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Abstract: In the last years, several attempts to combine the Internet of Things (IoT) and social
networking have been made. In the meantime, things involved in IoT are becoming increasingly
sophisticated and intelligent, showing a behavior that tends to look like the one of users in social
networks. Therefore, it is not out of place to talk about profiles of things and about information and
topics exchanged among them. In such a context, constructing topic-driven virtual communities
starting from the real ones operating in a Multi-IoT scenario is an extremely challenging issue.
This paper aims at providing some contributions in this setting. First of all, it presents the concept of
profile of a thing. Then, it introduces the concept of topic-guided virtual IoT. Finally, it illustrates two
approaches (one supervised and one unsupervised) to constructing topic-guided virtual IoTs in a
Multi-IoT scenario.

Keywords: Internet of Things; Multiple loTs; Profile of a Thing; topic-guided virtual IoTs;
unsupervised and supervised approaches to virtual IoT construction

1. Introduction

The Internet of Things (hereafter, IoT) is currently considered the new frontier of the Internet.
As a matter of fact, a lot of research results, along with the continuous emergence of increasingly
challenging issues to address, can be found in the literature [1-7].

One of the most effective ways to represent and handle the IoT scenario leverages social
networking paradigm [8]. In this direction, several social network-based approaches to modeling and
managing IoTs have been presented in the literature. Three of the most advanced ones are the SIoT
(Social Internet of Things) [9-12], the MIE (Multiple IoT Environment) [13] and the MIoT (Multiple
IoTs) [14] paradigms. The MIoT paradigm is the last of these proposals; it aims at extending both
SIoT and MIE in such a way as to preserve their strengths and avoid their weaknesses [14]. Roughly
speaking, a MIoT can be seen as a set of related IoTs, i.e., as a set of related networks of things. Actually,
a more precise definition of MIoT requires the introduction of the concept of instance of a thing in
an IoT. Specifically, the instance of a thing in an IoT represents a virtual view of that thing in the IoT.
The nodes associated with a thing in a MIoT represent the instances of the same thing in the different
IoTs of the MIoT. Indeed, a thing can have several instances, one for each IoT which it participates to.
The existence of more instances for one thing plays a key role in the MIoT paradigm because it allows
the definition of cross relationships among the different IoTs.

We adopted the MIoT paradigm as the reference one in this paper. There are several reasons
which justify this choice. Indeed:
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e  The MIoT paradigm, like the SIoT and the MIE ones, introduces the idea that objects can show a
social behavior in the environment where they operate. This feature allows several advantages,
like the possibility of resource sharing (see [10-12] for a comprehensive idea of these advantages).

¢ Differently from SIoT, which introduces a social behavior of objects but still models IoT as one huge
network of objects extended worldwide, MIE, and much more MIoT, allow the “breakdown” of the
whole huge IoT into multiple networks of smart objects interconnected with each other. This way
to proceed is analogous to the evolution of social networking into social internetworking [15]. In
particular, MIoT allows the management of situations in which the same object shows different
behaviors in different networks it joined. Furthermore, MIoT makes an object to act as a bridge
between two objects allowing them to communicate even if they belong to different networks and,
therefore, are not directly connected with each other.

Another important trend characterizing the current IoT scenario regards the existence of
increasingly sophisticated and intelligent things. These are becoming increasingly smart and
social, as well as more and more capable of performing computations and storage on their own.
Furthermore, they are increasingly connected to each other through more and more complex and
sophisticated frameworks, often based on cloud and edge computing [10-12]. The new smart and
social capabilities of things and of the environments handling their interoperability paves the way
to a sort of “humanization” of things, i.e., to apply to things concepts and ideas typically considered
prerogative of humans. One of them is certainly the presence of a profile of a thing. Indeed, if a thing
interacts with other things and exchange data with them, it is possible to determine what are the most
common concepts handled by it and, based on them, to construct a corresponding profile. Analogously
to the profile of a human, the one of a thing depends on its past behavior and on the profile of the
other things with which it interacts. As a consequence, it could be possible to think about both a
content-based and a collaborative-filtering approach to handling thing profiles.

Furthermore, starting from the real IoTs of a MIoT, it is possible to construct virtual communities
of things, based on common interests. Once again, this is an attempt to transfer behaviors typical of
humans to things. As a matter of fact, in Social Network Analysis, it is well recognized that, accordingly
to the homophily concept [16,17], humans tend to group together in communities sharing the same
interests.

In the literature, a lot of efforts have been made to investigate human profiles and virtual
communities of people, especially (but not only) in Social Network Analysis [18,19]. Instead, these
topics have been little investigated in the Internet of Things.

In this paper, we aim at providing a contribution in this direction. First of all, we introduce the
concept of profile of a thing. As the profile of a human, the one of a thing has two components.
The former denotes its past behavior and can be used, for instance, to support content-based
recommendations. The latter reflects its neighbors, i.e., the other things with which it most frequently
comes into contact; it can be exploited, for instance, to support collaborative filtering recommendations.

After this, we introduce the concept of topic-guided virtual IoTs in a MIoT and we propose
two approaches (one supervised and one unsupervised) to the construction of them in a MIoT.
Differently from the real IoTs of a MIoT, which may encompass things with very heterogeneous
profiles, topic-guided virtual IoTs should include all and only those things whose profile refers to
specific topics. The supervised approach requires a user to provide a set of keywords of her interest.
It aims at constructing a thematic IoT comprising all the keywords specified by the user. If such
an IoT does not exists, it returns more thematic IoTs that, in the whole, comprise all the keywords
specified by the user. She can choose whether to accept this set of virtual IoTs or to modify her query.
The unsupervised approach tries to partition a MIoT into a set of virtual IoTs characterized by the
maximum internal cohesion (in terms of topics present in the profiles of the corresponding things) and
the minimum external coupling. Virtual IoTs in a MIoT provide a logic representation of the objects of
a MIoT, which is not based on real links but on the content exchanged by them. As will be clear in the
following, this can favor the effectiveness of information exchange, the construction of communities of
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objects (and, possibly, of the corresponding users) sharing the same interests and the suggestions of
the objects most adequate to a given exigency.

This paper is organized as follows: in Section 2, we examine related literature. In Section 3, we
provide an overview of the MIoT paradigm, because its comprehension is necessary to understand
the rest of this paper. In Section 4, we introduce our definition of a thing’s profile. In Section 5, we
propose our approaches to construct topic-guided virtual IoTs in a MIoT. In Section 6, we present our
tests devoted to verify the performance of our approach. Finally, in Section 7, we draw our conclusions
and have a look at future developments of our research efforts.

2. Related Literature

Since its introduction some years ago, the term “Internet of Things—IoT” has been associated
with a huge variety of concepts, technologies and solutions [5,20-22]. In the latest years, with the
advent of new technologies, such as big data and social networking, the very definition of this
term is continuously changing. What IoT will become in the future depends on the evolution of
these technologies [23] and their interaction with several other ones, such as Information Centric
Networks [24-30] and Cloud [3,31,32]. As a matter of fact, the strengths of these last ones are exactly
the features necessary to overcome the weaknesses of the current IoT concept [33]. Some examples of
this combination can be already found in the literature [6,10,34,35].

The first attempts to apply social networking to the IoT domain can be found in [36-39]. In these
papers, the authors propose to use human social network relationships to share services provided by a
set of things. An important step forward is performed in [9], where the SIoT paradigm is introduced.
Here, the authors propose an approach to creating relationships among things, without requiring the
owner intervention. Thanks to this idea, things can autonomously crawl the network to find services
and resources of their interest provided by other things. In [40], the same authors clearly highlight
what are the main strengths of SIoT. Specifically: (i) the SIoT structure can be dynamically modified to
ensure network navigability and to find new things; (ii) scalability is guaranteed, like in human social
networks; (iii) a level of trustworthiness among things can be established; (iv) the past social network
approaches can be redefined to solve problems typical of the IoT context [41].

