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Abstract: In this paper, we investigate the optimal beamforming design to achieve joint congestion
control and energy-efficient resource allocation in cache-enabled sensor networks. The network of
interest works in the time-slotted mode. The dynamic buffering queue for each node is introduced
to reflect the degree of network congestion and service delay. Then, a time-averaged sum rate
maximization problem is proposed under the constraints of queue stability, instantaneous power
consumption, average power consumption, and the minimum quality of service requirements.
By introducing the method of Lyapunov optimization, the importance of buffering queue backlogs
and sum rate maximization can be traded off, then the original queue-aware and time-averaged
optimization problem is transformed into a weighted sum rate maximization problem at each time
slot. It can be further converted into a second-order cone-programming problem by successive convex
approximation, which is convex and can be efficiently solved by off-the-shelf solvers. Numerical
results validate that wireless caching can greatly relieve the network congestion by reducing the
buffering backlogs, and show that the proposed scheme can trade off the average queue length and
time-averaged sum rate by selecting different control parameters.

Keywords: beamforming; congestion control; resource allocation; cache-enabled sensor networks;
successive convex approximation; Internet of Things

1. Introduction

In recent years, the data traffic generated by mobile users has experienced explosive growth [1].
Along with the development of mobile networks, the Internet of Things (IoT) and other wireless
techniques are expected to bring us a wide variety of mobile applications and even more mobile
traffic will be generated [2,3]. Notably, it is predicted that most of the traffic will result from the
multimedia video services, which require higher network throughput and stricter network latency.
To meet these unprecedented traffic demands and challenges, the standardization process of the
fifth-generation (5G) network is accelerated in aspects of the network capacity and latency [4,5].
However, the limited capacity of backhaul links becomes the bottleneck of the wireless networks
for large-scale video transmissions. Moreover, much data traffic is produced minute by minute, and
there are many repeated contents among it, which will be transmitted more than once during the
traffic-peak time periods. Confronting such a severe situation, proactive caching is regarded as one of
the most promising techniques in 5G communication system to effectively alleviate the severe backhaul
burden and improve the service delay, which has drawn tremendous attention from the industries and
academia [6–9].

Proactive caching refers to the technique which prefetches popular video files to the local cache
of base station/cluster head (CH) via backhaul links during traffic-free periods [10]. Currently,
there are many caching schemes, which can be roughly divided into two categories, namely coded
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caching [11,12] and uncoded caching [13,14], and both of them can significantly relieve network
burden and reduce service delay. Caching has shown great potentials in heterogeneous networks [15],
device-to-device (D2D) communications [16], small cell networks [17,18] and cloud radio access
networks (C-RANs) [19,20] to make the wireless networks perform in an energy-efficient manner.

With caching in sensor networks, the repeated end-to-end content deliveries can be avoided.
The sensor nodes with limited battery will consume less power for data transmission, especially for
data re-transmission for loss recovery [21]. Thus, the life span of the entire sensor network can be
prolonged. The caching schemes have been investigated in the literature. Specifically, Sun et al. [22]
proposed a novel energy-aware and latency-guaranteed dynamic resource caching strategy. The cache
equipment was able to cache suitable data resources and the energy savings from servers were
maximized in the meanwhile. In [23], they also proposed the re-cache and re-allocation scheme for
popular data resources among load-unbalanced cache equipment to improve the delay performance.
Though proactive caching can relieve the traffic burden to a certain degree, it is of great necessity and
importance to observe the fluctuation of data traffic to relieve network congestion in the time periods
of traffic surge. However, the current research ignored the time-varying characteristic of the dynamic
traffic changes in the cache-enabled networks. Moreover, the issues of network congestion and service
delay were not considered in a long-term observation, which were usually studied in an analytical
manner based on the theory of stochastic geometry, e.g., [24,25].

