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Abstract: To measure the equity of urban park green space, spatial matching between service supply 
and user group demand should be taken into consideration. However, if the demographic data, 
with the administrative division as the basic unit, are directly applied to characterize the spatial 
distribution of a user group, it may introduce inevitable deviation into the evaluation results due to 
the low-resolution nature and modifiable areal unit problem of such data. Taking the central area 
of Wuhan as an example, the population data spatialization method based on land use modeling 
was used to build a geographically weighted regression (GWR) model of land cover type and 
demographic data, and the spatial distribution of the population of the 150 m grid was obtained by 
inversion. Then, the equity of park green space in Wuhan central city was evaluated by population 
spatial data and network accessibility. The results showed that (1) the range of park green space in 
the central urban area of Wuhan was within a walking distance of 15 min, accounting for 25.8% of 
the total study area and covering 54.2% of the population in the study area; (2) the equity of park 
green space in Hongshan District was the worst; (3) and the use of population spatial data can 
measure equity on a more precise scale. 

Keywords: urban park green space; accessibility; equity; population data spatialization 
 

1. Introduction 

As a key component of urban green infrastructure, the urban park green space can not only 
provide a series of ecosystem services such as stormwater management [1], heat regulation [2], and 
air purification [3], but also has many social-economic benefits, such as increasing neighborhood 
communication [4], providing natural leisure experience [5], promoting physical and mental health 
[6], and boosting real estate prices [7]. Therefore, the reasonable distribution of the park green space 
is of great significance for enhancing the overall well-being of urban dwellers [8]. However, with the 
acceleration of urbanization, park green space resources in most cities are hardly meeting the needs 
of rapid population expansion, and the phenomenon of the uneven distribution of park green spaces 
has received particular attention [9,10]. 

The study of the equity of urban park green spaces has gone through a development from 
quantitative equalization to spatial equity and finally formed social aspects. The early studies paid 
more attention to the quantity aspect of equity, such as the per capita green area, the green space rate, 
the greening coverage rate, and so on, which are still the official evaluation indexes in the current 
urban green space planning system in China. This method has some limitations, such as ignoring the 
spatial equity of green space layout, ecosystem service function, and resource sharing. With the 
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concept of the accessibility and development of Geographic Information System (GIS) technology, 
increasingly, scholars have begun to pay attention to spatial distribution in the research into the 
equity of urban parks [11]. Accessibility analysis has also been widely used in spatial distribution 
studies of other important public service facilities in cities, such as health care services [12,13], 
shopping service centers [14] and sports facilities [15]. Accessibility only considers the opportunity 
and distance of individuals using park green space and thus is regarded as a kind of spatial equity. 
However, social equity places an emphasis on equal public services for all urban dwellers and focuses 
more on the satisfaction of the needs of special groups with limited mobility or with low 
socioeconomic status, including children, the elderly, low-income people, and ethnic minority people 
[10,16]. Therefore, in order to realize the social equity of the distribution of urban park green space, 
it is necessary to consider the spatial distribution of the needs of the users, thus reflecting the spatial 
match between the public services provided by the park and the users. 

Evaluating the equity of public services should measure the spatial and quantitative relationship 
between user demand and object supply. When we evaluate urban park equity, the supply and 
demand are generally represented by park accessibility and population density, respectively [17]. 
Moreover, most of the relevant studies are carried out directly using census data [1,9,10] and assume 
that the population is evenly distributed within the statistical unit. However, there are some 
limitations to this assumption because of the spatial heterogeneity of population distribution. The 
direct use of population data based on administrative division statistics in micro and medium-scale 
urban research makes it difficult to meet the corresponding precision requirements, and there is a 
modifiable areal unit problem [18], which means the analysis results are affected by the selected 
analysis area unit. In order to improve the accuracy of the evaluation, some studies directly use 
building data or residential committee data [19–21] to characterize population distribution. However, 
such data is often difficult to obtain. Therefore, this study introduces a population data spatialization 
method to obtain a more accurate spatial distribution of population, thus exploring a more universal 
and finer spatial-scale evaluation method of park equity. 

