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Abstract: Linear regression is widely used in applied sciences and, in particular, in satellite optical
oceanography, to relate dependent to independent variables. It is often adopted to establish empirical
algorithms based on a finite set of measurements, which are later applied to observations on a
larger scale from platforms such as autonomous profiling floats equipped with optical instruments
(e.g., Biogeochemical Argo floats; BGC-Argo floats) and satellite ocean colour sensors (e.g., SeaWiFS,
VIIRS, OLCI). However, different methods can be applied to a given pair of variables to determine
the coefficients of the linear equation fitting the data, which are therefore not unique. In this work,
we quantify the impact of the choice of “regression method” (i.e., either type-I or type-II) to derive
bio-optical relationships, both from theoretical perspectives and by using specific examples. We have
applied usual regression methods to an in situ data set of particulate organic carbon (POC), total
chlorophyll-a (TChla), optical particulate backscattering coefficient (bbp), and 19 years of monthly TChla
and bbp ocean colour data. Results of the regression analysis have been used to calculate phytoplankton
carbon biomass (Cphyto) and POC from: i) BGC-Argo float observations; ii) oceanographic cruises, and
iii) satellite data. These applications enable highlighting the differences in Cphyto and POC estimates
relative to the choice of the method. An analysis of the statistical properties of the dataset and a
detailed description of the hypothesis of the work drive the selection of the linear regression method.

Keywords: linear regression methods; bio-optical properties; BGC-Argo; satellite oceanography

1. Introduction

In technical and scientific applications, the linear regression fit is one of the most common models
used to establish a relationship between two variables. Two families of statistical methods, i.e., type-I
(ordinary least square, OLS) and type-II (e.g., standard major axis, SMA), were developed to perform a
linear regression depending on the properties of the data set [1]. In optical oceanography, the rationale
behind the choice of a given method for computing a linear regression fit is often an overlooked
question, seldom explained or supported by statistical evidence.

This issue, which also pervades other fields of marine science such as fishery ecology, has already
been highlighted by Laws et al. (1981) [2]: “the need to use model II (here type-II) regression methods
in many applications have long been recognized, but a glance at the current literature will reveal that
most biological oceanographers use model I (here type-I) regression methods exclusively even when
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model II is clearly needed”. Until the 1980s, the lack of widespread statistical software packages could
have been a reason that favoured the application of the most common type-I method. However, as
reported in Laws et al. (1981) [2] and Innamorati et al. (1990) [3], the need for a more careful choice of
the regression models and methods was already clear in the oceanographic community.

Laws et al. (1981) [2] investigated the problem demonstrating that type-II methods should be
applied to in situ data which are affected by instrument and sampling uncertainties. Specifically, they
mentioned some common applications for which type-II methods are clearly needed, including, but not
limited to, estimation of the phytoplankton chlorophyll-to-carbon ratio from chlorophyll vs. particulate
carbon relationship [4,5].

The impact of the choice of regression method on optical oceanographic research is not minor.
Linear regression models, in fact, are widely used to predict variables that are difficult or expensive
to measure from field measurements. For example, the optical particulate backscattering coefficient
(bbp) is in situ measured or derived from ocean colour imagery. It is at the base of the estimation of
the particulate organic carbon (POC) [6–10] and the phytoplankton carbon biomass (Cphyto) [11–13],
both of which are fundamental variables used to constrain and understand the total carbon budget
in the ocean [14,15]. Even though there are many works in which regression methods are correctly
used and clearly mentioned in the text giving the opportunity to understand and reproduce the
work [16–20], there are several cases where no information is provided about the linear regression
method used [12,21–25], thus, preventing an evaluation of the impact of the methodology on the
derived parameters. The lack of such information is crucial as the use of one method over another can
return significantly different estimates on parameters. Indeed, differences due to the application of a
sub-optimal regression method, instead, might be considered as errors and propagate if the wrong
parameters are then used as inputs for modelling (e.g., empirical algorithms of ocean parameters).
For this reason, as McArdle (2003) [26] pointed out “ . . . if the slope, the intercept, or both parameters
of the line are important, then care must be taken that the scientific conclusions follow from the
data”. In other words, the scientific conclusions must be based on the appropriate methodology, i.e., a
methodology adapted to the statistical properties of the data set to be analysed.