In this paper, we study the optimal beamforming design to achieve joint congestion control and
resource allocation in cache-enabled sensor networks. We propose a centralized scheme to solve this
problem. Compared to this centralized method, the distributed approach can also be adopted to solve
the joint optimization problems, such as those proposed in [26,27] to solve the joint problem of uplink
power control and transmission rate allocation. However, this distributed approach is not appropriate
in the considered downlink beamforming design. This is because the joint information of nodes is
needed [13,14,28], and the battery and computational capacity of the sensor nodes, rather than the
CH, is limited [29]. The degree of network congestion and service delay can be reflected by the length
of dynamic buffering queue for each node, and it is obvious that smaller queue length will lead to
smaller service delay and less network congestion. Then, under the constraints of queue stability,
instantaneous/average power consumption, and minimum quality of service (QoS) requirements,
the queue-aware and time-averaged sum rate optimization problem is proposed to improve the QoS
provided to end nodes in the long term. The main contributions of this paper are summarized in the
following aspects.

• By selecting different control parameters, control decisions are made to assign different importance
levels to network congestion and sum rate maximization. In the case with severe traffic burden,
more importance is allocated to network congestion control; while there is little congestion,
the network operators will pay more attention to improve the sum rate performance.

• We observe the time-varying characteristic of the traffic fluctuations in a long time period instead
of the instantaneous observation. The traffic queues of mobile nodes are established to reflect the
congestion conditions of the entire network, which will be beneficial for network operators to
monitor the dynamic network conditions and make the proper control decisions.

• The method of Lyapunov optimization is introduced to transform the proposed time-averaged
maximization problem into a weighted sum rate maximization problem at each time slot. Then
this problem is further converted into a second-order cone-programming (SOCP) problem via
successive convex approximation (SCA), which owns lower computational complexity and can be
efficiently solved.

The rest of this paper is organized as follows. In Section 2, we present the system model and
formulate the time-averaged sum rate maximization problem. Then, the optimization algorithm based
on Lyapunov optimization and SCA is proposed in Section 3. Simulation results are presented in
Section 4, and this paper concludes in Section 5.
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2. System Model and Problem Formulation

In this section, we present the system model, including the physical channel model, video cache
model, and dynamic queue model. Then a queue-aware and time-averaged sum rate maximization
problem is formulated.

2.1. Physical Channel Model

We consider a cluster with a CH to provide the on-demand video services to K single-antenna
nodes, as shown in Figure 1. The cache-enabled sensor network works in the time-slotted mode,
where the time slot is indexed by t∈ {1, 2, 3, ...}. The CH is equipped with RT transmit antennas,
and its transmit power is PT . In each time slot, a block Rayleigh fading channel is considered.
Let hk(t) ∈ CRT×1 denote the channel from the CH to the k-th node. Define wk(t) ∈CRT×1 the
beamforming vector from the CH to the k-th node at time slot t. The received signal for the k-th node
can be written as

yk(t) = hH
k (t)wk(t)xk(t) +

K

∑
n=1, n 6=k

hH
k (t)wn(t)xn(t) + nk(t), (1)

where xk(t) is the required data symbol of the required video file with unit power, and nk(t)
is the additive white Gaussian noise following CN

(
0, σ2

k
)
. Based on the received signal,

the signal-to-interference-plus-noise ratio (SINR) of the k-th node can be shown as

SINRk(t) =

∣∣hH
k (t)wk (t)

∣∣2
∑K

n=1, n 6=k
∣∣hH

k (t)wn (t)
∣∣2 + σ2

k

. (2)

Therefore, the rate of the k-th node can be expressed as

Rk(t) = log2 (1 + SINRk(t)) . (3)

Cache Backhaul Link Data Link

Figure 1. The CH with local cache capacity can provide K nodes with on-demand video services. If the
required videos are cached in the local storage, the CH will directly serve the nodes with its local cache.
Otherwise, the CH will deliver the required videos from the video server via backhaul links.