Consequently, the aim of this study is to evaluate the equity of urban park green spaces in a finer 
spatial scale by using the population spatialization data. We choose Wuhan as our case study and 
focus on distributional equity in terms of equal access to urban park green spaces across all social 
groups. By constructing a regression model between the land cover and the statistical population, the 
grid map of the high-precision population distribution of Wuhan central area is obtained, and the 
corresponding population demand is measured. Moreover, the accessibility analysis of the parks was 
evaluated quantitatively by using the ArcGIS Network analysis tools, and the spatial superposition 
analysis method is used to analyze the spatial equity of the urban park green spaces in the study area. 

2. Study Area and Data Sources 

2.1. Study Area 

Located in the heart of China’s hinterland, as the capital of Hubei province, Wuhan is the central 
city of the country central part. The Yangtze River and the Han River meet in the center of Wuhan. 
Rich in water resources, Wuhan has 140 rivers with a length of more than 5 km. Also, Wuhan contains 
273 types of reservoirs and 166 lakes, of which 38 are in the central city. 

Wuhan is under the jurisdiction of 13 administrative districts (including 7 central urban districts 
and 5 surrounding urban districts) and 4 development zones. The scope of this study includes the 
central areas of Wuhan City (Figure 1), which include Jiang’an, Jianghan, Qiaokou, Hanyang, 
Wuchang, Hongshan. and Qingshan. The plant area of WISCO (Wuhan Iron & Steel Co Ltd.) is 
excluded from the research scope due to the lack of data. Consisting of 89 streets, the study area is 
628 km2 (including 28.9 km2 of green park) with a population of 5.726 million, and the average 
population density is 9118 per km2. 
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Figure 1. The location and administrative boundary of the study area. 

2.2. Data Sources and Preprocessing 

(1) The population data are also derived from the statistical yearbook of Wuhan in 2016 (the date of 
the statistics is at the end of 2015), and the corresponding population density distribution of the 
block (Figure 2) is generated based on the administrative division data, which are based on the 
vectorization of raster maps of each district. 

 
Figure 2. The street-level population density of the central area of Wuhan City in 2015. 
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(2) The vector data of the green park (Figure 3a) required in this paper is derived from “the green 
space system planning of Wuhan”, taking the “boundary effect” into account, which will also 
include green parks in a 1500 m range outside the edge of the study area. The data is corrected 
by comparing current and historical Google Earth images, and the park entrance and exit 
location are determined by Baidu Map. 

(3) The road network data in the region is interpreted from high-resolution Remote Sensing Satellite 
images. As shown in (Figure 3b), vector road network data of the study area were constructed 
after checking the topology. This data was used in the 2016 “Sponge City Sponge City Special 
Plan for Wuhan (Sponge City Sponge City Special Plan for Wuhan. http://www.wpdi.cn/project-
3-i_11332.htm)”, this is a joint official planning project held by Wuhan planning and design 
institute and Wuhan natural resources and planning bureau. The road vector data were 
provided by Wuhan planning and design institute. 

(4) The land cover data (Figure 4) were interpreted by landsat8 remote sensing image, which was 
dated 5 June 2016. The image was downloaded from the website of the China Geospatial Data 
Cloud (http://www.gscloud.cn/). Firstly, ENVI5.3 tool is used to preprocess the image, such as 
through radiometric calibration, atmospheric correction, fusion, cutting, and so on. Then, the 
maximum likelihood method is used to supervise and classify the images, which are divided 
into seven categories: Woodland, farmland, water, road, bare land, factory buildings, and other 
paving. We use high-precision Worldview 2 remote sensing images of the Wuchang district 
(dated 29 July 2016, with 1.8 m multispectral and 0.5 m panchromatic resolution) as ground truth 
samples for the classification accuracy evaluation. Ten regions of interest (ROIs) of each type of 
land cover were selected as evaluation samples by visual interpretation. Finally, we evaluated 
the classification accuracy using the confusion matrix method, and the results showed that the 
overall accuracy was 83.4192% and the Kappa coefficient was 0.8040. 

 
Figure 3. Urban park green space (a) and road network (b) in the central area of Wuhan City. 
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Figure 4. Land cover in the central area of Wuhan City. 