In this regard, our primary goal is to evaluate the impact of the linear regression model (and
methods) in optical and satellite oceanography. To do so, we quantify the differences between the
results obtained applying diverse regression methods to the same bio-optical data set, and investigate
the consequences of an inappropriate selection. Namely, we used field measurements collected in the
north-western Mediterranean Sea at the BOUSSOLE (BOUee pour l’acquiSition d’une Serie Optique à
Long termE) site [27–29], during three years of monthly oceanographic cruises (2011–2013) and more
than one year (July 2013–November 2014) of Biogeochemical-Argo (aka BGC-Argo) vertical profiles.
We applied both type-I and type-II regression methods to determine the coefficients of the linear
equations of the total chlorophyll-a (TChla)-bbp and bbp-POC relationships from discrete samples.
Afterwards, we assessed the impact of the derived linear models with to the estimation of Cphyto and
POC base on the time series of bbp vertical profiles from the BGC-Argo floats and by applying either
type-I or type-II regression method. Finally, a similar analysis was also conducted relying on satellite
observations, namely Cphyto was evaluated, by using 19-years of monthly TChla and bbp.

2. Data and Methods

2.1. Theoretical Background

Establishing a linear relationship between dependent and independent variables (y and x,
respectively) requires the computation, through linear regression analysis, of the coefficients of a linear
equation, i.e., the slope (B) and intercept (A):

y = B·x + A (1)
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The independent variable may be either uncontrolled (i.e., whose variability is affected by random
phenomena) or controlled by the investigator, whereas the dependent variable has to be random
by definition. The properties of both variables should drive the choice of an appropriate method to
perform regression analysis, in contrast to linear correlation analysis, which is only aimed at measuring
the strength of the linear relationship between two variables, independent of their properties and of
any functional or causal link between them [1].

Although linear fitting is mainly used as a means to highlight a linear relationship between a pair
of parameters, often the resulting equation is adopted as a model for further computations or analysis.
Thus, the selection of the statistical method used to calculate the slope and the intercept of the linear
model is of great importance to minimize the uncertainties associated with the dependent variable.

If the objective of linear regression is the interpolation or extrapolation of a data set, then the most
common computational method, OLS, is appropriate independent of the properties of the variables [1,30].
This is the default method that most software use for computing and displaying a fitting line onto a
scatter plot and the one which most users are familiar with. Nevertheless, other methods might be
more appropriate depending on the goal of the analysis and on the properties of the data set. In such a
context, the first step is selecting either a type-I or type-II regression method, which depends on whether
the relationship between x and y variables is symmetric or asymmetric. This means whether or not the
variables can be interchanged without altering the hypothesis/assumptions of the work and the derived
parameters. An asymmetric relationship underpins a classical linear regression problem whereby the
independent variable is characterized by null or low uncertainties as compared to the dependent one.
This is the case, for instance, when the independent variable is fully controlled by the investigator or
inherently free from uncertainties. A symmetric relationship, on the other hand, occurs when both
variables show comparable uncertainties. Asymmetric relationships require type-I regression, whereas
symmetric relationships require a type-II regression method [31]. While OLS is the only method to
handle type-I problems, several methods can be adopted with a type-II regression. The OLS needs to
be used only if the aim of the analysis is to predict the value of the dependent variable (y), given the
independent one (x). This method minimizes the deviations of y from the fitting line, i.e., those that are
relevant to the prediction of unknown y values. Both x, y and deviations from the fitting line are instead
relevant if the goal of the regression analysis is to assess the slope and/or intercept of the best regression
line (see Figure A1 in Appendix A). In this case, OLS is not the most appropriate while type-II methods
have to be followed. These type-II methods provide slope and intercept estimates that are, in most
cases, significantly different from those obtained through OLS. Type-II methods are: major axis (MA),
standard major axis (SMA) and ranged major axis (RMA). Note that the latter acronym is also used for
reduced major axis, which is a synonym for SMA [31].

According to [1], MA is the appropriate method when: 1) data distribution is bivariate normal;
2) x and y variables are dimensionless or share the same units, and 3) the error variance is of similar
magnitude for the two variables. RMA can handle variables whose units are heterogeneous because
data is normalized before computing a MA. Because of this normalization, possible outliers have to
be identified and eliminated from the data set, otherwise they could significantly alter the results.
In the SMA, the slope is calculated as the ratio of the standard deviation of y to that of x [1]. However,
SMA has two drawbacks: it should be computed only when the correlation between x and y and is
significant, and its slope cannot be tested for significance.

Differences estimates of the slopes and intercepts obtained by applying different methods depend
on the degree of correlation between x and y. When x and y are strongly significantly correlated the
differences between the three type-II methods based on the major axis are usually small. Nonetheless,
all of them differ from OLS regression to a larger extent [1]. Yet, when the correlation coefficient tends
to 1, the differences between type-II methods and OLS diminish respectively (see Appendix A).