One of the major drawbacks of the current IoT scenario is the presence of different technologies
and solutions proposed by independent vendors to enable networking among objects. This poses
the basis to a subsequent set of issues ranging from concept matching to technical compatibility,
if heterogeneous smart-object-network solutions should be involved in the creation of a unique
interoperable IoT [42,43]. In this research context, different works partially addressing and solving
these problems have been proposed. Specifically, [44] presents a study on how ontologies and semantic
data processing can be used to improve interoperability across heterogeneous IoT platforms. The
authors consider two use cases, namely Health Care and Trasportation and Logistics, and, for each of them,
provide a survey on the main ontologies available to describe and generalize concepts and relations.

In [45], instead, the authors focus their attention on the definition of a new framework for a fully
functional mobile ad-hoc social network. In this paper, the term “mobile ad-hoc social network” refers
to an IoT made of mobile devices. Of course, communication between this type of objects may happen
in such a wide range of modes so that the referring scenario can be considered as a constellation of
mobile networks interacting with each other. Concepts from real social networks are borrowed to
define user profiles, which are built starting from the objects they own and the social network they
belong to. One of the main contributions of this proposal is the definition of a profile-matching strategy
based on semantics.

Another contribution in the context of interoperability is the one proposed in [46]. Here, the
authors illustrate a novel architecture in which objects interact with each other by leveraging an open
source cloud platform. The interaction among smart devices is information-and-service-driven and
can be performed in both a centralized and a peer-to-peer mode. In [47], the authors propose Acrost, a
system capable of retrieving data spread among heterogeneous IoT platforms by leveraging topics
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and semantics awareness. To build the metadata, Acrost uses two methodologies: the former exploits
regular expression-based approaches, whereas the latter makes use of random fields-based strategies.

In order to address the issues arising when the interoperability among heterogeneous IoTs
must be guaranteed, another research line proposes the extension of the results concerning Social
Internetworking [15,48] (instead of social networking) to the Internet of Things. By following this
strategy, the MIE (Multiple IoT Environment) [13] and the MloT (Multiple IoTs) [14] paradigms have
been proposed. As specified in the Introduction, this last paradigm is the reference one for this paper.

In [49], the authors present an approach to constructing a virtual data mart on which several
knowledge discovery tasks can be performed. Clearly the kinds of virtual source constructed in the
approach of [49] and in our own are very different. However, the general ideas underlying the two
approaches are similar.

In the past, a lot of efforts have been made to investigate human profiles and virtual communities
of people, especially (but not only) in Social Network Analysis ([18,19] provide two surveys about these
topics). Instead, these issues have been little investigated in the Internet of Things. Specifically, to the
best of our knowledge, a comprehensive, high-level abstraction approach to building and managing a
profile of a thing, which also takes into account the content it exchanges during its interactions with
other things, has not yet been proposed. Instead, some approaches focusing on community detection
in IoT have been presented in the very recent literature. Even if they are very different (both in their
purposes and in their ways proceed) from the ones of our approach, in the following we present an
overview of some of them.

The approach of [50] uses structural information derived from the complex graph of an IoT to
extract communities. It exploits a neighbor-based strategy to detect also overlapping communities. The
approach of [51] uses data produced by sensors to define a multi-dimensional clustering. The obtained
clusters are then mapped to communities of nodes in the original IoT network. To cope with the size
of the data graph, the authors leverage state-of-the-art community detection approaches. Finally, they
present a new community detection approach that enhances the Girvan-Newman algorithm by using
hyperbolic network embedding.

Other works, instead, use knowledge from social networks to refine their results. A similar
method is proposed in [52], even though here the strategy works in the opposite way. In fact, first
communities are derived from structural information of owners’ social networks and, then, objects are
seen as resources available inside each community.

Finally, the authors of [53] propose a new community detection algorithm working in a Social
Internet of Things (SIoT) scenario. To achieve their objective, they make use of three metrics, namely
social similarity, preference similarity and movement similarity. Social similarity is defined according
to the concept of cooperativeness and community interest proposed in [54]. Preference similarity takes
into account resource and service preferences of the involved things in the network. Finally, movement
similarity specifies how much and how long two or more nodes are spatially close.

In [55], the authors propose a community detection approach working on an architecture capable
of integrating the Internet of Things and social networking. This approach assumes that two nodes
belong to the same community only if they are at most one hop apart and have at least two mutual
friends. In order to construct communities, it exploits graph mining techniques.

As a consequence, it does not consider semantics and contents, but leverages only on network
structure.

3. The MIoT Paradigm

In this section, we provide an overview of the MIoT paradigm, described in detail in [14], because
it is the reference one for our definitions of virtual IoTs in a MIoT.
A MIoT M consists of a set of m Internets of Things. Formally speaking:

M={0,Ty, - ,Tn} @)
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where 7 is an IoT.

Let 0j be an object of M. We assume that, if 0j belongs to Z, it has an instance ¢ j» Tepresenting
it in Zj. The instance ¢ consists of a virtual view (or, better, a virtual agent) representing o; in Zj.
For example, it provides all the other instances of 7, and the users who interact with Z, with all the
necessary information about o;. Information stored in ¢, is represented according to the format and
the conventions adopted in Zj.

A MIoT M can be represented by means of a graph-based notation. In particular, each IoT

T € M can be modeled by means of a graph Gy = (N, Ax). In this case:

e Ny is the set of the nodes of Gy; there is a node n;, for each instance 1, € 7, and vice versa.
e Ay is the set of the arcs of Gy; there is an arc aj;, = (1, 14, ) if there exists a physical link from n;,

to Mg,
Finally:
M = (N, A) )
Here:
m
N=|J Ny 3)
k=1
A=AjUAc, 4)
where
m
Ar=J Ak &)
k=1
and
Ac = {("jk/”jq)|”jk € Ny, nj, € Ny k # q}. (6)

A is the set of the inner arcs (hereafter, i-arcs) of M; they relate instances (of different objects)
belonging to the same IoT. A is the set of the cross arcs (hereafter, c-arcs) of M; they relate instances
of the same object belonging to different IoTs.

The description of the MIoT paradigm presented above highlights that it is possible to model
a MIoT at two abstraction levels. The former represents a MIoT as a network and exploits concepts
typical of this environment (such as nodes, arcs and so on). The latter models a MIoT as a set of IoTs
and makes use of concepts closer to this scenario (such as instances, objects and so forth). Clearly, these
two representations are simply two viewpoints of the same environment, and the concepts adopted by
them can be used interchangeably. For example, there is a biunivocal correspondence between a node
and an instance. However, in the reality, there are some cases in which it is better to use the concept of
a node (for example, when we discuss about paths in a network—see below), whereas there are other
situations in which it is better the use of the concept of instance (for example, when we discuss about
the transactions carried out by two smart objects).

Furthermore, in a MIoT context, a set MD; of metadata can be associated with an object 0;. Our
metadata model refers to the one of the IPSO (Internet Protocol for Smart Objects) Alliance [56].
Specifically MD; consists of three subsets, namely: (i) MD]D , i.e., the set of descriptive metadata; (ii)

MD]T, i.e., the set of technical metadata; (iii) MDZE, i.e., the set of behavioral metadata. All details about
these metadata can be found in [14].
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4. Definition of a Thing’s Profile

In this section, we present our definition of a thing’s profile, which represents a first important
contribution of this paper. As pointed out in the Introduction, analogously to what happens for human
profiles, the profile of a thing can have two components. The former registers its past behavior and
is extremely useful for content-based recommendations; for this reason, we call it “content-based
component” in the following. The latter registers the main features of those things with which it mostly
interacted in the past and can be used for collaborative filtering recommendations; for this reason, we
call it “collaborative filtering component” in the following.