3. Methods 

3.1. Population Data Spatialization 

The population data spatialization is based on the spatial distribution model of population and 
uses a certain calculation method to analyze the data and to present the implicit spatial information 
in order to simulate its geographical distribution. This method includes spatial interpolation [22], 
remote sensing spectral feature estimation [23], estimation model based on multi-source data [24–26], 
estimation model based on land use/land cover (LULC) [27], and so on. The theoretical basis of the 
spatial interpolation method is that the closer the spatial position is, the more likely it is to have 
similar eigenvalues. Thus, the statistical population based on administrative division is transformed 
into grid population data. The advantage of the interpolation method is that it is simple and feasible, 
and it can also eliminate the abrupt data on both sides of the administrative boundary line to a certain 
extent. The disadvantage is that only the conversion of the data presentation format is completed, 
and the ability to depict the real population distribution is weak [28]. The remote sensing spectral 
feature estimation method evaluates population distribution according to the relationship between 
remote sensing spectral characteristics and population data. Researchers such as Lo C. P. [29] studied 
the relationship between the gray value of thematic mapper (TM) images in different bands and 
urban population density. Because the population distribution is related to many factors, such as 
geographical location, land cover, road network convenience, water area, and economic development, 
etc [19], some scholars have begun to use a variety of data as indicative factors related to population 
distribution. For example, Wang L. et al. [30] combined LULC data and night-light data and 
simulated the spatial distribution of population in China in 1990, 2000 and 2010. There are also many 
studies using point of interest (POI) data [31] and Volunteered Geographic Information (VGI) [32]. 
The estimation model based on LULC is the most widely used method for population spatial 
distribution simulation. The principle is based on establishing a multivariate statistical regression 
model based on LULC data and population distribution to estimate population distribution. 
However, due to the spatial heterogeneity of population distribution [33], compared with the Global 
Multivariate Statistical Regression model, the Geographical Weighted Regression (GWR) is more 
fitting to the performance of population distribution [34,35]. For example, Zhao Zhen et al. [35] used 
the GWR model to construct a spatial study of population data in southwest China. In this paper, by 
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constructing a GWR model between LULC and demographic data, the regression coefficients are 
obtained to simulate the spatial distribution of population within the study area. 

3.1.1. Spatial Method of Population Data Based on Land Cover 

This method assumes the same population density for the same land cover type. Firstly, the land 
cover data is obtained by using remote sensing image interpretation; then, the land cover data unit is 
taken as the explanatory variable, and the multivariate regression model is constructed with 
demographic data as the cause variable. The formula is as follows: 

𝑝௜ = ෍ 𝑎௝ × 𝑆௜௝ + 𝑏  ௡
௝ୀଵ  (1) 

where pi is the statistical population of the ith block in the study area, aj is the population distribution 
coefficient under the j type land cover type, Sij is the area of the j land cover type in the i block, n 
represents the number of land cover types. According to the principle of “no land without 
population”, the constant b is 0. 

According to Formula (1), we can simulate the predicted population value of each block, and 
then test the error according to the following formula: 𝐸 = 𝑝௜ᇱ − 𝑝௜𝑝௜ × 100% (2) 

where E is the relative error, pi is the actual population count of block i in the study area, and 𝑝௜ᇱ is 
the predicted population in block i. 

Since the model assumes that the distribution of population coefficients of the same land cover 
type is the same, there must be a deviation between the predicted population and the actual 
population. In order to ensure that the sum of the population data in the grid is consistent with the 
actual population sum, the adjustment method is used to revise the initial coefficients, and the process 
of rescaling is shown in the following equation: 𝑎௜௝ᇱ = 𝑝௜𝑝௜ᇱ × 𝑎௝ (3) 

where 𝑎௜௝ᇱ  is the population distribution coefficient under category j of block i after being amended, 
pi is the actual population count of block i in the study area, and 𝑝௜ᇱ is the predicted population in 
block i. 

A certain scale grid is constructed, and the land cover area in the grid is counted. On the basis 
of the correction coefficient, the population of the grid is inversely calculated to realize the 
rasterization of the population data. The grid demographics are shown in the following equation: 

𝑝𝑜𝑝௜௝௞ = ෍ 𝑎௜௝ᇱ × 𝑠௜௝௞௡
௝ୀଵ  (4) 

where popijk is the population of the kth grid cell, 𝑎௜௝ᇱ  is the correction of population distribution 
coefficient under category j land cover type of block i, and sijk is the area of the jth land cover type on 
the k grid cell in the i block. 