2.2. Video Cache Model

Note that the CH is equipped with local storage capacity, and can cache the most popular video
files in advance. Assume that there are M files in the video server. Owning to the limited cache size,
the CH can only caches a fraction, i.e., η, of these video files, which means the bηMc most popular
videos are locally cached. At the beginning of each time slot, each node is supposed to request only one
video file, and the CH will collect these demands periodically. All videos are sorted in the descending
order of popularity where more popular videos are ranked with smaller indices. The probability of
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video requests of mobile nodes follows the Zipf’s law [30]. To this end, the probability of the video file
requested by the k-th node, i.e., mk, can be obtained as

pmk =
i−α
mk

∑M
j=1 j−α

, imk ∈ {1, 2, ..., M}, (4)

where imk is the index of video popularity order requested by the k-th node and α is the skewness
parameter. In general, a larger α indicates most node requests can be satisfied by a few video files.
Moreover, the time scale of video update is much larger than that of video delivery, e.g., 2–3 h for news
with short videos and one week for movies [31], so this issue is not considered in this paper.

2.3. Dynamic Queue Model

In the considered cache-enabled sensor network, we intend to supervise and control the data
traffic generated from the on-demand video services, such that the network congestion can be avoided,
and the service delay is reduced. It is a common sense that longer buffering queue length will lead to
larger service delay and more serious network congestion. Therefore, it is of vital significance to control
the length of buffering data traffics of each node to achieve a stable and robust cache-enabled sensor
network. If the network is in heavy traffic load, sufficient attention should be paid to the network
congestion and proper decisions should be made to reduce the traffic backlogs. In this context, traffic
buffering queues are introduced to reflect the fluctuation of data traffic, where the traffic arrival rate is
denoted as Ak(t) and the departure rate is Rk(t) as defined in (3). Please note that the CH is equipped
with local storage capacity, thus the traffic arrival rate Ak(t) will be zero if the requested video file mk
can be obtained locally. Then the binary constant cmk is introduced to indicate whether the requested
video mk is cached in the CH or not. Therefore, the arrival rate Ak(t) can be obtained as

Ak(t) =

{
log2 (1 + γk) , cmk = 0,

0, cmk = 1,
(5)

where γk is the target QoS requirement to fetch the requested video file from the video server through
backhaul links for the k-th node. Then, at the (t + 1)-th time slot, the traffic buffering queue for the
k-th node can be denoted as

Qk(t + 1) = max {Qk(t)− Rk(t), 0}+ Ak(t). (6)

The queue length in the subsequent time slot only depends on the arrival rate, departure rate,
and queue length in the previous time slot. To describe the stability of these queues, we can resort to
the following definition [32].

Definition 1. The discrete time process Q(t) is mean rate stable if

lim
t→∞

1
t
E {|Q(t)|} = 0. (7)

Though the actual buffering queues are non-negative, we regulate Q(t) in the form of absolute value so
that this definition can be extended to the virtual queues whose values are likely to be negative.
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2.4. Problem Formulation

We aim to observe the queue stability of the cache-enabled network in the long term, and consider the
time-varying characteristics of the multimedia data traffic in the meanwhile. Therefore, a queue-aware
and time-averaged sum rate maximization problem is proposed, which can be shown as

max
{wk(t)}

lim
T→∞

T

∑
t=1

K

∑
k=1

1
T
E {Rk(t)} (8a)

s.t. Qk(t) is mean rate stable, ∀k, t, (8b)
K

∑
k=1
‖wk(t)‖2 ≤ PT, ∀t, (8c)

lim
T→∞

T

∑
t=1

K

∑
k=1

1
T
‖wk(t)‖2 ≤ Pavg, (8d)

SINRk(t) ≥ γk, ∀k, t, (8e)

where Pavg is the average power consumption. The stability of the buffering queues can be satisfied in
constraint (8b). Constraint (8c) restricts the budget of instantaneous power consumption, while (8d)
is the constraint of average power consumption observed in an infinite time period. Meanwhile,
the minimum QoS requirements are guaranteed in the last constraint.

3. Congestion Control and Resource Allocation Optimization

In this section, the method of Lyapunov optimization is introduced to transform the original
optimization problem into a weighted sum rate maximization problem at each time slot, where
the control decisions can be made to trade off the importance of network congestion and sum rate
maximization. Then, this problem is converted into an SOCP problem, which requires less computation
effort and can be easily solved.

3.1. Lyapunov Optimization

Firstly, we construct a virtual queue related to the constraint (8d), which is shown in the
following proposition.