In the following sections, we are concentrating only on SMA, as a type-II method, and OLS, as
type-I, because both are the most widely used in optical oceanography and field sciences (for more details
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about their mathematical treatment see Appendix A). Furthermore, MA and RMA cannot be applied to
our dataset (i.e., heterogeneous parameters with different units, presence of outliers) [1,26,30,31].

2.2. Field and Satellite Measurements

2.2.1. Cruise Data

The BOUSSOLE project started in 2001, and its activities are developed around a bio-optical
buoy located in the deep waters (2440 m) of the Ligurian Sea, one of the sub-basins of the Western
Mediterranean Sea [27–29] (http://www.obs-vlfr.fr/Boussole/html/home/home.php). Figure 1 shows
the area of study and the location of BOUSSOLE site. The BOUSSOLE site has been visited monthly
for buoy servicing, during which 0–400 m casts are performed for the acquisition of conductivity,
temperature and pressure (SBE 911plus, SeaBird Inc., Bellevue, WA, USA). Likewise, water samples
are collected at 12 depths (400, 200, 150, 80, 70, 60, 50, 40, 30, 20, 10 and 5 m) with 12 L Niskin bottles
mounted on a General Oceanic Rosette equipped with an SBE 32 Carousel Water Sampler, and then
subsampled into polycarbonate bottles. An independent optical package is coupled to the conductivity,
temperature and density (CTD)/Rosette for the acquisition of inherent optical properties. In this study,
we used measurements of POC, TChla and bbp collected from October 2011 to December 2013, whose
measurement protocols are summarized below:
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Figure 1. The northwestern Mediterranean Sea showing the southern coast of France, the island of
Corsica, and the location of the BOUSSOLE buoy in the Ligurian Sea (black star) redrawn from [22].
Black dots are the locations where the float surfaced, while the float trajectory is overlaid in the plot
with dashed black line.

Particulate organic carbon. Water is filtered through Whatman 25 mm GF/F glass-fiber filters
(filtered volume from 2.27 to 5.5 L, depending on samples). Filters were washed beforehand using
the soxhlet extraction method with dichloromethane. After filtration, samples were put into petri
dishes and stored in liquid nitrogen for the duration of the cruise and then transferred into −80 ◦C
freezer until analysis, which took place within 12 months from sampling. Two days before the analysis,
the filters were stored in a drying chamber at 50 ◦C during 1 night and then decarbonated with HCl
solution. Finally, the filters were analyzed using a carbon, hydrogen and nitrogen (CHN) analyzer
(Perkin Elmer 2400 series II) with the combustion analysis method. The relative uncertainty of the

http://www.obs-vlfr.fr/Boussole/html/home/home.php
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POC was estimated at < 1% from inter-calibration exercises of the analytical platform used here with
other French laboratories (L. Coppola personal communication).

Total chlorophyll-a. Samples for the determination of phytoplankton pigments were filtered
through 25 mm Whatman GF/F (0.7 µm retention capacity), put into petri dishes and stored in liquid
nitrogen for the duration of the cruise. They were then transferred into −80 ◦C freezer until the analysis,
which took place within 6–8 months from sampling. Pigments were identified and quantified with the
high-performance liquid chromatography (HPLC) technique following [32]. The total chlorophyll-a
concentration is computed as the sum of the concentrations of chlorophyll-a, chlorophyllide-a, and divinyl
chlorophyll-a. Uncertainties in the methodology of the analytical platform used here were evaluated in a
series of Round-Robin experiments (SeaHARRE-1 to 5; https://oceancolor.gsfc.nasa.gov/docs/technical/),
and is of 6% for TChla used here (report of the analyses by J. Ras and M. Ouhssain).

Particulate backscattering coefficient. The total volume scattering function at 140◦, β(140, λ), was
measured with a HydroScat-VI backscattering meter (HOBI Labs) at 6 wavelengths (420, 442, 488, 550,
620, 700 nm). The instrument was deployed within an independent Inherent Optical Properties (IOPs)
package mounted below the CTD/Rosette, with the optics field of view looking at nadir. In this study,
the down-cast was used to insure the medium was not perturbed during the measurement (i.e., to
avoid possible disaggregation of particulate). Thus, the measurements had a maximum time lag of
approximately 30 min with the discrete POC and HPLC sampled during the up-cast. The spectral
particulate backscattering coefficient, bbp(λ), is obtained following [33], with few differences: (1) one
dark 0–50 m β(140, λ) profile was measured, averaged and subtracted from all profiles within each
cruise; (2) data were binned around ±0.5 m of each nominal depth (1 m resolution); (3) the total
absorption and beam attenuation coefficients used for the σ correction [34] were measured respectively
with an a-Sphere absorption meter (HOBI Labs) and a with Gamma-4 transmissometer (Hobi Labs).

