
sensors

Article

Performance Analysis of Wireless Information
Surveillance in Machine-Type Communication at
Finite Blocklength Regime

Ruonan Dong, Baogang Li * and Binyang Yan

Department of Electronic and Communication Engineering, North China Electric Power University, No. 619,
Yong Hua Street, Baoding 071003, China
* Correspondence: baogangli@ncepu.edu.cn; Tel.: +86-137-2223-1981

Received: 11 May 2019; Accepted: 6 July 2019; Published: 9 July 2019
����������
�������

Abstract: The Internet of Things (IoT) will feature pervasive sensing and control capabilities via the
massive deployment of machine-type communication devices in order to greatly improve daily life.
However, machine-type communications can be illegally used (e.g., by criminals or terrorists) which
is difficult to monitor, and thus presents new security challenges. The information exchanged in
machine-type communications is usually transmitted in short packets. Thus, this paper investigates
a legitimate surveillance system via proactive eavesdropping at finite blocklength regime. Under
the finite blocklength regime, we analyze the channel coding rate of the eavesdropping link and
the suspicious link. We find that the legitimate monitor can still eavesdrop the information sent
by the suspicious transmitter as the blocklength decreases, even when the eavesdropping is failed
under the Shannon capacity regime. Moreover, we define a metric called the effective eavesdropping
rate and study the monotonicity. From the analysis of monotonicity, the existence of a maximum
effective eavesdropping rate for a moderate or even high signal-to-noise (SNR) is verified. Finally,
numerical results are provided and discussed. In the simulation, we also find that the maximum
effective eavesdropping rate slowly increases with the blocklength.

Keywords: wireless information surveillance; proactive eavesdropping; finite blocklength; channel
coding rate; IoT; machine-type communication

1. Introduction

The vision of the Internet of Things (IoT) promises to bring wireless connectivity to anything
ranging from tiny static sensors to vehicles and unmanned aerial vehicles (UAVs) [1–3]. Meanwhile,
short packets are the typical form of traffic generated by sensors and exchanged in machine-type
communications [4]. In these scenarios, the Shannon capacity, which assumes the infinite blocklength,
is no longer achievable. In comparison to the Shannon capacity regime, reference [5] developed a
pioneering framework and identified a tight bound of the channel coding rate at the finite blocklength
regime, which presents many new research opportunities with a wide range of applications.

The IoT can offer many benefits for daily life; however, machine-type communications, such as
vehicle to vehicle communication and UAV communication among others, can be illegally used (e.g.,
by criminals or terrorists), which is difficult to monitor, thus presenting new challenges with respect
to public security [6]. Thus, legitimate eavesdropping by legitimate parties should be necessary to
effectively discover and prevent the information transmitted between the suspicious users. Further,
proactive eavesdropping has recently attracted much interest in research as an approach to improve
eavesdropping performance.
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1.1. Related Works

Conventional wireless security studies generally assume wireless communication is rightful,
i.e., the eavesdropper is treated as an adversary, and aim to preserve their confidentiality and
prevent malicious eavesdropping [7,8]. In the presence of a malicious eavesdropper, the network of
point-to-point [7], relaying [8,9], multi-user [10,11], and cognitive radio [12] were investigated. In
contrast, legitimate eavesdropping or wireless information surveillance is a paradigm shift of wireless
security, where the monitor is regarded as a legitimate eavesdropper.