Before illustrating in detail the profile of a thing, we must introduce some preliminary concepts.
First of all, given two instances L, of 0j and 4, of 05 in Zj, we can define the set tranSet;,, of the
transactions from ¢;, to 4, as follows:

tranSetjq, = {Tjg, , Tigy,»-+ + Tjgy, } @)

A transaction Tf’ikf € tranSetj;, is represented as:

’qukt = (reason]-qkt ,SOUTCejg, , destjqkt , startjqkt ,fzmsh]-qkt ,SUCCessjy, content]-qkt ) (8)
Here:

e reasonjg, denotes the reason why Tj; occurred, chosen among a set of predefined values.

Tk

» sourcej, indicates the starting node of the path followed by qukt.

o destj, represents the final node of the path followed by Tj,, .

o startjg, denotes the starting timestamp of Tigy, -

o f inish]-qkf indicates the ending timestamp of Tf‘ikt'

e successjg denotes whether Tj% was successful or not; it is set to true in the affirmative case, to
false in the negative one, and to NULL if Tj‘ikf is still in progress.
o contentj, indicates the content “exchanged” from ¢ to iy, during T;

presents the following structure:

o, In its turn, content]-qkt

contentjg = <formatjqkt,leeName]-qkt,szze]-qkt,topzcsjqkt> )

Here:

e  formatj, indicates the format of the content exchanged during T;
19k, ]

“audio”, “video”, “image” and “text”.

o, the possible values are:

o fileN amejg, denotes the name of the transmitted file.

o size]-qkt indicates the size in bytes of the content.

o topics]’qkt indicates the set of the content topics; it consists of a set of keywords
representing the subjects exchanged during T; It can be formalized as: topics]'qkt =

Gk *
1 1 2 2 w w ;
{(kqukt, nkquk, ), (kqukt, nkqukt ) e, (kqukt’ nkqukf)}. In other words, the set of the topics of

the t' transaction from ¢ ji t0 1g, consists of w pairs; each pair consists of a keyword and the
corresponding number of occurrences.

Now, we can define the set tranSet;, of the transactions performed by ¢;, in Z;. Specifically, let
Insty be the set of the instances of Zj. Then:

tranSetj, = U tranSetjg, (10)
Ly elnstk,tqk #ij

In other words, the set tranSet;, of the transactions performed by an instance ¢, is given by the
union of the sets of the transactions from ¢, to all the other instances of Zj.
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After having defined tranSet;,, we must introduce the following operators:

e |#: it receives a set {entitySety, entitySety,- - - ,entitySet;} of entity sets and performs their union
not eliminating the duplicates but reporting the number of their occurrences. Therefore, this
operator returns a set of pairs { (entityy, ney ), (entityy, ney), - - - , (entityy,, ney) } in which the pair
(entity,, ne,) indicates the rth entity and the number of its occurrences. In counting it, l¢) takes the
presence of synonymies and homonymies into account. These properties can be computed (for
terms, images, etc.) by applying the classical approaches proposed in the past literature [57,58].

e avgFileSize: it receives a set of files and computes their average size.

We are now able to define the profile Pj;, of the relationship existing between two instances ¢,
and 14, which performed a set tranSetj, = {Tj"kl , Tf’ikz’ cee, qukv } of transactions. As we will see in
the following, this profile plays a crucial role in the definition of the content-based component of a
thing’s profile and is indirectly used also in the definition of the collaborative filtering component of it.

Specifically:

ijk = <reasonSet]-qk, sourceSet]-qk, destSetjqk, angzAudiojqk, angzVideo]-qk, angzImagejqk, (1)
avgSzTextj, ,successFraction,, ,topicSetjg, )

where:

e reasonSetj, = LtJt:Ly(YEHSO”jqkt)?

e sourceSetj, = Utzl,,v(SOWC‘qukt)r'

° destSet]-qk = t‘;'t:l‘.v(des%k[)’.

e avgSzAudioj, = AngileSizet:LU{fileNamejqkt |formatjqkf = “audio”};

o avgSzVideoj, = AngzleSzzet:Lv{leeName]-qkt |formatjqkt = “video"};
e avgSzlmage, = Avgl—"zleSz.Z'et:l_,v{flleNamejqkr \formatjqkr = “image” };
o avgSzTextj, = AngzleSzzet:L,v{leeNamejqkt | formatjg, = “text ¥

) \{quk ‘Tf‘lk EtranSetjg, successjg, =true}|
) successFractzonjqk = L 5 L ;

° topicSetjqk = Lﬂt:l..v(topics]'ﬂikt)'

If we introduce the operator | |, which compactly represents the set of operations for obtaining a
profile of a pair of instances Pj,, starting from the corresponding transactions, we can formalize the
previous tasks by means of only one operation as follows:

Pioe = L Tigy, (12)
t=1..v

Now, let 1, be the instance of the object o; in the 10T Z;. Let Inst;, be the set of the instances
of Z;, with which L, performed at least one transaction in the past. In this case, we can define the
content-based component of the profile P;, of 1, as:

Py = |_| Pia (13)
tg €1 nstj,
Finally, let 0; be an object and let {Z, Ty, - - -, Z; } be the set of the IoTs which it participates to. Let
ObjInst; be the instances of 0; in the IoTs of the MIoT. We can define the content-based component of
the profile P; of o; as:

P= U 7 (14)

tj, €Objlnst;
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After having defined the content-based component of an instance and an object, in order to present
the corresponding collaborative filtering components, we must introduce the concept of neighborhoods
of an instance ¢, in an IoT Z;. Specifically, the structural neighborhood sNbh (s, ) of 1, is defined as:

sNbh(1j ) = sthO”t(tjk) U Sthi”(l]'k) (15)

where:
SNBE (1) = {1 (3, 1) € Ar) (16)
Sthin(l]‘k) = {1g|(ng,m;,) € Ar} (17)

Furthermore, we can also define the behavioral neighborhood bNbh(y;, ) of 1, as:

bNbh(1j,) = bNbR™ (1, ) UbNDR™ (1, ) (18)

where:
bth"“t(tjk) = {igltg, € sthO”t(tjk), |tranSet g, | > 0} (19)
bthi"(t]-k) = {1g,ltq, € sthi”(t]-k), |tranSety; | > 0} (20)

In other words, bN bh(l]'k) consists of those instances directly connected to ¢;, from the structural
viewpoint that shared at least one transaction with ;.

We are now able to present the collaborative filtering component P]{k of the profile of an instance
lj, in Zj. It can be defined as follows:

P;k = L] (PyuPy) (21)
zqkehl\lbh(zjk)

Clearly, this definition is recursive and an accurate computation would require the resolution of a
system with a number of equations and variables equal to the number of instances. In real situations,
as there could be thousands or millions of instances in a MIoT, the time necessary to solve this system
may easily become unacceptable. As a consequence, it appears reasonable to consider an approximate
definition of P, that is much simpler to handle. It is formalized as:

Pi= U Py (22)
zqkebNhh(z]-k)

After having introduced the two components of the profile of an instance ¢, of 7, we can combine
them for defining the overall profile PTk of 4j,. It is defined as the union of the profiles P;, and 77]«’,(
performed by means of the operator LI:

Pj, =P UP;, (23)

Finally, we can define the overall profile of an object 0; as follows:

7= L7 e
k=1.1

5. Topic-Guided Virtual IoTs in a MIoT and Approaches to Constructing Them

In this section, we present a supervised and an unsupervised approach to constructing
topic-guided virtual IoTs in a MIoT.
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5.1. Supervised Approach

The supervised approach for the construction of topic-guided virtual IoTs in a MIoT requires
the user to specify a query Q consisting of some keywords of her interest. It tries to construct a
thematic virtual IoT in such a way that each of its instances contains at least one keyword of Q in the
content-based component of its profile. If such a virtual IoT does not exist, our approach returns a
minimal set of thematic IoTs that, on the whole, contain, in the content-based component of the profile
of their instances, all the keywords specified by the user. In this last case, she can choose whether to
accept this set of IoTs or modify her query.