2.2.2. BGC-Argo Floats Data

As part of this study, we used data obtained from two of BGC-Argo profiling floats deployed in
the North Western Mediterranean Sea for a total 87 vertical profiles as displayed in Figure 1. The float
referenced as WMO (World Meteorological Organization) N◦6901496 was deployed in the Ligurian
Sea near the BOUSSOLE buoy on 15 July 2013. In March, due to a significant bio-fouling of the optical
sensors, this float was recovered, cleaned and deployed on again the 14 March 2014 under the reference
of WMO N◦6901776. Thus, the two BGC-Argo time series were joined end to end, corresponding to
upward casts collected between 16 July 2013 and 25 October 2014.

All casts started from the parking depth at 1000 m at a time that was sufficient for surfacing
around noon (local time). Vertical resolution of acquisition was 10 m between 1000 m and 250 m, 1 m
between 250 m and 10 m, and 0.2 m between 10 m and the surface. Here, only “noon” casts were used.
Following procedures described in [35], the bbp(700) profiles were calibrated, quality-controlled and
additionally corrected by removing positive spikes greater than twice the 90th quantiles of the residual
signal calculated as the difference between the profile and a median filter (window of 5 dots).

2.2.3. Ocean Colour Data

The full ESA OC-CCI v3.0 (European Space Agency Ocean Colour-Climate Change Initiative
version 3.0) monthly TChla (mg m−3) and bbp (m−1; 443nm) data time-series at 4 km resolution
for the period 1997–2015 over the global ocean was downloaded from the ESA-CCI website (http:
//www.esa-oceancolour-cci.org/). ESA-CCI products are the results of the merging between SeaWiFS,
MERIS, MODIS-Aqua, and VIIRS time-series [25,36–38]. TChla was estimated with a blending of the
OCI (as implemented by NASA, itself a combination of CI and OC4), the OC5 (NASA, 2010) and the OC3
algorithms (http://www.esa-oceancolour-cci.org/?q=webfm_send/684). The Quasi-Analytical Algorithm
(QAA) was used to compute bbp [39,40]. The accuracy of the QAA algorithm was demonstrated in
several recent studies [12,13,19,23–25,41]. Both datasets were remapped at 100 km resolution, enough
to resolve the broader oceanographic scales of variability. In such a context, monthly TChla and bbp

https://oceancolor.gsfc.nasa.gov/docs/technical/
http://www.esa-oceancolour-cci.org/
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data were selected for the specific area of the northwestern Mediterranean basin to maintain the same
domain of the analysis performed by using field measurements (see Figure 1).

2.3. Statistics

In such a context, the following statistical indicators have been used to quantify the impact of
regression methods in deriving bio-optical relationships and subsequent biogeochemical parameters
(i.e., Cphyto and POC):

(i) “Anomalies” here defined as the difference between parameters established with OLS and SMA
linear regression methods.

(ii) The relative percentage differences (RPD) between parameters computed by the application of
the unsuitable and suitable method.

3. Results and Discussion

In the following, we use models of Cphyto as a function of the TChla -bbp relationship, and POC as
a function of bbp as examples to highlight the impact of using a regression method not adapted to the
data set on typical bio-optical oceanographic problems.

3.1. Total Chlorophyll-a versus Optical Backscattering

Behrenfeld et al. (2005) [11] proposed the estimation of Cphyto based on the relationship between
TChla and bbp(443) and applied their model to SeaWiFS ocean color data on a global scale. Bellacicco et al.
(2016) [12] revisited the model for regional tuning respective to the Mediterranean Sea and used the
555 nm band instead of 443 nm for bbp. Recently, Bellacicco et al. (2018) [13] generalized this approach
on a global scale by using bbp(443). The equation for the computation of Cphyto is:

Cphyto =
[
bbp(λ) − bk

bp(λ)
]
·SF (2)

where λ is the wavelength. Here, we used bbp at 700 nm for compatibility also with BGC-Argo float
measurements. The bk

bp(700) is the backscattering coefficient, at 700 nm, of the background fraction of
non-algal particles that does not covary with TChla (e.g., heterotrophic bacteria and viruses) [11]. This
value corresponds to the bbp(700) when TChla is zero: it is the intercept of the linear fit between the
two variables. SF is the scaling factor chosen to give satellite Chl:C values (average value of 0.010)
consistent with laboratory results, and also for the average contribution of phytoplankton to total
particulate organic carbon (±30%) to be consistent with field estimates. In the original work, SF is
equal to 13,000 mg C m−2 [11]. Here, taking into account the change of wavelength for bbp(700 nm
instead of 443 nm) and to remain consistent with [11], we computed, according to in situ data, a SF
of 16,455 mg C m−2, 26% more with respect to the value of the original work. About the bk

bp(700),
Bellacicco et al. (2016) [12] demonstrated that bk

bp (555) varies both in space and time. However, for
sake of simplicity, we considered it to be a constant as in the original work of Behrenfeld et al. (2005) [11].
The main assumption of the model is the good relationship between TChla and bbp [12,13,23]. The first
order co-variability between TChla and bbp is expected because phytoplankton cells contain TChla and
also act as light backscatterers [13,42–44]. This co-variability also indicates that particles population
abundance covaries with phytoplankton biomass, whereas the physiological photoacclimation process
plays a secondary role in determining the chlorophyll variations [11,44]. In such a specific context, the
underlying hypothesis is that TChla is the independent variable while bbp is the dependent one. There
is no likelihood of interchanging the variables for the evaluation of the bk

bp. Indeed, bk
bp is defined as

the intercept of the linear regression fit between TChla and bbp, and it is the bbp when TChla is equal to
0. The choice of the most appropriate regression method is founded upon which is the dependent
variable and which is the independent one. In this case, the main goal is the estimation of a parameter
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(bk
bp), allowing for the definition of another parameter (Cphyto), thus OLS is the preferable method to

be applied [11–13].
The use of either OLS or SMA has consequences on the final Cphyto biomass estimates that we can

compute using in situ data. Furthermore, the intercept of the linear fit (i.e., bk
bp coefficient), in fact, has a

biological meaning, as being the background contribution of the non-algal particles to the total bbp [11].
Figure 2 shows the TChla-bbp relationship with indicated both slopes and intercepts as computed
by applying the two different regression methods. Here, the intercept varies from 5.8 (±0.5) × 10−4 to
4.5 (±0.3) × 10−4 m−1 when calculated with OLS and SMA, respectively (Figure 2). These values are
lower than those reported for the same region (though only surface measurements were used) [12]. This
is consistent with a theoretically higher carbon (and its proxy bbp) to TChla ratio in more illuminated
waters [14].
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Figure 2. Scatter-plot and linear fit (continuous lines) calculated with ordinary least square (OLS) (blue)
and standard major axis (SMA) (red) methods in the TChla-bbp relationship at the BOUSSOLE site. For
both the coefficients, intercepts (A) and slopes (B), the standard errors are also indicated.

As discussed before, the definition of cause (independent variable) and effect (dependent variable)
is thus fundamental and represents the working hypothesis. If one focuses on the relationship between
TChla and bbp, the goal being their comparison, the SMA (or RMA) has to be applied because it is
statistically more robust in the context of the analysis of field measurements as explained in Section 2.1.

To further underline the difference in results when applying OLS or SMA methods, we computed
the total Cphyto from Equation (2) and by using the bbp(700) 0–400 m profiles collected during the
BOUSSOLE cruises. To each profile, we applied the bk

bp(700) values (i.e., intercepts) obtained after the
application of both OLS and SMA methods (Figure 2). The RPD on Cphyto estimation is equal to 23.5%
(overestimation of total Cphyto using SMA instead of the appropriate OLS method).

Additionally, in order to evaluate how the estimate of Cphyto changes when using either methods,
we applied the relationships reported in Figure 2 to the time series of bbp(700) vertical profiles from
the BGC-Argo dataset. When assessing the integral of Cphyto over depth and time, the RPD between
Cphyto,SMA and Cphyto,OLS is 28.7%. In this example, the use of SMA (the less adapted method) leads to
an overestimation of Cphyto.

Furthermore, we conducted the analysis by using 19-years of monthly ocean colour data of
TChla and bbp(443) for the period 1997–2015 as shown in Figure 3. As described earlier, the good
relationship between TChla and bbp enables defining the bk

bp coefficient, a fundamental parameter
for the Cphyto computation. Figure 3a shows a moderate correlation between TChla and bbp (r2 equal
to 0.56) in the northwestern Mediterranean Sea. The correlation implies the reliable estimation of
bk

bp coefficient by using all the pixels for the period 1997–2015 [12,13]. In such a context, the bk
bp is
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8.5 (±0.2) × 10−4 m−1 (with the OLS method), a value consistent with the order of magnitude found by
a recent work always based on ocean colour data [13]. With the SMA, the bk