In general, there are two approaches for wireless information surveillance, including passive
eavesdropping and proactive eavesdropping. With passive eavesdropping, the legitimate monitor
only listens to the wireless channels of the suspicious users. This approach can’t change
the eavesdropping performance. However, proactive eavesdropping can generally improve the
eavesdropping performance via jamming or relaying. Note that there is not much research on the
legitimate proactive eavesdropping in the literature, where the legitimate monitor eavesdrops a single
suspicious link [13–21], multiple suspicious links [22,23], or a suspicious relaying link [24–26]. A
legitimate surveillance scenario where a legitimate monitor aimed to eavesdrop a point-to-point
suspicious communication link via jamming [13] and cognitive jamming [14,15] was investigated,
and the eavesdropping rate at the legitimate monitor was studied. In [16], the author studied
the legitimate surveillance system consisting of two legitimate monitors. In [17,18], the legitimate
monitor was equipped with multiple antennae and acted as a fake relay to eavesdrop the suspicious
transmitter–receiver pair. In [19–21], the author studied a new spoofing approach to change the
communicated information of the suspicious link. The work in [22] investigated the wireless
surveillance of multiple suspicious links, and maximized weighted sum eavesdropping rate of
multiple suspicious links. The work in [23] studied the wireless surveillance of multiple suspicious
communication links and proposed a cooperative eavesdropping scheme. The eavesdropping rate [24],
the eavesdropping mode [25], and the eavesdropping non-outage probability [26] were studied where
the legitimate monitor aims to eavesdrop a suspicious relaying communication link.

1.2. Contributions and Organizations

As a common point, all the above studies are under the Shannon capacity regime, where the length
of the block is assumed to be infinite. The Shannon capacity is not achievable when the information
transmitted in short packets. To our best knowledge, there is no research on the legitimate proactive
eavesdropping under the finite blocklength regime. Therefore, this paper analyzes the performance
of a legitimate surveillance system via proactive eavesdropping at the finite blocklength regime. In
the system, there is a suspicious transmitter-receiver pair, which may be two stationary UAVs etc,
and a legitimate monitor. The legitimate monitor operates in a full-duplex mode with simultaneous
information reception and relaying. The main contributions are summarized as follows.

In this paper, under the finite blocklength regime, we analyze the channel coding rate of the
eavesdropping link and the suspicious link. Meanwhile, we find that the legitimate monitor can still
eavesdrop the information sent by the suspicious transmitter as the blocklength decreases, even when
the eavesdropping is failed under the Shannon capacity regime. Moreover, we define a metric called
the effective eavesdropping rate and analyze the monotonicity. From the analysis of monotonicity, the
existence of a maximum effective eavesdropping rate for moderate or even high signal-to-noise (SNR)
is verified. Finally, numerical results are provided and discussed. In the simulation, we also find that
the maximum effective eavesdropping rate slowly increases with the blocklength, and the increment is
almost negligible when the blocklength reaches a relatively large value.

The rest of this paper is organized as follows. The system model and assumptions are described in
Section 2. Section 3 analyzes the performance of the legitimate surveillance system at finite blocklength.
Numerical results are presented in Section 4. Finally, the paper is concluded in Section 5.
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2. System Model and Assumptions

As shown in Figure 1, we consider a legitimate surveillance system consisting of a suspicious
transmitter-receiver pair (i.e., S-D) and a full-duplex legitimate monitor E. S transmits information
to D during n channel uses, in this way, we consider that each block spans over n channel uses. We
assume that both S and D are unaware of the presence of E and the decode-and-forward (DF) relaying
is adopted by E. If E decodes the block received from S successfully, it forwards the block to D, which
aims to enhance eavesdropping the suspicious link. S and D are each equipped with a single antenna,
and E is equipped with two antennae, one for eavesdropping (receiving) and the other for relaying
(transmitting). S can adaptively adjust its transmission rate. The self-interference from the relaying
antenna to the eavesdropping antenna at the legitimate monitor is assumed to be perfectly cancelled
by using advanced analog and digital self-interference cancellation methods [13]. DF can be assumed
here as in [8,27]. In addition, E can act as a fake relay and thus obtain the channel state information
and the symbol format of the suspicious link, and synchronize with S and D [19,20].
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Figure 1. System model of the considered legitimate surveillance system. 
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Figure 1. System model of the considered legitimate surveillance system.

We consider a Rayleigh quasi-static block-fading channel [28], where fading process is considered
to be constant over the transmission of a block and independently and identically distributed from
block to block. Let h0, h1 and h2 denote channel coefficients from the suspicious transmitter to the
suspicious receiver, from the suspicious transmitter to the eavesdropping antenna of the legitimate
monitor, and from the relaying antenna of the legitimate monitor to the suspicious receiver, respectively.
The corresponding channel gains are defined as g0 = |h0|

2, g1 = |h1|
2 and g2 = |h2|

2. In addition, we
assume that E perfectly knows the channel state information of all links, which can be obtained by
utilizing the methods given in the literature [14,17,19,20].