3.1.2. Geographical Weighted Regression (GWR) 

In the geospatial analysis, the observed values of variables are generally obtained according to 
a given geographical unit as a sample unit, and with the change of geographical location, the 
relationship between variables will change, and the adjustment of the relationship between variables 
caused by the geographical location change is called spatial non-stationary adjustment. In order to 
solve the distortion of the analysis results caused by the non-smoothness of spatial data, the GWR 
model was proposed by Fotheringham on the basis of summarizing the previous studies on local 
regression and variable parameters [36]. The essence of the GWR model is to add a distance function 
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as the weight on the basis of the traditional least squares method (OLS) regression model, so as to 
deal with the spatial non-stability of the data, and the related coefficients will change with the change 
of position. The model is in the following form: 

𝑦௜ = 𝛽଴ሺ𝑢௜, 𝑣௜ሻ + ෍ 𝛽௞ሺ𝑢௜, 𝑣௜ሻ𝑥௜௞ + 𝜀௜௣
௞ୀଵ  (5) 

where (ui, vi) is the spatial coordinates of the sample point i, β0(ui, vi) is the intercept for location I, βk 
(ui, vi) is the local estimated coefficient of the independent variable xj at location I, and εi is the error 
term. 

In this paper, we use the ArcGIS10.2 GWR tool, taking demographic data as a dependent variable 
and land cover areas as independent variables. The adaptive method is used to calibrate the 
weighting function, and the optimal bandwidth is determined by the minimum Akaike information 
criterion (AIC). 

The performance of OLS and GWR models was usually compared from two aspects: The 
predictive ability and the ability to address the spatial autocorrelation of variables [37,38]. We used 
the comparison model of the adjusted R2 and AIC. The higher the adjusted R2, the stronger the 
interpretation ability of variables, the smaller the AIC value, and the higher the fittest of the model. 
When the difference of the two models is greater than 3, it is considered that the model with a smaller 
AIC value is better. The Global Moran’s I index was calculated for the spatial autocorrelation; 
Moran’s I values range from −1 to 1. Values closer to 0 indicate that there is little or no spatial 
autocorrelation. If the Moran’s I index value is regular, it indicates a clustered trend, and if the 
Moran’s I index value is negative, it indicates a dispersed trend. If the distribution of the residuals 
obtained from the regression model has an obvious spatial autocorrelation, the assumption that 
residuals follow a random distribution is violated. That means the results of the model are not 
credible. 

3.2. Network Accessibility Analysis 

Network accessibility analysis is a method of calculating the service range of city parks under 
this cost value on the basis of a road network of the particular travel mode (by walking, cycling, bus 
or private car). Because it takes into account the actual routes and walking distances, network analysis 
can provide a more accurate measure of accessibility than using a simple buffering method [39,40]. 
A basic network consists mainly of centers, links, nodes, and cost. This study takes the real entrance 
and exit of the city park as the center, the city road as the link, while a node is an intersection between 
roads and the cost is expressed by the time spent on the road. 

This study takes the time cost of residents walking to the park as a quantitative criterion for 
accessibility. With 1 m/s as the average walking speed and knowing the length of the road, the cost 
value of each link can be calculated, and the intersection cost value is set to be 0.5 min. According to 
people’s travel habits, a maximum of 15 min to reach the green park is regarded as sound 
accessibility. 

3.3. Equity Evaluation 

On the basis of the population spatial and network accessibility analysis, spatial superposition 
analysis is used to generate a low-accessibility range of the population spatial distribution map and 
to count the low-accessibility population at the street scale; these are the overall indicators to measure 
the equity evaluation of urban green parks. 
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4. Results 

4.1. Spatial Population Data Based on Land Cover Type 

4.1.1. Performance Comparison of OLS and GWR Models 

There is a close relationship between population distribution and land cover type. Using 
LANDSAT8 remote sensing image data, this study classifies the study area, which is divided into 7 
categories: woodland, farmland, water, road, bare land, factory buildings, and other paving. Taking 
the block as the unit to count the area of each land type as a variable parameter, and then using SPSS 
to carry out Spearman correlation analysis with the population number respectively, the regression 
model could be built, with the results (Table 1) showing that the population distribution was 
significantly correlated with bare land, road, vegetation, factories, and paving. 