Proposition 1. S(t) is a virtual queue with E {|S(0)|} < ∞. At time slot (t + 1), the virtual queue can be
denoted as

S(t + 1) = max
{

S(t)− Pavg, 0
}
+ P(t), (9)

where P(t) = ∑K
k=1 ‖wk(t)‖2. If the virtual queue S(t) is mean rate stable, the constraint (8d) holds.

Proof. The details for the proof are provided in Appendix A.

From Proposition 1, the constraint (8d) regarding to average power consumption is transformed
into the issue of virtual queue stability. To this end, there are two kinds of queues, i.e., buffering queue
Qk(t) and virtual queue S(t). Denote Ξ(t) = (Q1(t), Q2(t), ..., QK(t), S(t)) the mixed queue vector
of actual traffic queues and virtual queue. According to [32], the scalar Lyapunov function can be
defined as

L(Ξ(t)) =
1
2

{
K

∑
k=1

Qk
2(t)+S2(t)

}
. (10)

This function can roughly reflect the degree of network congestion. Specifically, if the value
of Lyapunov function L(Ξ(t)) is low, it means that all the queue lengths are small, and the system
is stable and robust. However, the value of this function will increase if there is at least one queue
whose traffic backlog is large. Next, the concept of Lyapunov drift is adopted to force the Lyapunov



Sensors 2019, 19, 2961 6 of 14

function to a lower value, so as to obtain smaller queue length and buffering backlogs [32], which can
be expressed as

4(Ξ(t)) = E {L(Ξ(t + 1))− L(Ξ(t))} . (11)

To jointly control the network congestion and maximize the time-averaged sum rate, we can
resort to the drift-plus-penalty expression, as given by

4 (Ξ(t))−VE {Rk(t)|Ξ(t)} , (12)

where V is a non-negative control parameter to trade off the traffic backlogs and sum rate maximization.
A larger V will put more emphasis on sum rate maximization, while a smaller V emphasizes more on
network stability. So, we can make control decisions to achieve different requirements under different
control parameters. It is obvious that a smaller value of this expression can achieve a smaller queue
length and a larger sum rate. Then, the following proposition is recommended to present the upper
bound of the drift-plus-penalty expression.

Proposition 2. At time slot t, under the observed queue state, the drift-plus-penalty expression of joint
congestion control and sum rate maximization satisfies

4 (Ξ(t))−VE {Rk(t)|Ξ(t)} ≤ A +
K

∑
k=1

Qk(t)E {Ak(t)− Rk(t)|Ξ(t)}

+ S(t)E
{

P(t)− Pavg|Ξ(t)
}
−VE {Rk(t)|Ξ(t)} ,

(13)

where A is a finite constant satisfying

A ≥ 1
2
E
{

K

∑
k=1

R2
k(t) + A2

k(t)|Ξ(t)

}
+

1
2
E
{

P2
avg + P2(t)|Ξ(t)

}
. (14)

Proof. The details for the proof of this proposition are presented in Appendix B.

To minimize the drift-plus-penalty expression, we can focus on minimizing the right-hand side
of (13), which is the upper bound of the expression (12). To this end, the original optimization
problem (8) can be transformed into

min
{wk(t)}

S(t)P(t)−
K

∑
k=1

(Qk(t) + V) Rk(t) (15a)

s.t. (8c), (8e). (15b)

3.2. Weighted Sum Rate Maximization

After the transformation based on the method of Lyapunov optimization, the joint congestion
control and time-averaged sum rate maximization problem has been converted into a weighted sum
rate maximization problem. Then, this problem can be further transformed into an SOCP problem via
SCA. For simplicity, we denote

a(t) = S(t), ∀t, (16)

bk(t) = Qk(t) + V, ∀k, t. (17)

Firstly, the slack variable zk(t) is introduced, satisfying zk(t) ≤ SINRk(t). Then, the approximation
method used in [33,34] is adopted to obtain the lower bound of log2(1 + zk(t)), which can be
presented as

log2 (1 + zk(t)) ≥ θk(t)log2 zk(t) + µk(t), (18)
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where