Channel Coding Rate for Finite Blocklength

For a given decoding error probability ε, the channel coding rate R (in bits per channel use) with
blocklength n is [28,29]

R = C−
√(

1− 1/(1 + γ)2
)
/n ·Q−1(ε) log2 e (1)

where Q−1(.) is the inverse Q-function and as usual the Q-function is given by Q(x) =
∫
∞

x
1
√

2π
e−t2/2dt.

In addition, C = log2(1 + γ) is Shannon capacity function of the SNR γ. Note that Equation (1) is a
very tight approximation when n ≥ 100, i.e., the difference from the exact value can be neglected [28,29].
Thus, we consider n ≥ 100 in this paper and use equal sign in Equation (1). Based on the above results,
R can be transformed into

R = C−
√
(1− 2−2C)/n ·Q−1(ε) log2 e (2)
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Equivalently, for a given channel coding rate R, the decoding error probability ε can be given by

ε = Q

 C−R√(
1− 1/(1 + γ)2

)
/n · log2 e

 = Q

 C−R√
(1− 2−2C)/n · log2 e

 (3)

3. Performance at Finite Blocklength

In this section, under the finite blocklength regime, we first analyze the performance of the
legitimate surveillance system in terms of the channel coding rate of the eavesdropping link and the
suspicious link in comparison with the Shannon capacity regime. Afterwards, we define a metric called
the effective eavesdropping rate and analyze the monotonicity. From the analysis of monotonicity, the
existence of a maximum effective eavesdropping rate for moderate or even high SNR is also verified.

3.1. Analysis of Channel Coding Rate

According to Equation (2), the channel coding rate of the eavesdropping link can be obtained as

RE = CE −

√
(1− 2−2CE)/n ·Q−1(εE) log2 e (4)

where CE = log2(1 + γE), γE = g1P1/σE
2 is the SNR at E, P1 is the transmit power at S, σE

2 is the
power of noise at E, and εE is the decoding error probability at E. Likewise, the effective channel coding
rate of the suspicious link can be obtained as

RD = CD −

√
(1− 2−2CD)/n ·Q−1(εD) log2 e (5)

where CD = log2(1 + γD), γD = (g0P1 + g2P2)/σD
2 is the effective SNR at D, P2 is the transmit power

at E, σD
2 is the power of noise at D, and εD is the decoding error probability at D. E can act as a fake

relay and alter the effective channel of the suspicious link from S to D [17]. Thus, we use effective
channel coding rate, which includes the suspicious link and the relaying link. εD results from the error
probability of each link and is given by

εD = ε0[εE + (1− εE)ε2] (6)

where ε0 and ε2 are the decoding error probabilities of the suspicious link and the relaying link,
respectively.

Since (1 − εE)(1 − ε2) ≥ 0, it is straightforward to know that εE + ε2 − εEε2 ≤ 1. Thus, we
immediately have εD ≤ ε0. Besides we consider that εE ≥ ε2, in this way, we have εD = ε0εE(1− ε2) +

ε0ε2 ≤ ε0εE + ε0ε2 ≤ 2ε0εE. In summary, we can obtain as follows

εD ≤ ε0 ·min{2εE, 1} (7)

It can be known that Q(x) < 0.5 when x > 0. So according to Equation (3), ε < 0.5. In this way, we
immediately have εE < 0.5. Thus, we can derive εD < εE from Equation (7).

When εE < ε2, we can obtain εD < ε2. But, we consider εE ≥ ε2 is more reasonable. The reasons
mainly include the following: ε2 decreases as the transmission rate of E decreases; ε2 decreases as the
transmit power of E increases; meanwhile, as the transmit power of E increases, εE increases. Overall,
ε2 can be controlled at a very small value by reducing the transmission rate of E or increasing the
transmit power of E.