By combining various land type areas as explanatory variables, the population quantity is used 
as the dependent variable, and the OLS and GWR models are constructed. Finally, the model fitting 
optimization is best when road and other paving are used as explanatory variables. As can be seen 
from Table 2, variance inflation factor (VIF) = 1.97, which is less than 7.5, indicating that there is no 
multiple collinearity between variables. The AIC value of the OLS model is 515.417, and that of the 
GWR model is 458.706. The adjusted R2 value of the GWR model is 0.78, which is higher than that of 
the OLS model, at 0.34. As shown in Figure 5, the residual Moran’s I of the OLS model is 0.04, the z-
score is 2.03, and the p-value is 0.04, indicating that the residual error of the OLS model shows an 
obvious clustered pattern, and the confidence level is 95%. The Moran’s I of the GWR model is 0.01, 
the z-score is 0.85, the p-value is 0.39, and the residual error of the GWR model is in random mode. 
The above factors showed that the GWR model was superior to the OLS model in all aspects. 

 
Figure 5. Comparison of Residual Moran’s I index for traditional least squares method (OLS) (a) and 
global weighted regression (GWR) (b) models. 

4.1.2. Mapping the Population Spatial Distribution 

According to Formula 2, the population error of the model is tested. The total simulated 
population is 588,000, with an actual population of 576,000 and an overall relative error of 2.3%. The 
results of the error evaluation on the block scale are shown in Table 3, with an average relative error 
of 35.8%. Therefore, it is necessary to correct the error. On the basis of Formula 3, the corrected 
regression coefficient raster image can be obtained. In this study, 150 m was selected as the grid size, 
the road area and other paving grid images could be obtained by using the regional statistical tools, 
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and the population spatial distribution of the 150 m grid (Figure 6) in the study area could be 
calculated by combining the corrected regression coefficient raster. 

Table 1. Spearman correlation analysis between the population and land cover type. 

Land Cover Types Bare Land Road Water Woodland Farmland Factory 
Buildings 

Other 
Paving 

Correlation 
coefficient 

0.387 ** 0.229 * −0.072 0.220 * 0.111 0.279 ** 0.529 ** 

Significance level 0.000 0.031 0.503 0.038 0.299 0.008 0.000 
* Correlation is significant at the 0.05 level; ** Correlation is significant at the 0.01 level. 

Table 2. Comparison of OLS and GWR model results. 

 Model OLS GWR 
 VIF 1.97 (Road) 
 1.97 (Other paving) 

Model parameter 
AIC 515.417 458.706 
R2 0.36 0.87 

Adjusted R2 0.34 0.78 
 Moran’s I 0.04 0.01 

Table 3. The result of error evaluation on street scale. 

Relative Error（%） Number of Blocks 

Relative error (absolute value) 

≤10 20 
10~20 28 
20~30 12 
＞30 29 

Mean relative error 35.8 

 
Figure 6. Spatialized population density map of Wuhan’s central area in 2015. 
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4.2. Analysis of the Spatial Accessibility of Urban Park Green Spaces 

The accessibility analysis results of urban park green space based on network analysis are shown 
in Figure 7: the accessible coverage area, the area within a 15 min walking range of a park, reached 
161.28 km2, accounting for 25.8% of the total study area. In terms of spatial structure, areas with a 
high degree of accessibility are mainly concentrated in urban centers, including the junction of 
Jianghan District and Jiang’an District; most of the streets of Wuchang District, Hanyang District, and 
Qingshan District along the river. The green space in such areas is not only concentrated, but also the 
road facilities are relatively well constructed. 

The areas with poor accessibility are mostly concentrated in marginal areas, mainly due to the 
serious shortage of green space supply in the park. However, Jiangdi Street and Baishazhou Street in 
the southwestern part of the study area are less accessible due to the imperfect road system. That is, 
the density of the road network is low, and the supply of park green space is not the main reason for 
this. 