θk(t) =
z̃k(t)

1 + z̃k(t)
, (19)

µk(t) = log2(1 + z̃k(t))−
z̃k(t)

1 + z̃k(t)
log2 z̃k(t). (20)

It is obvious that the equality holds in (18) when z̃k(t) = zk(t). The selection of the point
z̃k(t) will affect the optimal value of the optimization problem, so z̃k(t) can be updated by z(n)k (t)
iteratively where the superscript (n) means the optimal solution obtained in the n-th iteration. Then

the slack variable dk(t) is introduced, which satisfies
√

∑K
n=1,n 6=k

∣∣hH
k (t)wn(t)

∣∣2 + σ2
k ≤ dk(t). After

these manipulations, problem (15) can be converted as follows.

min
{wk(t),zk(t),dk(t)}

a(t)P(t)−
K

∑
k=1

bk(t) (θk(t) log2 zk(t) + µk(t)) (21a)

s.t. hH
k (t)wk (t) ≥

√
zk (t)dk (t) , ∀k, t, (21b)

Im
(

hH
k (t)wk(t)

)
= 0, ∀k, t, (21c)√√√√ K

∑
n=1,n 6=k

∣∣hH
k (t)wn (t)

∣∣2 + σ2
k ≤ dk (t) , ∀k, t, (21d)

(8c), (8e). (21e)

As shown in (21c), the imaginary part of hH
k (t)wk (t) is set to zero and this will have no effect on

the optimal value of the optimization problem since phase rotations of beamforming vector wk(t) can
bring out the same objective function while satisfying all constraints [35].

(1). Transformation of (21b). Please note that
√

zk(t)dk(t) is not in the convex form, so it needs to
be converted into the convex form. Referring to [35,36], the convex upper bound of

√
zk(t)dk(t) can be

shown as √
zk(t)dk(t) ≤

xk
2

d2
k(t) +

1
2xk

zk(t), (22)

when xk =

√
zk(t)

dk(t)
the equality holds. Then (21b) can be approximated as

hH
k (t)wk(t) ≥

x(n)k
2

d2
k(t) +

1

2x(n)k

zk(t), (23)

and its second-order cone (SOC) form is

||[
√

2x(n)k dk(t); (hH
k (t)wk(t)−

1

2x(n)k

zk(t)− 1)]|| ≤ hH
k (t)wk(t)−

1

2x(n)k

zk(t) + 1, (24)

where

x(n)k =

√
z(n)k (t)

d(n)k (t)
. (25)

(2). Transformation of (21d) and (8e). The SOC form of (21d) can be easily obtained as

||[hH
k (t)w1(t); ...; hH

k (t)wk−1(t); hH
k (t)wk+1(t); ...; hH

k (t)wK(t)]|| ≤ dk(t). (26)
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As for the constraint (8e), it can be approximated as

hH
k (t)wk(t) ≥

√
γkdk(t). (27)

To this end, the optimization problem (15) has been transformed into an SOCP problem, as
presented as follows

min
{wk(t),zk(t),dk(t)}

a(t)P(t)−
K

∑
k=1

bk(t) (θk(t) log2 zk(t) + µk(t)) (28a)

s.t. (8c), (21c), (24), (26), (27). (28b)

The pseudo-code to solve the optimization problem (28) is presented in Algorithm 1. Note that
the initial point of this algorithm is generated randomly until all constraints are satisfied. This has
been validated a feasible method in practical simulations.

Algorithm 1: The proposed iterative algorithm for solving (28)

1: Initialization: Set n = 0, and find a point (z(0)k (t), d(0)k (t), w(0)
k (t))

randomly that is feasible to problem (15).
2: Repeat:
3: Solve the SOCP problem (28) with (z(n)k (t), d(n)k (t), w(n)

k (t))
and obtain the optimal point (z∗k (t), d∗k (t), w∗k (t)).

4: Update (z(n)k (t), d(n)k (t), w(n)
k (t)) = (z∗k (t), d∗k (t), w∗k (t)).