In general, under the Shannon capacity regime, the Shannon capacity of the eavesdropping link is
CE, accordingly, the effective Shannon capacity of the suspicious link is CD, as in [17]. Next, we give
the following proposition.
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Proposition 1: RE > RD when CE > CD, i.e., under the finite blocklength regime, E can eavesdrop the
information sent by S the same as the condition under the Shannon capacity regime.

Proof: See detailed proof of Proposition 1 in Appendix A. The corresponding simulation is shown in
Figure 2. �
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Next, we give the following proposition, which is different from the results under the Shannon
capacity regime where the legitimate monitor can eavesdrop the information sent by the suspicious
transmitter only when CE ≥ CD.

Proposition 2: E can still eavesdrop the information sent by S as n decreases even though in some conditions of
CE < CD, i.e., when n decreases, RE ≥ RD can still be achieved even in some conditions of CE < CD.

Proof: Based on Equation (A1), it is known that RE − RD > 0 when CE = CD. Further, according to
Equation (A1), the value of RE −RD decreases with n because n is in the denominator. Therefore, the
value of RE −RD increases as n decreases. In this way, in some conditions of CE < CD, RE ≥ RD can still
be achieved as n decreases, which is investigated by simulation in Figure 3. Thus, E can still eavesdrop
the information sent by S as n decreases even though in some conditions of CE < CD. �
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3.2. Analysis of Effective Eavesdropping Rate

When RE > RD, there is always a potential chance, such as increasing the relaying power of
the legitimate monitor, to improve the eavesdropping rate by increasing RD until RE = RD, which
means that RD reaches the optimal value. Then, any more improvement of RD will lead to RE < RD,
which means the failure of eavesdropping. So, when the suspicious link is eavesdropped with optimal
eavesdropping rate, the relation of RE = RD is always realized.

Next, under the finite blocklength regime, we define a metric called effective eavesdropping rate
to analyze the system performance. Mathematically, the effective eavesdropping rate is given by

Re f f = Reav(1− εE) (8)

where Reav is the eavesdropping rate, and Reav = RD = RE. According to Equation (3), we can
reformulate Equation (8) as a function of Reav as

Re f f = Reav

(
1−Q

(a−Reav

b

))
(9)

where a = CE = log2(1 + γE), and b =

√(
1− 1

(1+γE)
2

)
/n · log2 e. Next, we study Equation (9), for

which we have the following lemma.

Lemma 1: Under the finite blocklength regime, the effective eavesdropping rate Re f f is monotonically increasing
over [0, R∗eav] and monotonically decreasing over (R∗eav, a) for moderate or even high SNR, where R∗eav is the
eavesdropping rate that maximizes the effective eavesdropping rate Re f f .

Proof: See detailed proof of Lemma 1 in Appendix B. �

Base on the proof of Lemma 1, we prove that there exists a maximum effective eavesdropping
rate, R∗e f f , corresponding to R∗eav. However, unfortunately, the general closed-form for R∗eav cannot be
derived. Therefore, it is investigated by simulation in Figure 4. Furthermore, we consider the optimal
eavesdropping rate Ropt

eav = max(R∗eav, R0), where R0 is the channel coding rate of the suspicious link
with no relaying power. Here, we first simply explain it as follows. We consider the eavesdropping
rate R0 ≤ Reav < a. First, consider the case when R∗eav ≥ R0. In this case, the legitimate monitor should
use a positive relaying power to facilitate the eavesdropping, such that the effective channel coding
rate RD of the suspicious link is improved from R0 to R∗eav, thus, we have Ropt

eav = R∗eav and the optimal
effective eavesdropping rate Ropt

e f f = R∗e f f . Next, consider R∗eav < R0. In this case, we have Ropt
eav = R0,

which means that no relaying is required for the legitimate monitor to obtain its optimal effective
eavesdropping rate.
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4. Numerical Results

Next, we present numerical results obtained by simulations for the considered legitimate
surveillance system. We consider the Rayleigh quasi-static block-fading channel and set the channel
coefficients h0, h1 and h2 to be independent circularly symmetric complex Gaussian random variables
with mean zero and variance 1. Here, the transmit powers are normalized over the receiver noise
powers such that we can set the noise powers at E and D to be σE

2 = σ2
D = 1. Unless otherwise stated,

we set the transmit power at S as P1 = 20 dB. We assume that the transmit power P2 is large enough to
facilitate the eavesdropping.