bp becomes lower with
respect to the computation performed by OLS: 6.3 (±0.3) × 10−4 m−1. Figure 3b shows the subsequent
crucial application of this coefficient on the satellite averaged bbp time series for the Cphyto computation
by using Equation (2) (443 nm instead of 700 nm as a wavelength of reference). Figure 3b shows
how both the obtained Cphyto time series follow a similar temporal pattern but with different values.
Regarding the entire time series, the mean difference between Cphyto,SMA (with SMA-based bk

bp) and
Cphyto,OLS (with OLS-based bk

bp) is 2.56 mg C m−3, that is the 28% of the mean Cphyto,OLS: Cphyto,SMA

overestimates Cphyto,OLS. Therefore, in this specific context, there is a general overestimation of Cphyto

if one uses the SMA method instead of OLS. This critical point has to be taken into account because of
its potential impact in the case of phytoplankton carbon studies on regional and global scales, mostly
in ocean carbon budget studies.
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Figure 3. Scatter plot between TChla and bbp from ocean colour data in the northwestern Mediterranean
Sea with linear fits (continuous lines) calculated with OLS (blue) and SMA (red) methods (a). For both
the coefficients, intercepts (A) and slopes (B), the standard errors are also indicated. Time series of
Cphyto (b) based on the bk

bp computed by OLS (in blue) and SMA (in red) methods.

3.2. Optical Backscattering vs. Particulate Organic Carbon

The POC is often linearly related to bbp [6–10,23] as follows:

POC = B·bbp(λ) + A (3)

where B is the slope and A is the intercept of the linear regression fit following the general Equation (1).
As suggested by Loisel et al., (2001) [6], sub-micrometer particles are efficient backscatterers, such that
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there is confirmation that the dominant contribution to particulate organic carbon in the ocean is due
to sub-micrometer particles that are in sufficiently higher concentrations allowing for dominance of
the bbp in oceanic water determining, therefore causing a strong correlation with POC.

The high correlation is caused by the dominance of organic particle concentration in controlling
changes in both POC and bbp. In such a context, it is possible to interchange POC and bbp for a simple
comparison aimed at establishing a relationship between them, i.e., not for optimizing slope and
intercept in view of a further application.

If the principal goal is to estimate POC, the appropriate method to be used is type-II regression,
owing to methodological uncertainties in both measurements that have to be accounted for.

Several works reported results of a linear regression between POC and bbp from both satellite and
in situ data (Table 2 in Thomalla et al., 2017 [10]). Figure 4 shows the established linear relationship
between POC and bbp(700) using both SMA and OLS methods. Our estimates of the slope and the
intercept, computed using both methods, are consistent with previous results from the Mediterranean
Sea [6], Atlantic and Pacific Oceans [7], Southern Ocean [10] and North Atlantic Ocean [23].
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Figure 4. Scatter-plot and linear fits calculated with OLS (blue) and SMA (red) methods in the bbp-POC
relationship at the BOUSSOLE site (a). For both the coefficients, intercepts (A) and slopes (B), the
standar errors are also indicated. Time series anomalies of particulate organic carbon (POC) derived
from BGC-Argo bbp vertical profiles (0–250 m) using OLS and SMA and relationships (b).
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Figure 4a shows that the slope and intercept computed using OLS are significantly lower than
that computed with SMA (with a higher intercept point). This is a good example of the extent to which
the choice of a regression method affects the estimate of the coefficients of the linear fit. As previously
presented, these properties depend on minimizing y deviations only, for OLS, or the combination of
x and y deviations for SMA. In the case of SMA, reduced uncertainties on the independent variable
might balance higher uncertainties on the dependent variable, thus optimizing the overall agreement
between the regression line and the data points. It is worth noting that the determination coefficient
(r2, i.e., the variance explained by the linear model) as well as the correlation coefficient (r, i.e., a
measure of the linear correlation between two variables) are not dependent on the regression method.

To quantify how the estimate of POC changes when using OLS or SMA, we have applied the
relationships reported in Figure 4a to a time series of bbp(700) vertical profiles acquired from BGC-Argo
floats in the same area sampled to establish the linear models. Figure 4b shows the anomalies of
POC as the difference between POC estimated using linear models based on OLS and SMA methods
(POCOLS and POCSMA respectively). The anomalies, in general, are weak; however, several areas of
large differences have impacted the computation of the POC budget over the time series. In detail, at
the end of spring 2014 the largest anomalies are between 5.0 and 20.0 mg m−3 in surface waters. In
other periods, the anomalies are between −10.0 and +5.0 mg m−3. When evaluating the integral of POC
along the water column and over time, the RPD between POCOLS and POCSMA is 13.3%, showing the
importance of selecting the correct regression method which avoids an incorrect estimate of the POC
budget. In this example, the use of OLS (the unsuitable method) causes an overestimation of POC.