Before describing in detail this approach, we must introduce a new operator [* that represents a
modified Jaccard coefficient, as we will see below.

J* receives two sets of topics (We recall that, in our context, a topic is a
pair (kw,nkw), where kw is a keyword and nkw is the corresponding number of
occurrences.) topicSet = {(kwy, nkw), (kwo, nkwy), - - -, (kwp, nkwy)} and topicSet’ =
{ (kw}, nkw}), (kw), nkws), - - -, (kwy,, nkw),)} and computes the Jaccard coefficient between them.
In carrying out this task, it considers the number of occurrences of each keyword and its
possible synonyms.

More formally, first it computes the set:

commonTS = {(kw, nkw + nkw')|(kw, nkw) € topicSet, (kw', nkw'") € topicSet’,

kw is identical to or synonymous of kw'} @5
Then, it computes the final result as:
nkw
IR (topicSet, tOpiCSEt/) _ Z(kw,nkw)ecommonTS / (26)
Z(kw,nkw)etopicSet nkw + Z(kw’,nkw’)etopicSet/ nkw
After having introduced J*, we can describe our approach. Specifically:
e It starts when a user specifies a query Q consisting of r keywords:

Q = {kwlrkaI to /kwr} (27)

It searches for all the instances of the MIoT having at least one topic whose keyword is identical to,
or synonymous of, at least one keyword specified in Q. These instances, as a whole, represent the
set of candidate instances to be included in the new thematic view. We call this set CZ (Candidate
Instances).

o  However, the fact that an instance : € CZ has a keyword in common with Q is necessary but not
sufficient for it to be chosen. In fact, it is advisable that : has more keywords in common with Q
and, possibly, that the common keywords are among the ones of : with the highest number of
occurrences. This condition can be guaranteed by the usage of the operator J*.

In particular, our approach first constructs Q' = {(kw,1)|kw € Q} in such a way as to make
the application of [* on the keywords specified by the user possible. Then, it constructs the set
RT (Real Instances) of those instances of CZ whose topics have a significant similarity with the
keywords of Q:

RZI = {1 € CZ|]*(topicSet,, Q') > th;} (28)

Here, th jisa suitable tuning threshold.
e  Now, our approach can start to construct the thematic view Vg corresponding to Q.
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— It first creates a node n, in VQ for each instance : of RZ. Let n, and n, be the nodes
corresponding to two instances 1 and i, belonging to RZ.

*  If an i-arc exists between the nodes corresponding to /1 and 1, in the MloT M, then an
i-arc is also created between the nodes n,; and n,, in VQ.

*  Instead, if a c-arc exists between the nodes corresponding to 11 and 1, in M, then n,; and
n,, are merged in a unique node 7,,, in Vg. This task is motivated by the fact that 1,
and n,, represent different instances of the same object in different real IoTs, but they
represent the same instance in the same virtual IoT; as a consequence, they must be
merged and no cross arc can exist between them. The profile Py, of n,,, is obtained by
applying the operator | | on the profiles P; of 11 and P, of 1.

e  Finally, our approach adds a disconnected node in Vg for each keyword in Q such that there is no
MIoT instance having at least one topic whose keyword is identical to, or synonymous of, it (The
rationale underlying this step will be clearer in the following.).

e At this point, two cases may occur. In particular:

— It could happen that Vg is connected. In this case, it is returned as the answer to the query Q
submitted by the user.

- If Vg is not connected and if the number of its connected components is less than a certain
threshold, our approach adds the minimum number of “fictitious” i-arcs necessary to make
Vg connected.

- Otherwise, if the number of connected components of V, is higher than a certain threshold,
our approach concludes that a unique thematic virtual IoT corresponding to the keywords
specified by the user does not exist and returns the thematic views related to the connected
components of V. At this point, the user can decide whether to accept these thematic views
or to modify the query in such a way as to construct a unique thematic view by re-applying
all the above mentioned steps starting from the new query.

5.2. Unsupervised Approach

The unsupervised approach begins with the construction of a support network N starting from
the MloT M. In particular:

e  For each node 1, of M, anode 7,_is added in .

e  For each i-arc (n‘fk’ n,qk) in M, an (unoriented) arc (W/k, @) is added in V. The arcs of A are
weighted. The weight of the arc (q, q) is obtained by applying the operator J* on the topic sets
topicSet;,_and topicSetg, of 1, and 1, respectively. Therefore, the weight of an arc in A belongs
to the real interval [0, 1]; the higher this weight the higher the semantic similarity between the
topics of the profiles P, and Py, of 1, and 14, respectively.

e  For each c-arc in M, which relates two instances ny; and ny; of the same object 0j in two different
I0Ts Z; and Z,, the two nodes q and @ in\, corresponding to the nodes ny, and ny, in M,
are merged into a unique node 7,;. This node inherits all the arcs of - and .

At the end of these steps, it could happen that two or more arcs relate the same nodes 77 and
7’ in N. In this case, all these arcs must be merged into a single arc. Clearly, it is necessary to
determine the weight of this arc. Here, it appears reasonable that it must be higher than or equal to the
maximum weight of the merged arcs. To reach this objective, our approach operates as follows. Let
{(m,n, ﬁ), (1, n’, ﬁ), -, (7, n',w)} be the arcs to merge, ordered by decreasing weight. The new
arc (7, n’, @) will have a weight equal to:

W = min (1,w1+ Y wk> (29)

k=2.:s
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In other words, in the computation of w, the arcs with the maximum weight will contribute with
all their weight. All the other arcs will contribute to a lesser extent, with a fraction of their weight.
This last is determined by means of the coefficient a.

Once the construction of A/ has been completed, the thematic views are derived by applying on
N a graph clustering algorithm among the ones already existing in the literature (see [59] for a survey
on them).

5.3. Discussion

An important issue about the supervised and the unsupervised approaches to address regards
their scalability or, better, the possibility to use them in MIoTs comprising thousands or even millions
of nodes.

With regard to this issue, first of all we observe that both approaches aim at deriving virtual IoTs
which are, then, exploited by users to perform their desired tasks (such as querying). As a consequence,
we can distinguish two moments in the life of a MIoT, namely: (i) the construction of virtual IoTs,
which can be performed offline, and (ii) their usage, which is generally carried out online.

The first moment is computationally expensive because it involves several network operations in
the supervised approach and a clustering activity in the unsupervised one. Clustering’s computational
cost is intrinsically exponential even if all the corresponding methods adopted in the reality are
heuristic and most of them have a linear or a quadratic computational complexity. In any case, as
pointed above, this task is performed offline and rarely because it is necessary only when many
changes have been made in the MIoT.

The second moment is certainly less expensive; its cost depends on the size of the involved
clusters; in fact, each user activity generally involves one or a few clusters. Concerning this aspect,
it is important to verify: (i) if clustering is possible in presence of huge MloTs, and (ii) how the size
of clusters increases against the growth of the MIoT. As for the first point, we observe that, in the
past, several algorithms have been specifically conceived to cluster a huge amount of elements [60].
Concerning the second point, instead, first we observe that the size of clusters can be determined by
suitably tuning the parameters of the selected clustering algorithm. However, it could be interesting
to verify how much the size of clusters increases if we maintain constant all the clustering algorithm
parameters and the MIoT size increases. We decided to perform this experiment. It is described in
detail in Section 6.6. Here, we evidence the obtained results, i.e., that when the MIoT size highly
increases, the cluster size slightly grows, whereas the number of clusters increases very much. This is a
positive result for our purposes because the parameter to monitor for investigating the performance
obtained during the second moment is just cluster size.