In Figure 2, RE with CE and RD with CD are shown for given blocklength n and error probability
ε. Here, the transmit power P2 is set to be 2 dB. Without loss of generality, n is set to be 100 and
400 channel uses, εE and εD are set to be 10−3 and 10−4, respectively. As shown in the figure, when
CE ≥ CD, it is clear that RE > RD. Meanwhile, we can note that RE increases with CE, and that RD also
increases with CD. For example, when n is 400 channel uses, for CE = CD = 1.63, RE − RD = 0.04,
while for CE = 2.14 and CD = 2.1, RE − RD = 0.09, so RE − RD > 0 when CE ≥ CD. Thus, under the
finite blocklength regime, E can eavesdrop the information sent by S the same as the condition under
the Shannon capacity regime, which is in line with Proposition 1.

In Figure 3, we plot the ratio of RE and RD with n when γE = 1.04γD, γE = 1.02γD, γE = γD,
γE = 0.98γD and γE = 0.96γD, where γE = 0.98γD and γE = 0.96γD represent some conditions of
CE < CD. We set εE and εD to be 10−3 and 10−4, respectively. As shown in the figure, we can note
that when γE ≥ γD, RE/RD > 1 and RE/RD decreases with n. Meanwhile, in comparison to γE = γD,
RE/RD can still be larger than or equal to 1 when γE = 0.98γD and γE = 0.96γD as shown in the figure.
For example, when RE/RD = 1, the blocklengths n of the red and green curves are respectively around
1400, 400 channel uses, thus, n decreases. So even in some conditions of CE < CD, E can still eavesdrop
the information sent by S as n decreases, which demonstrates proposition 2.

Figure 4 shows the effective eavesdropping rate Re f f with the eavesdropping rate Reav at E given
in Equation (9). Here, the results are obtained when a is 2.01 and 3.95 bits per channel use, thus, we can
obtain that γE is 4.81 dB and 11.6 dB, which are supposed to moderate SNRs. Without loss of generality,
we set n to be 400 channel uses. As shown in the figure, we can note that Re f f is first monotonically
increasing and then monotonically decreasing and there is a maximum value of the eavesdropping
rate, R∗eav, which is corresponding to the maximum value of the effective eavesdropping rate, R∗e f f . For
example, R∗eav is around 3.7 when γE is 11.6 dB. Moreover, we can also note that Re f f is larger when γE

is 11.6 dB compared with γE is 4.81 dB. Thus, for a given blocklength n, Re f f increases with γE for the
same Reav. So far, the Lemma 1 is demonstrated by simulation.

In Figure 5, we plot the maximum effective eavesdropping rate R∗e f f with the blocklength n. Here,
corresponding to Figure 4, the results are obtained when a is 2.01 and 3.95 bits per channel use. As
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show in Figure 5, we can clearly note that R∗e f f increases with n. We can also note that the increments
of the curves are almost negligible when n reaches a relatively large value. For example, the increment
of the red curve is very small in the range of 1500 channel uses to 2000 channel uses. Moreover, it is
easy to see that R∗e f f increases with a, thus, R∗e f f increases with γE.
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5. Conclusions

In this paper, under the finite blocklength regime, we analyze the performance of a legitimate
proactive eavesdropping system, which consists of a suspicious transmitter–receiver pair and a
legitimate monitor. We consider that the legitimate monitor operates in a full-duplex mode with
simultaneous information reception and relaying. Moreover, we analyze the channel coding rate
of the eavesdropping link and the suspicious link. We find that the legitimate monitor can still
eavesdrop the information sent by the suspicious transmitter as the blocklength decreases, even when
the eavesdropping is failed under the Shannon capacity regime. Furthermore, we define a metric called
effective eavesdropping rate and analyze the monotonicity. From the analysis of monotonicity, the
existence of a maximum effective eavesdropping rate for moderate or even high SNR is verified. Finally,
numerical results are provided and discussed. In the simulation, we also find that the maximum
effective eavesdropping rate slowly increases with the blocklength, and the increment is almost
negligible when the blocklength is relatively large.
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Appendix A