In both of the examples analyzed here (i.e., Figures 2 and 4), the differences in slope and intercept
estimates obtained from OLS and SMA methods are quite substantial. These differences could be even
greater for data sets with a lower correlation between the two variables [2]. This highlights that the
selection of a statistical method not fitted to the data set may introduce substantial errors when the
derived linear model is used to estimate the dependent variable from a direct or indirect measurement
of the independent variable. The same effect is also evident in the empirical algorithms applied to
satellite ocean colour imagery [6,8] or on BCG-Argo vertical profiles [10], which therefore should be
assessed by applying the appropriate linear regression method.

4. Conclusions

In this study, we have used both type-I (i.e., OLS) and type-II (i.e., SMA) methods with bio-optical
data collected over three years of monthly oceanographic cruises at the BOUSSOLE site (Figure 1) to
derive linear regression coefficients (i.e., slopes and intercepts) that were then applied to BGC-Argo
vertical profiles for the estimations of phytoplankton carbon biomass and particulate organic carbon.
In addition, a specific analysis using ocean colour data is addressed. The main goal is to quantify the
impact of the linear regression methods in satellite optical oceanography. Our analysis has shown that:

• The phytoplankton carbon biomass based on the TChla-bbp relationship needs to be computed
using the OLS method due to the asymmetry assumption between the two variables. In such
a context, the intercept of the linear fit between TChla and bbp, which is necessary to compute
the Cphyto, represents the fraction of bbp that does not co-vary with TChla, confirming that the
dependent and independent parameters cannot be interchanged from a theoretical perspective.
Only in this specific case, the application of the SMA is unsuitable, as it assumes symmetry of the
parameters. Its application always determines an overestimation of phytoplankton carbon biomass.

• For all linear regression analysis in which the main aim is to compare two parameters (e.g.,
bbp-POC or TChla-bbp), the most appropriate method is SMA due to its theoretical symmetry, and
because of the uncertainties that affect both variables. It is thus possible to interchange the x and y
axes without any impact on the interpretation of the results.

The main outcome of these examples is that the choice of method to determine the coefficients of
the linear model significantly impacts Cphyto and POC retrievals. The introduction of sizeable errors is



Sensors 2019, 19, 3032 11 of 15

a key factor in the carbon budget estimates when linear models are used on a global scale. Indeed,
the total Cphyto:POC ratio utilizing the time series of bbp(700) vertical profiles give an RPD of 13.6%
overestimation using Cphyto,SMA to POCOLS (the ratio computed using both unsuitable approaches)
with respect to the ratio Cphyto,OLS to POCSMA (the appropriate methods to be used). It has to be
kept in mind that two single relationships are applied to the full time-series of the BGC-Argo floats
in the example shown here. It is understood however that spatio-temporal variations of the two
relationships exist and could have an impact on the budget estimates. In this work, we thus highlighted
the importance of the selection and use of the correct regression method. The choice of the model, and
hence the method, has to be done a priori relative to any computation based on the data set properties.
Given that, it cannot be overlooked that a fraction of the variation of the data around a linear regression
fit can also be due to biogeochemical variability rather than error measurements. This type of error
represents that portion of variability unresolved by the fitting function adopted, especially in case
of ocean color data, where retrieval models are ofter oversimplified. Furthermore, in case of high
correlation between variables, both slope and intercept estimations computed by type-I and type-II
regression methods do not show large differences between. Therefore, for a correct application of linear
regression methods in optical and satellite oceanography, a deeper study of the relationship between
the two variables from a theoretical point of view needs to be performed. In fact, as demonstrated, the
influence of the unsuitable method in cases of carbon estimations can be considerable and potentially
impactful in the context of global carbon budget studies from space or by using field measurements.
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Appendix A Mathematical Details

In this section, the differences between OLS and SMA methods are described with mathematical
detail and from a theoretical point of view.