4.3. Evaluation of Green Space Equity in Urban Parks of Wuhan City 

Based on the analysis of the population spatial distribution and network accessibility, spatial 
superposition analysis is used to obtain the results of population spatial distribution with low-
accessibility (Figure 8). Also, beyond the reach of 15 min on foot, Hanzheng Street of Qiaokou District, 
Minyi Street, and Qianjin Street of Jianghan District and other areas of the densest population 
distribution comprise up to 3617 people per 150 m grid—that is, 160,755 people per km2—which is 
well above the population density of 89,200 people based on street scale statistics per km2 (Figure 2). 
In addition, Yijia Street, Changfeng Street, Gutian Street, HanJiadun Street and Shizishan Street, 
Luonan Street, Zhuodaoquan Street, and Guanshan Street in the northwest of the city are densely 
populated. 

According to statistics, the 15-min walking distance of Wuhan Central Park Green Space covers 
3.1 million people, accounting for 54.2% of the total population. With streets as the basic unit, the 
total number of people outside the reach is counted, and the results (Figure 9) show that there are 12 
streets at a level of equity, all of which are distributed in the center of the city. Most of these areas are 
close to comprehensive parks and green land along the river, with a population coverage of 100 
percent. In general, except for Hanzheng Street, most of the unequal streets are located outside a 15 
min walking distance, among which Hongshan Park has the worst equity. Three streets in Hongshan 
District are extremely unequal, namely Luonan Street, Shizishan Street, and Guanshan Street. Almost 
220 thousand people on Guanshan Street are without accessibility. Hongshan District has many 
universities, such as Wuhan University, Huazhong University of Science and Technology, Central 
China Normal University, Huazhong Agricultural University, and so on. The dense distribution of 
colleges and universities makes the total population of the Hongshan area large. At the same time, 
Figure 7 also shows the scarcity of green space in the park, which leads to its inequity. In the future, 
Wuhan should give priority to the construction of park green space in Hongshan District to meet the 
recreation needs of its multitudinous users. 
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Figure 7. Service areas for urban park green space according to the network analysis methods. 

 
Figure 8. Low-accessibility population spatial distribution. 
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Figure 9. Low-accessibility population at the street scale. 

5. Discussion and Conclusions 

Most of the current research on equity evaluation of green space in parks generally averages 
demographic data to measure the needs of users. For example, through the area ratio of the residential 
area and the street population data, the population of each residential area is counted and the spatial 
distribution of the population is calculated to evaluate the equity of the park green space [41]. There 
are some limitations in this method of assuming that the population is evenly distributed in 
residential buildings. On the basis of the study of the theory of the accessibility and equity of the 
green space of the park, this paper first adopted the population data spatialization method based on 
the land cover type to measure the demand level of the green space of the park and map the 
population data to the specific space unit. It is more accurate and more reliable than the traditional 
method (population data with the administrative division as the unit). Finally, the equity of park 
green space in the central city of Wuhan is evaluated quantitatively by adding the accessibility service 
range of park green space. 

The evaluation results showed the range of park green space in the central urban area of Wuhan 
was within a walking distance of 15 min, accounting for 25.8% of the total study area and, covering 
54.2% of the population in the study area. In addition, areas with poor equity were mainly 
concentrated in the urban periphery due to the scarcity of park green space resources [42]. The equity 
of park green space in Hongshan District was the worst, so the government should focus on the 
allocation of park green space in this District in the near future. 

However, there are still some limitations to this article. Since the vertical distribution (high-rise 
buildings) is also one of the important factors affecting the spatial distribution of the population, 
there have been studies to explore the method of spatializing population based on building 
information [19]. The building data of field visits are usually suitable for small-scale research, but it 
is difficult to obtain accurate building height information for the whole central area of Wuhan in our 
research. So obtaining such detailed vertical data and higher-resolution remote sensing images are 
the important aspects of our future efforts. In addition to the travel mode of walking, cycling or public 
transport could be added in the future to improve the results of the accessibility analysis. 

At present, with the development of GIS technology, the evaluation method of park green space 
accessibility has become more and more mature, but quantifying the public demand has been a 
difficult problem in the relevant fields. This paper, based on the principle of equal sharing, takes the 
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total population as a measure of demand and aims to provide a new method for quantitative demand 
space quantification. 

In the future, other socio-economic data, such as the distribution of the elderly, children, or low-
income groups, can be used to evaluate the needs of specific groups and include them under the 
existing landscape equity assessment system. The evaluation results will provide more effective 
support for the corresponding planning strategy. In addition, only considering the accessibility level, 
the fairness of urban park green space can be comprehensively evaluated in terms of per capita area 
and park quality in the future. 
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