Proof of Proposition 1
First, when CE = CD, we have

RE −RD = CE −
√
(1− 2−2CE)/n ·Q−1(εE) log2 e

−

(
CD −

√
(1− 2−2CD)/n ·Q−1(εD) log2 e

)
=

√
(1− 2−2CD)/n ·Q−1(εD) log2 e
−

√
(1− 2−2CE)/n ·Q−1(εE) log2 e

=
√
(1− 2−2CD)/n · log2 e ·

[
Q−1(εD) −Q−1(εE)

] (A1)

where it can be known that
√
(1− 2−2CD)/n · log2 e > 0. We have obtained εD < εE, so we can derive

Q−1(εD) > Q−1(εE) by using the fact that Q−1(x) is the decreasing function of x. Thus, we can obtain
RE > RD when CE = CD.

Afterwards, Equation (1) can be approximated as

R = C−
√

1/n ·Q−1(ε) log2 e (A2)

As is shown in the Figure A1, the approximation, i.e. Equation (A2), is very tight for the range
of SNR.
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According to Equation (A2), it can be known that R increases with C. Thus, RD increases with CD,
therefore, if CE > CD, which means that CD is smaller in comparison with the condition CE = CD, RE is
definitely larger than RD.

In conclusion, RE > RD when CE ≥ CD. �

Appendix B

Proof of Lemma 1
To demonstrate there is the value of Reav that maximizes the effective eavesdropping rate Re f f , we

next examine the monotonicity and concavity of Re f f with respect to Reav. For this purpose, we derive
the first and second derivatives of Re f f with respect to Reav respectively.
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Based on the differentiation of a definite integral in terms of a parameter [30], the first derivative
of Re f f with respect to Reav is given by

Re f f
′(Reav) =

(
1−Q

(
a−Reav

b

))
+ Reav ·

(
−

m
b

)
= 1−Q

(
a−Reav

b

)
−

Reavm
b

(A3)

where m = 1
√

2π
e−

(a−Reav)2

2b2 .
Likewise, the second derivative of Re f f with respect to Reav is obtained as

Re f f
′′ (Reav) = −

m
b −

(
m
b +

Reavm(a−Reav)

b3

)
= − 2m

b −
Reavm(a−Reav)

b3

(A4)

We can easily note that a > 0 and b > 0. In this way, we can immediately obtain that

Re f f
′(0) = 1−Q

(a
b

)
> 0 (A5)

which is due to 0 < Q
(

a
b

)
< 0.5.

Besides, we can also obtain that

Re f f
′′ (0) = −

2m(0)
b

< 0 (A6)

which is due to m > 0.
Moreover, we find that R′′e f f (Reav) < 0 within 0 ≤ Reav < a. So, R′e f f (Reav) keeps decreasing in the

range of 0 ≤ Reav < a. We next confirm that the value of R′e f f (a) is larger than zero or smaller than zero.
According to Equation (A3), we have

Re f f
′(a) = 1−Q(0) − am(a)

b
= 0.5− a

b
√

2π

= 0.5− log2(1+γE)√(
1− 1

(1+γE)
2

)
/n·log2 e·

√
2π

(A7)

It is easy to know that the value of R′e f f (a) decreases as γE increases, and also decreases as n
increases. In general, the SNR is relatively small when γE = −5 dB. Note that Equation (3) is just an
approximation when n is large enough [29], e.g. n ≥ 100. By bringing γE = −5 dB and n = 100 channel
uses into Equation (A7), we obtain that R′e f f (a) < 0. So for moderate or even high SNR, R′e f f (a) is
definitely smaller than zero with a given n.

Summarizing, R′e f f (Reav) keeps decreasing within 0 ≤ Reav < a, meanwhile R′e f f (0) > 0 and
R′e f f (a) < 0 for moderate or even high SNR. So there must exist a value R∗eav of R′e f f (Reav) = 0, where
R∗eav is the value of Reav that maximizes the effective eavesdropping rate Re f f . So far, Lemma 1 is proved.
�
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