The linear regression is used to compute the parameters of a first-degree equation relating variables
y and x. The equation for a simple linear regression is defined as:

ŷ = B·x + A (A1)

This corresponds to the equation of a straight line that fitting a cloud of points, on a Cartesian
coordinate system, in some optimal way, and establish a model to predict ŷ for any value of x. A is the
estimate of the intercept of the regression line with the y axis and B is the slope of the regression line or
regression coefficient. When using this type of regression, one must be aware of the fact that a linear
model is imposed on the dataset. In other words, one assumes that the relationship between the two
variables may be well described by a straight line and that the vertical dispersion of observed values
above and below the line is the result of a random process. The difference between the observed and
estimated values along y is:

εi = (yi − ŷ) (A2)
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for each observation i and may be positive or negative. The term εi is called the residual value of
observation yi after fitting the regression line. If we include the εi term in the Equation (A1), it allows
one to describe exactly the ordinate value yi of each point (xi, yi) of the dataset; yi is equal to the value
ŷi , as predicted by the regression equation plus the residual εi, as follows:

yi = ŷi + εi = B·xi + A + εi (A3)

This equation is the linear model of the relationship. The term ŷi is the predicted or fitted value
corresponding to each observation i. The model assumes that deviations from the linear relationship
are only on the vertical axis (i.e., “errors” εi are only associated to the response variable yi; “errors”
associated with the estimation of x, δi, are equal to zero). The term “error” is the term traditionally
used to indicate the deviations of all kinds due to random processes, and including those linked to
measurements or methodology.

In simple linear regression, one is looking for the straight line with equation ŷ = B·x + A that
minimizes the sum of square of the vertical residuals εi, between the observed values and the regression
line (see Figure A1a). This is the principle of the least squares method. This sum of square residuals,
Σ(yi − ŷi)

2 (as in case of the OLS method), offers the advantage of providing a unique solution, which
would not be the case if one chose to minimize, for example Σ

∣∣∣yi − ŷi
∣∣∣. On the other hand, the SMA

method minimizes the sum of the product of the x and y deviations, Σ(xi − x̂i) (yi − ŷi) which is the
equivalent to the area of triangles formed by the deviations of a point from the line in the x and
y directions (see Figure A1a). Figure A1b shows how the slopes and intercepts change after the
application of OLS and SMA methods.
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Figure A1. For an OLS line, the error is defined as the vertical dispersion of a point from the straight
line (distance 1 to 2) and the quantity minimized is the sum of squares of these linear distances. In
case of SMA, on the other hand, the error is defined as the area of the triangle 3-4-5 and the quantity
minimized is the sum of these area (redrawn from Smith et al., 2009 [30]) (a). Scatter plot and linear
fits calculated with OLS (blue) and SMA (red) methods by using a syntehtical datasets with a normal
distributed error added to both X and Y variables (b).

The solution for Equation (A1), satisfying the least square criterion can be found using partial
derivatives and is:

BOLS =
sxy

s2
x

; A = y− BOLS·x (A4)

in which sxy and s2
x are estimates of the covariances and variance, respectively.

In case of SMA, or reduce major axis (e.g., a specific case of type-II model), the slope is computed as:

BSMA =

√
s2

y

s2
x
= ±(

sy

sx
) (A5)
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This formula is obtained from the classical and more general formula:

B =
s2

y − θs2
x +

√(
s2

y − θs2
x

)2
+ 4θs2

xy

2sxy
(A6)

where s2
y and s2

x are the estimated variances of y and x, respectively, sxy is their covariance and θ is the

ratio between the variances of the two errors terms, σ2
ε

σ2
δ

. The formula of the slope of the SMA method is

a specific case of the more general Equation (A6). In the SMA slope computation, it is assumed that the
error variances σ2

ε and σ2
δ of y and x, respectively, are proportional to their respective variances σ2

x and
σ2

y. This means that:

σ2
ε

σ2
y
=

σ2
δ

σ2
x

(A7)

Replacing the variances, σ2
ε and σ2

δ, with their unbiased estimates, s2
y and s2

x, gives a value of θ

equal to
s2

y

s2
x
.

Since the square root

√
s2

y

s2
x

can be positive or negative, the sign of the slope estimate is given by

the sign of the Pearson correlation coefficient (r) which is the same as that of the covariance sxy in the
denominator of the Equation (A7) or numerator of Equation (A5). The BSMA is also the geometric mean
of the OLS regression coefficient of y on x, thus it can be also defined as:

BSMA =
BOLS
rxy

when rxy , 0 (A8)

Therefore, one can compute BSMA using the value of BOLS and rxy provided by an OLS regression
algorithm. This equation also shows that when the variables are highly correlated (r tends to 1), BSMA
tends to BOLS. When they are not, BSMA is always larger than BOLS for positive values of r, and smaller
for negative values of r, in other words, BOLS is always closer to 0 than BSMA. For additional details
about the theory, mathematical features and a deeper description of regression models and methods,
see also [1,26,30,31].
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