5: Update θk(t) using (19), µk(t) using (20) , x(n)k using (25),
then n = n + 1.

6: Until convergence or reach the requested number of iterations,
update a(t) using (16) and bk(t) using (17), then t = t + 1.

3.3. Convergence and Complexity Analysis

At time slot t, supposing (z(n)k (t), d(n)k (t), w(n)
k (t)) is the optimal point in the n-th iteration, which

is adopted as the starting feasible point in the (n + 1)-th iteration. It is apparent that the optimal
value of the objective function in the (n + 1)-th iteration must be larger than or at least equal to that
obtained in the n-th iteration for a maximization problem. Furthermore, the optimization problem (28)
is bounded by the budget of transmit power consumption. Therefore, the convergence point is bound
to be obtained after a sequence of non-decreasing points. After enough iterations, the difference
of the optimal values between two adjacent iterations can be ignored. According to the conclusion
presented in [36], the optimal solution also satisfies the Karush–Kuhn–Tucker (KKT) conditions of
the optimization problem (21). After the transformation based on SCA, Algorithm 1 aims to solve
the SOCP problem (28), which requires lower computation effort. To be more specific, by referring
to [37], the maximum number of iterations is restricted by O(

√
5K + 2) ln (1/ζ) when interior method

is employed, where ζ is the accuracy threshold. The required computational cost for each iteration is
bounded by O(K3(R3

T + 7R2
T + 16RT + 12) + (3K + 1)(RT + 2)).

4. Simulation Results

In this section, the numerical results are presented. In our simulations, we consider a small-scale
sensor network, where one CH serves six nodes. This is because serving too many nodes for a CH will
lead to unbearable computational complexity [20], and thus the QoS may not be guaranteed. When
there are multiple nodes to be served, they can be divided into many clusters. Then, the beamforming
design for each cluster can be realized by the same methods presented in this paper. MATLAB is
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used as a simulation tool, and SeDuMi is employed as an optimization solver [38]. Suppose the
channels are independent and identically distributed with elements following the complex Gaussian
distribution with zero mean and unit variance, i.e., CN (0, 1) at each time slot. Assume that there
are M = 1000 video files in the video server and the skewness parameter α is set to 1 unless stated
otherwise. The values of simulation parameters are summarized in Table 1.

Table 1. Values of Simulation Parameters.

Parameters Values

K 6
PT 0.2 W

Pavg 0.18 W
RT 16
M 1000
η 0.1
α 1
αk 2 dB
σ2 1

Convergence Property of Algorithm 1: It is worth noting that the convergence property is
validated in a random time slot. As shown in Figure 2, the proposed algorithm to solve the weighted
sum rate maximization problem can converge to the local optimal point within a few number of
iterations. So, Algorithm 1 shows great potentials in practical implementations and can be extended to
the large-scale cache-enabled sensor networks to achieve joint congestion control and time-averaged
sum rate maximization in an energy-efficient manner.
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Iteration Number

0

5

10

15

S
um

 R
at

e 
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=12, P
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T
=12, P

T
=0.3W

Figure 2. The convergence property of Algorithm 1.

Analysis of Average Queue Length: In Figure 3, we present how the average queue length changes
in the observed time slots under the given control parameter V, where the average queue length is
defined as Q̄(t) = 1

t ∑t
τ=1 ∑K

k=1 Qk(τ). Here the benchmark scheme for comparison is the CH without
cache capacity. Firstly, it can be concluded that the proposed caching scheme can greatly reduce the
average queue length under the given control parameter and arrival rate. Secondly, a larger control
parameter V will lead to a longer average queue length, which can be intuitively understood that more
emphasis is placed on the sum rate maximization. Finally, all curves tend to the stable levels when the
observed time period is long enough, which strongly validates the stable characteristic of the traffic
buffering queues.
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Analysis of the Time-Averaged Sum Rate with Different Control Parameters: As shown in Figure 4,
the average sum rate, defined as R̄ = ∑T

t=1 ∑K
k=1

1
TE{Rk(t)}, is increasing with the control parameter

V, which can be explained that a larger V will emphasize more on the sum rate maximization and lead
to the larger value of R̄. Furthermore, under the given V, R̄ will increase with the skewness parameter
α. It is because that a larger α means that fewer videos will satisfy the majority of node requirements
and more of them can be served by local cache, thus a smaller amount of arriving data traffics will
be allowed to admit to the cache-enabled sensor networks, which can effectively relieve the network
congestion and improve the sum rate of end nodes.
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Figure 3. Average queue length at the observed time slot for K = 6 and RT = 16.
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Figure 4. Time-averaged sum rate under different skewness parameter for K = 6, RT = 16 and
PT = 0.2 W.