Another important issue to investigate regards the possible existence of a unique framework
handling all the objects of the MIoT and, therefore, in principle, thousands or millions of objects. With
regard to this aspect, we evidence that, in the past, several attempts have been successfully performed
in this direction (think, for instance, of the SIoT framework proposed in [9,40]). Clearly, we understand
that, in the future, the number of objects possibly belonging to a MIoT is enormously higher than the
number of objects available in the past IoT frameworks. However, we point out that: (i) our approach
needs to store only the metadata of the involved objects, and these are small; (ii) the real objects can
operate in a distributed environment thanks to the new available technologies, such as cloud, edge
and fog computing, which can ease the organization and the management of distributed contexts.

6. Experiments

In this section, we present the experimental campaign that we carried out to evaluate the
performance of our approach from several viewpoints. Specifically, we describe our dataset in a
subsection, whereas, in the next ones, we illustrate our tests, along with the underlying motivations
and the obtained results.
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6.1. Adopted Dataset

To perform our experiments, we had the necessity to create several MloTs with different sizes,
ranging from hundreds to thousands of nodes. Since, currently, real MIoTs with the size and the variety
handled by our model do not exist yet, we had to realize a MIoT simulator, i.e., a tool that, starting
from real data, is capable of simulating MIoTs with certain characteristics specified by the user.

The MlIoTs created by our simulator follow the model described in Section 3. In order to perform
its task, our simulator carries out the following steps: (i) creation of objects; (ii) creation of object
instances; (iii) creation of instance connections; (iv) creation of instance profiles.

Our MIoT simulator is also provided with a suitable interface allowing a user to “personalize”
the MIoT to construct by specifying the desired values for several parameters, such as the number of
nodes, the maximum number of instances of an object, and so forth.

To make “concrete” and “plausible” the created MIoT, our simulator leverages a real dataset. It
regards the taxi routes in the city of Porto from 1 July 2013 to 30 June 2014. It can be found at the address
http:/ /www.geolink.pt/ecmlpkdd2015-challenge /dataset.html. Each route contains several Points of
Interests corresponding to the GPS coordinates of the vehicle.

We partitioned the city of Porto in six areas and associated a real IoT with each of them. Our
simulator associates an object with a given route recorded in the dataset and an object instance for
each partition of a route belonging to an area. It creates a MIoT node for each instance and a c-arc for
each pair of instances belonging to the same route. Furthermore, it creates an i-arc between two nodes
of the same IoT if the length of the time interval between the corresponding routes is less than a certain
threshold th;. The weight of the i-arc indicates the length of this time interval. The value of th; can be
specified through the constructor interface. Clearly, the higher th; the more connected the constructed
MIoT.

As far as instance profiles are concerned, since there are no thing profiles available (indeed, the
concept of thing profile is one of the main novelties introduced in this paper), we had to simulate them.
However, we aimed to make them as real as possible. In order to increase the likelihood of constructed
MloTs, we performed a sentiment analysis task for each of the six areas in which we partitioned the
city of Porto and for each day which the dataset refers to. For this purpose, we leveraged IBM Watson
on the social media and blogs it uses as default. Having this data at disposal, our simulator assigns to
each instance the most common topics (along with the corresponding occurrences) discussed in that
area in the day on which the corresponding route took place. The constructed MloTs are returned in a
format that can be directly processed by the cypher-shell of Neo4] (see below).

Some features of the constructed MloTs are reported in Table 1. The interested reader can find the
MIloTs adopted in the experiments described in this section at the address http://daisy.dii.univpm.it/
miot/datasets/virtualloTs.

Table 1. Main features of the constructed MIoTs.

MIoT (Size) Number of Arcs Mean In-Degree Mean Out-Degree  Number of i-arcs Number of c-arcs

My (176) 1176 6.29 6.61 980 126
M, (301) 2050 7.76 7.74 1709 341
M3 (485) 3756 8.80 8.54 3130 626
My (778) 5866 8.89 9.11 4895 971
Ms (946) 7624 8.64 8.84 6422 1202
M (1256) 9860 7.87 7.98 7917 1943
Mz (1725) 12,263 7.94 8.18 9964 2299
Mg (2028) 15,568 8.22 8.38 12,857 2711
Mg (3544) 26,428 8.36 8.42 22,718 3710
Mg (5024) 38,642 8.44 8.54 33,724 4918

We carried out all the tests presented in this section on a server equipped with an Intel I7 Quad
Core 7700 HQ processor and 16 GB of RAM with Ubuntu 16.04 operating system.
To implement our approaches we adopted:


http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html
http://daisy.dii.univpm.it/miot/datasets/virtualIoTs
http://daisy.dii.univpm.it/miot/datasets/virtualIoTs
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e  Python, powered with the NetworkX library, as programming language;
o  Neo4] (Version 3.4.5) as underlying DBMS; we also exploited some plugins of Neo4] to perform
community detection and to compute clustering coefficients.

6.2. Cohesion of the Obtained Topic-Guided Virtual 1oTs

Our first test started from the idea that if our approach aims at extracting virtual thematic IoTs,
they should present both a structural and a semantic cohesion higher than the corresponding ones
characterizing the original IoTs of the MIoT. This experiment was devoted to evaluate if this assumption
is verified. We considered two well known structural cohesion parameters used in network analysis
literature, namely clustering coefficient and density [61]. Both of them range in the real interval [0, 1]; the
higher their value the higher the corresponding network cohesion. In the following, first we test the
supervised approach and, then, we consider the unsupervised one.

6.2.1. Supervised Approach

In this test, we run our supervised approach on ten MloTs, M, ..., Mjy, consisting of 176, 301,
485,778, 946, 1256, 1725, 2028, 3544 and 5024 nodes. Clearly, the number of IoTs for each MIoT was
equal to six, one for each area of the city of Porto that we have defined. For each MIoT, we submitted a
set of 10 queries consisting of 1 (resp., 2, 4, 6, 8 and 10) word(s).

Each query returned a virtual thematic IoT for which we computed the corresponding clustering
coefficient and density. Finally, we averaged the obtained results for each MIoT and for each set of
queries, and we compared them with the average clustering coefficient and the average density of the
corresponding real IoTs. The obtained results are reported in Tables 2 and 3.

Table 2. Values of the clustering coefficient for real and virtual IoTs against the size of MloTs and
queries used to generate the virtual IoTs (supervised approach).

Avg. Clustering Coeff. (Virtual IoTs)
QI=1 Q=2 [Q|=4 [Q[=6 [Q[=8 [|Ql=10

MIoT (Size) Avg. Clustering Coeff. (Real IoTs)

M (176) 0.230 0.318 0.368 0.389 0.394 0.401 0.408
M (301) 0.272 0.343 0.388 0.419 0.424 0.434 0.446
M3 (485) 0.293 0.396 0.437 0.477 0.482 0.488 0.497
My (778) 0.353 0.447 0.478 0.503 0.508 0.511 0.517
M5 (946) 0.371 0.452 0.492 0.512 0.522 0.524 0.526
M (1256) 0.385 0.486 0.511 0.529 0.530 0.532 0.535
My (1725) 0.386 0.501 0.524 0.536 0.537 0.538 0.539
Mg (2028) 0.388 0.519 0.536 0.541 0.541 0.542 0.543
My (3544) 0.392 0.522 0.540 0.544 0.544 0.545 0.546
My (5024) 0.395 0.534 0.546 0.546 0.546 0.547 0.548

Table 3. Values of the density for real and virtual IoTs against the size of MIoTs and queries used to
generate the virtual IoTs (supervised approach).

