symmetry is
always better. Assumedly, this is because the portal frame structure in the test is symmetrical in the
distribution of the elastic modulus. It is also supported by the fact that the updated model F, which
has the least mean error in natural frequencies in the reference paper, showed a tendency of a vertical
symmetric distribution of the Young’s modulus, as Figure 5 mentioned before. This means that the
accuracy of this method relies on a good agreement between the baseline model and the real structure.
Therefore, we know that one of the important factors in this method is how much the baseline model
precisely reflects the real structure.

4. Conclusions

Aiming at contributing to a more applicable real-time SHM offshore, this research proposed a
multiple damage detection method using cosine similarity of the rate of change of natural frequencies.
To sum up, the process is comprised of three parts: Damage individualization, damage recognition,
and damage identification. A damage estimation matrix is constructed from a preliminarily updated
FE model using DOE and modal analysis in the first stage. In the recognition process, the rate of change
of natural frequencies from OMA based on sensor data during operating is normalized and utilized
as a normalized warning index. When the index becomes larger than a threshold, it is judged that
damage happens, and subsequently, the damage reflection vector is generated in this state. Ultimately,
cosine similarity between the damage estimation matrix and the damage reflection vector is computed,
and finally the most similar damage cases among the vector sets of the estimation matrix are identified
in the ranking of similarity.

Therefore, the best benefit of this method is that any extra task and professional knowledge is not
required at all for workers in the real offshore field to perceive the occurrence, locations, and severities
of damage because a damage warning and ranking of most possible damage cases is provided in the
damage recognition and identification and complicated and numerous computational tasks in the
damage individualization are completed in the very initial stage of operation. Such a simple and
intuitive system to treat damage would absolutely improve the applicability and usability of SHM in
offshore operations.

For verification, the portal frame model from a reference was used. Two types of damages,
DS1 and DS3, were considered: DS1 is single damage and DS3 is multiple damages. Two different
baseline FE models, a symmetric and independent model, were established by the GA. In the numerical
validation, the first ranked damage cases with cosine similarities of 1 had identical damages with the
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input of damages for both the DS1 and DS3. Therefore, the correctness of the numerical process was
proven. Moreover, there were three examples for the experimental data: Symmetric model with the first
to fourth natural frequencies, independent model with the same natural frequencies, and symmetric
model with the first to third natural frequencies. For the first case of experimental verifications, the two
top candidates of scenarios accurately predicted damaged locations on segment 1 for DS1 and on
segments 1, 4, and 9 for DS3. Such accuracy was better than the performance of the damage detection
technique in the reference. In terms of damage severity, an 18.57% reduction of the Young’s modulus
at segment 1 under DS1 was placed within −15% and −22.5%, which were the damage levels of the top
two scenarios under DS1. Damage severities of −17.45%, −17.95%, and −18.55% for segment 1, 4, and 9,
respectively, under DS3 were also in the range between −15% and −22.5% of the damage levels of the
two top cases under DS3. These indicate that there is still room for improvement of the preciseness in
this way by using the rate of errors on average (REA) based on the similarity results. On the other
hand, the other examples provided insight into important factors on this approach. In the case of the
independent model, DS1 was correctly identified whereas DS3 was falsely detected. This indicates that
the precision of this method depends on the correctness of a preliminarily updated model as all the
inverse SHM methods. Plus, the last example completely misestimated both DS1 and DS3. The lesson
of this is that the utilization of the same orders of natural frequencies both in updating a baseline model
and in computing the cosine similarity is the way to obtain accurate results for damage detection in
this method.

As future works, there are several directions to further develop this method. The first is to
conduct a comparative study to examine which method among the various similarity methods is
most appropriate. One possible criteria for this is to find the similarity method capable of making
the values of similarity more distinguishable from one another than now, as the difference of the
cosine similarity values between consecutive loading conditions in order of the ranking was smaller
than 10 to 4 in this paper, which may seem less significant, compared to the whole range of cosine
similarity from 0 to 1. Added to the similarity investigation, secondly, performance evaluation of
this technique for other unavoidable types of structural damages that arise in offshore structures, for
instance, the change of sections owing to degradation and corrosion in saline water and the change of
masses due to ocean biofouling, should be researched to extend the applicability of this method to
real offshore structures. This could be the beginning of a study to identify typical specific attributes
corresponding to the inevitable damage types of offshore structures, which, in turn, would greatly
help to perform the next investigation, such as on-the-spot inspection, repair of failures, and new
baseline model updates. Thirdly, tests on which kind of baseline FE models are more suitable for this
baseline model-dependent technique would be one possible future task because the model update
using mode shapes or using both, but not only natural frequencies, results in different FE baseline
models. The distinction would lead to different results, as well. Lastly, our own experiments on more
complex structures, such as a prototype of a jacket structure, might be carried out before applying this
presented technique to a real structure in the offshore field since there are many implications in sensing
and signal processing as mentioned previously. Such a test would provide more practical findings and
broader perspectives than what was done in this paper for this comprehensive SHM method, ranging
from measurement, signal processing, OMA, damage identification, and on-the-spot inspection to
repairs and new model updates.
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