5. Conclusions

In this paper, we jointly considered the congestion control and resource allocation optimization
in cache-enabled sensor networks. Firstly, we showed the system model and then proposed a
time-averaged sum rate maximization problem. With the help of Lyapunov optimization, the original
maximization problem was transformed into a weighted sum rate maximization problem at each time
slot. Then, it was converted into an SOCP problem based on SCA. Simulation results demonstrated the
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fast convergence property of the proposed algorithm and the characteristic of dynamic queue stability
under the proposed scheme.
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The following abbreviations are used in this manuscript:

IoT Internet of Things
5G Fifth Generation
CH Cluster Head
D2D Device-to-Device
C-RAN Cloud Radio Access Network
QoS Quality of Service
SOCP Second-Order Cone Programming
SCA Successive Convex Approximation
SINR Signal-to-Interference-plus-Noise Ratio
SOC Second-Order Cone
KKT Karush–Kuhn–Tucker

Appendix A

If the virtual queue S(t) is mean rate stable, it indicates that lim
T→∞

1
TE {|S(T)|} = 0. Calculate the

sum of (9) from t = 0 to T − 1, and we can get

T−1

∑
t=0

S(t + 1) =
T−1

∑
t=0

[
max

{
S (t)− Pavg, 0

}
+ P (t)

]
≥

T−1

∑
t=0

[
S (t)− Pavg + P (t)

]
,

which is equivalent to

S(T)− S(0) ≥
T−1

∑
t=0

P(t)− TPavg. (A1)

Take expectation operation of (A1) and divide it by T → ∞, then the left-hand side of (A1) can be
shown as

lim
T→∞

1
T
E {|S(T)|} − lim

T→∞

1
T
E {|S(0)|} = 0.

Therefore, lim
T→∞

1
T ∑T

t=1 P(t)− Pavg ≤ 0 and the constraint (8d) is satisfied. This completes the proof

of Proposition 1.

Appendix B

Based on the definition of Qk(t + 1), we can get

Q2
k(t + 1) = (max {Qk(t)− Rk(t), 0}+ Ak (t))

2

≤Q2
k(t) + R2

k(t) + A2
k(t)− 2Qk(t) (Rk(t)− Ak(t)) .

(A2)
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Taking sum of both sides in inequality (A2) for k = 1, 2, ..., K, we can obtain

K

∑
k=1

(
Q2

k(t + 1)−Q2
k(t)

)
≤

K

∑
k=1

[R2
k(t) + A2

k(t)− 2Qk(t) (R(t)− Ak(t))].

Similarly, we can conclude that the virtual queue S(t) satisfies

S2(t + 1)− S2(t) ≤ P2
avg + P2(t)− 2S(t)

(
Pavg − P(t)

)
.

Therefore, the Lyapunov drift is bounded by

4(Ξ(t)) = E {L(Ξ(t + 1))− L(Ξ(t))}

=
1
2

(
K

∑
k=1

(
Q2

k(t + 1)−Qk
2(t)

)
+
(

S2(t + 1)− S2(t)
))

≤ 1
2

K

∑
k=1

(
R2

k(t) + A2
k(t)− 2Qk(t) (Rk(t)− Ak(t))

)
+

1
2

(
P2

avg + P2(t)− 2S(t)
(

Pavg − P(t)
))

.

(A3)

Subtract the term VE{Rk(t)|Θ(t)} in both sides of (A3), then it can be shown as the inequality
(13) where A meets (14). Therefore, the proof of Proposition 2 is completed.
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