Average Density (Virtual IoTs)
Q=1 Q=2 |Q|=4 [Q[=6 [Q/=8 |Q|=10

MIoT (Size) Average Density (Real IoTs)

M (176) 0.348 0.260 0.264 0.280 0.289 0.296 0.301
M (301) 0.262 0.292 0.303 0.309 0.315 0.320 0.324
M3 (485) 0.274 0.390 0.395 0.400 0.402 0.405 0.408
My (778) 0.269 0.476 0.483 0.490 0.501 0.509 0.514
M5 (946) 0.276 0.492 0.509 0.521 0.536 0.534 0.556
Mg (1256) 0.284 0.547 0.556 0.567 0.572 0.576 0.581
My (1725) 0.278 0.582 0.582 0.594 0.598 0.598 0.601
Mg (2028) 0.273 0.609 0.610 0.620 0.626 0.630 0.639
My (3544) 0.269 0.626 0.628 0.630 0.634 0.636 0.637

Mg (5024) 0.262 0.636 0.636 0.638 0.638 0.640 0.642
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From the analysis of these tables, we can observe that, in almost all circumstances, the values of
both clustering coefficient and density are higher or much higher for the virtual thematic IoTs than for
the real ones. This is clearly a confirmation of the goodness of our supervised approach, which returns
topic-guided IoTs more cohesive than the original ones. We also observe that when |Q| increases,
the values of both clustering coefficient and density increases. This can be explained by observing
that, in processing Q, our approach takes the portions of networks containing at least one keyword
of Q. When |Q| increases, the portion of networks selected by our approach increases too, and the
probability of selecting a very high number of edges (i.e., a number so high to lead to an increase of
clustering coefficient and density) increases as well.

6.2.2. Unsupervised Approach

In this test, we run our unsupervised approach, powered with the Louvain graph clustering
algorithm [62] as underlying engine, on the same MIoTs described in Section 6.2.1. For each MIoT,
we computed the average clustering coefficient and the average density of real and virtual IoTs. The
obtained results are reported in Table 4.

Table 4. Values of both clustering coefficient and density of real and virtual IoTs against the size of
MIoTs (unsupervised approach).

MIoT (Size) Average Clustering Coefficient Average Density
Real IoTs Virtual IoTs Real IoTs  Virtual IoTs
M (176) 0.230 0.473 0.348 0.315
M, (301) 0.272 0.499 0.262 0.350
M3 (485) 0.293 0.500 0.274 0.375
My (778) 0.353 0.511 0.269 0.318
M5 (946) 0.372 0.509 0.276 0.316
M (1256) 0.385 0.506 0.284 0.314
My (1725) 0.386 0.522 0.280 0.328
Mg (2028) 0.388 0.535 0.273 0.360
My (3544) 0.394 0.547 0.271 0.364
Mo (5024) 0.398 0.562 0.269 0.368

From the analysis of this table we can observe that, in this case, analogously to what happened
for the supervised approach, the cohesion level of the virtual IoTs is higher or much higher than the
corresponding ones of the real original IoTs. Interestingly, both clustering coefficient and density values
obtained by the unsupervised approach are generally higher than those returned by the supervised
one, at least when the MloT size is small. Instead, when the MIoT size is large, they become lower than
the ones of the supervised approach. Actually, the increase of both clustering coefficient and density
when the MIoT size increases is significant for the supervised approach, whereas it is more limited for
the unsupervised one.

6.3. Average Fraction of Merged C-Nodes and Analysis of Node Distribution in Virtual 1oTs

Another quality parameter for virtual IoTs returned by our approach regards the average number
of merged c-nodes present in each of them. Indeed, the presence of merged c-nodes in an IoT is an
indicator of the fact that this IoT is capable of connecting concepts coming from different real IoTs,
and, therefore, from concepts whose relationships would have been uncaptured otherwise, or, in other
words, that the knowledge it is presenting is new and did not exist previously. Clearly, the higher the
fraction of merged c-nodes and the higher the fraction of different original IoTs they belong to, the
higher the connecting capability of virtual IoTs.

Also for this experiment, we considered the ten MIoTs described in Section 6.2 and performed the
same tasks illustrated therein for both the supervised and the unsupervised approaches. The obtained
results are reported in Tables 5-7.
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Table 5. Average fraction of merged c-nodes against the size of MIoTs and queries used to generate the
virtual IoTs (supervised approach).

Average Fraction of Merged C-Nodes

MIoT (Size)
Q=1 |Q|=2 [Q|=4 [Q|=6 [Q|=8 [Q|=10

M (176) 0.304 0.455 0.517 0.532 0.554 0.572
M, (301) 0.380 0.515 0.608 0.627 0.652 0.679
M (485) 0.539 0.661 0.782 0.798 0.813 0.823
My (778) 0.690 0.786 0.860 0.874 0.883 0.892
Ms (946) 0.724 0.812 0.884 0.898 0.916 0.924
Mg (1256) 0.808 0.883 0.939 0.943 0.946 0.948
My (1725) 0.862 0.908 0.952 0.961 0.961 0.963
Mg (2028) 0.908 0.959 0.974 0.975 0.976 0.977
Mg (3544) 0.928 0.963 0.976 0.977 0.977 0.978
My (5024) 0.936 0.968 0.978 0.979 0.980 0.981

Table 6. Average fraction of real IoTs involved in a virtual IoT against the size of MlIoTs and queries
used to generate the virtual IoTs (supervised approach).

Average Fraction of Involved Real IoTs

MIoT (Size)
[Ql=1 |Q|=2 [Q[=4 [Ql=6 [Q|=8 |Q|=10

M (176) 0.373 0.467 0.488 0.476 0.452 0.448
M, (301) 0.365 0.469 0.525 0.501 0.488 0.480
M3 (485) 0.482 0.477 0.448 0.442 0.435 0.432
My (778) 0.457 0.432 0.418 0.415 0.413 0.411
M5 (946) 0.455 0.482 0.624 0.628 0.647 0.644
M (1256) 0.453 0.514 0.805 0.864 0.917 0.924
My (1725) 0.482 0.577 0.815 0.872 0.917 0.924
Mg (2028) 0.514 0.672 0.833 0.898 0.917 0.924
My (3544) 0.584 0.704 0.844 0.905 0.924 0.926
My (5024) 0.624 0.727 0.888 0.911 0.928 0.934

Table 7. Average fraction of merged c-nodes and average fraction of real IoTs involved in a virtual IoT
against the size of MIoTs (unsupervised approach).

MIoT (Size) Average Fraction of Merged C-Nodes Average Fraction of Involved Real IoTs

M (176) 0.227 0.361
M, (301) 0.306 0.353
M3 (485) 0.309 0.357
My (778) 0.342 0.356
Ms (946) 0.334 0.359
M (1256) 0.326 0.361
My (778) 0.332 0.360
Mg (2028) 0.335 0.358
My (3544) 0.341 0.371
Mo (5024) 0.344 0.378

From the analysis of these tables, we observe that both the supervised and the unsupervised
approaches return satisfying results. As for the supervised approach, we can observe that the fraction
of merged c-nodes increases when the size of MIoT increases. Furthermore, we can also observe a
slight increase of this fraction when |Q| increases. The same trends can be observed for the average
fraction of involved real IoTs, even if, for this parameter, its increase against the increase of |Q| is more
pronounced. As for the unsupervised approach, we can observe that the average fraction of merged
nodes is always very high, independently of the MIoT size. By contrast, in this case, the fraction of
involved real IoTs is quite high even if lower than the ones generally observed for the supervised
approach. Furthermore, its value does not significantly change when the MIoT size increases.
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In order to deepen this investigation, for each virtual IoT, we compared the distribution of its
nodes against the real IoTs they belong to. Indeed, if almost all the nodes of a virtual IoT derive
from only one real IoT, the information contribution provided by the virtual IoT would be very small
because it would be analogous to the one provided by the corresponding real IoT. By contrast, if the
nodes of a virtual IoT homogeneously derive from several real IoTs, then the knowledge it provides is
really new, and this knowledge would be uncaptured and lost if the new IoT had not been extracted.
On the basis of this reasoning, we evaluated the heterogeneity of the provenance of the various nodes
of each virtual IoT (see below). For this purpose, we adapted the Herfindahl Index [63] to our context.
This index is very used in several research fields of Economics from several decades; for instance, it is
exploited to evaluate the concentration degree in an industry.

In order to adapt the Herfindahl Index to our scenario, consider a MIoT M consisting of s real [oTs
(R1,R2,...,Rs). Consider, also, a virtual IoT V]- derived by either the supervised or the unsupervised

approach. Let n; be the number of nodes of Vj and let %, 1 < k < s, be the fraction of the nodes
of V; belonging to R (i.e., the k" real IoT of the MIoT). The Herfindahl Index H ;j of V; is defined as

Yiq (%‘)2 Hj ranges in the real interval [%, 1} ; the higher its value, the higher the concentration
degree of the nodes of Ry in V;. Clearly, as previously pointed out, one property desired for our
approach is the ability to construct virtual IoTs connecting nodes that belong to different real IoTs in
such a way as to extract knowledge that would be lost otherwise. If we report this property to the
Herfindahl Index, this implies to obtain a value of this index as lower as possible (Consider that, since
we have six real IoTs in our MloTs, the minimum value of the Herfindahl Index is % = 0.167.).

We computed the average Herfindahl Index of the thematic IoTs returned by both the supervised
and the unsupervised approaches by considering the ten MIoTs described in Section 6.2 and performing
the same tasks illustrated therein. The obtained results are reported in Tables 8 and 9.

Table 8. Average Herfindahl Index of virtual IoTs against the size of MIoTs and queries used to generate
the virtual IoTs (supervised approach).

Average Herfindhal Index

MIoT (Size)
[Ql=1 |Q|=2 [Q[=4 [Q=6 [Q|=8 |Q|=10

My (176) 0.207 0.186 0.177 0.175 0.173 0.172
M, (301) 0.204 0.183 0.174 0.173 0.172 0.171
M3 (485) 0.178 0.173 0.170 0.170 0.169 0.168
My (778) 0.172 0.172 0.170 0.170 0.169 0.168
M5 (946) 0.172 0.170 0.169 0.169 0.169 0.168
Mg (1256) 0.173 0.168 0.167 0.169 0.168 0.167
My (1725) 0.170 0.168 0.167 0.169 0.168 0.167
Mg (2028) 0.168 0.167 0.167 0.167 0.167 0.167
My (3544) 0.168 0.167 0.167 0.167 0.167 0.167
My (5024) 0.167 0.167 0.167 0.167 0.167 0.167

Table 9. Average Herfindahl Index of virtual IoTs against the size of MloTs (unsupervised approach).

MIoT (Size) Average Herfindahl Index

Mj (176) 0.658
M, (301) 0.543
M; (485) 0.658
My (778) 0.636
Ms (946) 0.654
M (1256) 0.694
M; (1725) 0.656
Mg (2028) 0.635
Mo (3544) 0.664

My (5024) 0.686
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These tables evidence that also the analysis based on object distribution and Herfindahl Index
returns very satisfying results that confirm and strengthen those obtained by examining the average
fraction of merged nodes involved in a virtual IoT. Interestingly, as for this parameter, we observe
that the supervised approach returns excellent results, very close to the best ones. By contrast, the

unsupervised approach returns good results, even if those returned by the supervised approach are
better.

6.4. Computation Time

In this experiment, we aimed at evaluating the variation of the computation time of both the
supervised and the unsupervised approaches against the variation of the size of the involved MIoT.
Furthermore, as for the supervised approach, we also evaluated the variation of the computation time
against the variation of the size of queries.

To perform this task, we considered the ten MloTs described in Section 6.2 and carried out the
same tasks illustrated therein. Finally, we measured the corresponding average computation times.
The obtained results are reported in Figures 1-3.

Computation time - Supervised approach (first part)
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Figure 1. Computation time (in seconds) against the size of MIoTs and queries used to generate the
virtual IoTs (supervised approach)—first part.
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Figure 2. Computation time (in seconds) against the size of MIoTs and queries used to generate the
virtual IoTs (supervised approach)—second part
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Computation time - Unsupervised approach
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Figure 3. Computation time (in seconds) against the size of MIoTs (unsupervised approach)

From the analysis of these figures, we can observe that our approaches obtain satisfying results.
Specifically, as for the supervised approach, the computation time is always very low for MIoTs having
at most 1256 nodes. Instead, for MlIoTs with more than 2028 nodes, the computation time is low for
|Q| = 1or |Q| = 2. Then, it increases, even if it remains acceptable for |Q| = 4 and |Q| = 6, whereas it
becomes excessive for |Q| = 8 and |Q| = 10. However, with regard to this fact, we must point out that
queries consisting of 8 or 10 keywords are very uncommon (It is worth pointing out that the topics
considered by our approach for constructing a thing’s profile are extremely generic and heterogeneous.
As a consequence, in our scenario, a query with 8 or 10 keywords would encompass a great number of
different topics and, as such, it would not be generally able to capture a clear and specific desire of a
user.).

As for the unsupervised approach, its computation time is still acceptable also for 2028 nodes. It
starts to become excessive with MloTs consisting of at least 10,000 nodes.

6.5. Our Approaches’ Capability of Improving the Efficiency of Information Dissemination

This experiment was devoted to measure the efficiency of both supervised and unsupervised
approaches. The rationale underlying this experiment is that if some information must be transferred
from a source object o5 to a target one o, the number of objects to be contacted for this task should be
minimized. At the same time, if an object is involved in an information dissemination task, it would be
desiderable that the information it is transmitting is also useful for it (which, in our case, means that it
is in line with the interests of its profile).

In order to perform this experiment, we randomly selected some pairs of (source, target) nodes
from our MIOT. Let (15, 1) be one of these pairs. We verified if there existed at least one virtual IoT
comprising both ns and n; (This is always true for the unsupervised approach, whereas it could not
happen for the supervised one.). In the negative case, we discarded that pair. Let V be a virtual IoT
comprising both ng and ;.

—

After this, we computed the number num), (resp., num)) of MloT nodes involved in the
dissemination of information in presence (resp., absence) of the virtual IoT V. Specifically, we computed

num), by performing the information dissemination task only through its nodes; instead, we obtained

— v

num), by performing the same task on the whole MIoT. Finally, we computed: fs; = % Clearly, the
st

lower fs, the higher the contribution of the virtual IoTs in reducing the number of nodes necessary for
the information dissemination task and, consequently, the higher the contribution that our virtual IoT
detection approach can provide to information dissemination.
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We computed the average values of f;; by operating on the ten MIoTs introduced in Section 6.2
and by performing the same tasks described therein for both the supervised and the unsupervised
approaches. The obtained results are reported in Tables 10 and 11.

Table 10. Average values of fs; against the size of MIoTs and queries used to generate the virtual IoTs
(supervised approach).

MIoT (Size) Average fs
Q=1 [Q|=2 |Q|=4 |Ql=6 |Q=8 [Q|]=10

My (176) 0144 0220 0290 0304  0.336 0.347
M, (301) 0126 0170 0177 0175  0.178 0.179
Ms(485) 0104 0112 0074 0052 0041 0.037
M, (778) 0057 0051 0028 0038 0047 0.049
Ms (946) 0048 0034 002 0028 0032 0.024
Mg (1256) 0031 0015 0017 0011 0007 0.007
M, (1725) 0026 0014 0011 0010  0.008 0.008
Mg (2028) 0016 0010 0009 0009 0009 0.009
Mo (3544) 0012 0009 0009 0009  0.009 0.009
My (5024) 0011 0008 0007 0007  0.007 0.007

Table 11. Average values of fs; against the size of MIoTs (unsupervised approach).

MIoT (Size) Average fs:

M;(176) 0.904
M,(301) 0.722
M3(485) 0.635
My(778) 0.584
M35(946) 0.580
Me(1256) 0.576
M5 (1725) 0.516
M4g(2028) 0.477
Mo(3544) 0.452
Mo(5024) 0.426

From the analysis of these tables we can observe that both the supervised and the unsupervised
approaches really contribute to decrease the number of the nodes of a MIoT involved in the information
dissemination, and, therefore, to increase the efficiency of this task. As for the supervised approach,
we observe that the decrease of the number of involved nodes is always high. It becomes very high as
the MIoT size and the number of keywords composing the query increase. As for the unsupervised
approach, we observe that it leads to a decrease of the number of the MIoT nodes involved in the
dissemination task. However, this decrease is minimum for small MIoTs, whereas it becomes significant
for large ones (i.e., for MIoTs with a number of nodes higher than 1256).

We performed a second experiment in this direction. Specifically, given a pair (ns, 1;) of a MIoT
such that information must be disseminated from n; to n; and there exists at least one virtual [oT V
comprising both 15 and 1, we computed the fraction g} (resp., g%) of the nodes of the MIoT involved
in the diffusion of information from 7, to n; and having at least one content of the disseminated
information registered in their profile (which implies that, in principle, they could benefit from the
information they are required to disseminate). As in the previous experiment, we computed g’ by
assuming the existence of VV an/c_l\, hence, by performing the information dissemination task through
it; by contrast, we computed g}, by carrying out the information dissemination task through the

. Y .
whole MIoT. Finally, we computed gs; = =¢. Roughly speaking, it denotes how much the presence

st
of the virtual IoT V can contribute to require information dissemination tasks only to nodes possibly
benefiting of it. A value of this coefficient higher than 1 denotes a positive contribution of V; the
higher this value the higher the contribution. As in the previous experiment, we computed the average
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values of g5 by operating on the ten MIoTs introduced in Section 6.2 and by performing the same tasks
described therein for both the supervised and the unsupervised approaches. The obtained results are
reported in Tables 12 and 13.

Table 12. Average values of g;; against the size of MIoTs and queries used to generate the virtual IoTs
(supervised approach).

MIoT (Size) Average gt
Q=1 [Q|=2 |Q]=4 |Ql=6 [Q=8 [Q|=10

My (176) 4018 2792 2223 1918 1331 1321
M, (301) 3563 2619 2445 2009  1.683 1.664
Ms (485) 3260 2370 1426 1528  1.626 1.674
M, (778) 3130 2168 2367 1916 149 1325
Ms (946) 3232 2102 1864 1712 1461 1.391
Mg (1256) 3467 1979 1378 1412 1438 1.452
M, (1725) 3476 2224 1414 1444 1494 1492
Mg (2028) 3496 2669 1489 1491 1521 1.545
Mo (3544) 3507 2712 1612 1624 1631 1.632
My (5024) 3517 2926 1783 1841  1.864 1.874

Table 13. Average values of g5 against the size of MIoTs (unsupervised approach).

MIoT (Size) Average gst

M, (176) 1.341
M, (301) 1.269
M; (485) 1211
My (778) 1.177
Ms (946) 1.173
M (1256) 1.171
M (1725) 1.194
Mg (2028) 1.273
My (3544) 1.281
My (5024) 1.301

The analysis of these tables is a further confirmation of the efficiency of our approach. Indeed,
thanks to the presence of virtual IoTs, the fraction of nodes participating to the spreading of information
that can also benefit from this task increases remarkably.

The results of Tables 10 and 11, along with the ones of Tables 12 and 13, agree to evidence that the
discovery of virtual IoTs is highly beneficial in terms of efficiency for the information dissemination
task in a MIoT. In this case, the contribution of V in increasing the efficiency of the spreading task, by
limiting it mainly to nodes that could benefit from the information they are disseminating, is very high
for the supervised approach when |Q| = 1 or |Q| = 2. When |Q] increases, this contribution decreases,
even if it remains still significant. As for the unsupervised approach, the contribution of V can be
always observed even if it is less evident than the one characterizing the supervised approach.

6.6. Number and Size of Returned Virtual IoTs

This last experiment makes sense only for the unsupervised approach. Through it we aimed at
investigating how the number and the size of returned virtual IoTs (and, therefore, the number and
the size of returned clusters) vary when the MIoT size increases. To make this experiment significant,
we maintained constant all the parameters of the adopted clustering algorithm. We considered the
MlIoTs Mj - - - Mg used in the previous experiments because, in this way, we had the possibility to
investigate MloT sizes ranging from 176 to 5024 nodes. We report the obtained results in Table 14.

From the analysis of this table we can observe that the average size of virtual IoTs:

e increases when the MIoT size ranges from 176 to 946;
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e slightly increases when the MIoT size ranges from 946 to 2028;
e remains essentially constant when the MIoT size is higher than 2028.

In the meantime, the number of clusters:

e slightly increases when the MIoT size ranges from 176 to 946;
e increases when the MloT size ranges from 946 to 2028;
e  highly increases when the MIoT size is higher than 2028.

Table 14. Average size and number of virtual IoTs against the increase of the MIoT size (unsupervised
approach).

MIoT (Size) Average Size of Virtual IoTs Number of Virtual IoTs

M, (176) 22.44 10
M, (301) 28.21 13
M; (485) 36.64 16
My (778) 40.82 2
Ms (946) 44.66 24
Mg (1256) 46.74 30
My (1725) 48.12 39
Mg (2028) 50.24 45
My (3544) 50.46 78
My (5024) 50.64 105

The obtained results are extremely interesting because they confirm the soundness of the reasoning
made in Section 5.3. In particular, this experiment confirms the scalability of our approach. As a
matter of fact, after the virtual IoTs have been constructed offline, their usage for querying and for
the other tasks of interest for the user can be performed online. Now, we observed that the number
of available virtual IoTs highly increases when the MIoT size increases. However, because the size
of each virtual IoT is only slightly impacted by the growth of the corresponding MloT, and because
user tasks generally involve one or at most a few of available virtual IoTs, we can conclude that our
approach is scalable with respect to the size variation of the MIoT.

7. Conclusions

In this paper, we have discussed about the attempt of “humanizing” things. We have seen that this
trend will become increasingly challenging in the future because things are becoming more and more
smart and social. As a consequence, it appears natural to apply concepts typical of social networking
to the Internet of Things. Actually, as things are becoming increasingly heterogeneous in their formats,
semantics and behaviors, it appears even better to apply social internetworking ideas and concepts to
this scenario.

For this reason, we have decided to adopt the MIoT paradigm as the reference one for our proposal.
With the support of this paradigm, we have proposed a rich and high-level abstraction profile of a
thing, taking into account the content that it exchanged with the other things in the past. Then, we
have introduced the concept of topic-guided virtual IoT and we have proposed a supervised and an
unsupervised approach to constructing topic-guided virtual IoTs in a Multi-IoT scenario.

This paper must not be considered as an ending point; on the contrary, it is a starting point for
future research efforts. Indeed, the definition of a thing’s profile and the usage of paradigms, like MloT,
allowing multiple IoTs to be modeled in a way analogous to how multiple social networks interacting
with each other are modeled, allow us to investigate the possible extension to the IoT context of many
research themes already analyzed for social networks. For instance, it could be possible: (i) to model
the concepts of trust and reputation of a thing in the IoTs it belongs to; (ii) to develop “team building”
approaches aiming at constructing teams of things to perform a certain activity; (iii) to investigate new
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forms of centrality of a thing in a MIoT based on both its position and its profile. Actually, these are
just three of the many possible future developments of our research in such a rapidly evolving and
very promising scenario.
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