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Abstract: The surgery quality of the total knee arthroplasty (TKA) depends on how accurate the
knee prosthesis is implanted. The knee prosthesis is composed of the femoral component, the plastic
spacer and the tibia component. The instant and kinetic relative pose of the knee prosthesis is one
key aspect for the surgery quality evaluation. In this work, a wireless visualized sensing system
with the instant and kinetic prosthesis pose reconstruction has been proposed and implemented.
The system consists of a multimodal sensing device, a wireless data receiver and a data processing
workstation. The sensing device has the identical shape and size as the spacer. During the surgery,
the sensing device temporarily replaces the spacer and captures the images and the contact force
distribution inside the knee joint prosthesis. It is connected to the external data receiver wirelessly
through a 432 MHz data link, and the data is then sent to the workstation for processing. The signal
processing method to analyze the instant and kinetic prosthesis pose from the image data has been
investigated. Experiments on the prototype system show that the absolute reconstruction errors of the
flexion-extension rotation angle (the pitch rotation of the femoral component around the horizontal
long axis of the spacer), the internal–external rotation (the yaw rotation of the femoral component
around the spacer vertical axis) and the mediolateral translation displacement between the centers of
the femoral component and the spacer based on the image data are less than 1.73◦, 1.08◦ and 1.55 mm,
respectively. It provides a force balance measurement with error less than ±5 N. The experiments
also show that kinetic pose reconstruction can be used to detect the surgery defection that cannot be
detected by the force measurement or instant pose reconstruction.

Keywords: total knee arthroplasty (TKA); multimodal sensing; visualization; pose reconstruction

1. Introduction

There is an increasing number of people that suffer from arthritis or chronic joint diseases. For
example, in the United States, the number of people aged 65 and older with these symptoms will
exceed 41 million by 2030 [1]. Among them, knee arthritis contributes considerably to morbidity and
results in a low quality of life. The primary surgical treatment for these patients is the total knee
arthroplasty (TKA), namely, the replacement of the worn knee joint with a prosthesis implant [2–6]. As
shown in Figure 1, the TKA implant is composed of three components: the femoral component, the
tibia component and the polyethylene plastic spacer.
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Figure 1. A total knee replacement prosthesis (side view). 

Many efforts have been made to develop the instrumentation of the knee joint prosthesis, for the 
purpose of surgery quality evaluation or long-term monitoring. Some investigations focused on 
measuring the contact force inside the joint prosthesis under different conditions [7–15]. In [7–9], a 
tibia tray was designed to measure the six load components in TKA. The in-vivo experiment under 
the conditions of walking or stair climbing during the postoperative follow-up of 6 to 10 months was 
conducted, in which the contact force of the prosthesis components were measured for five subjects. 
Similarly, a set of force sensing components were measured in [10–13] for three subjects in the 
scenarios of exercising and recreational activities after the TKA surgery, and the in-vivo experiment 
validated the effectiveness of the method. An implantable tibia prosthesis with the multiaxial force 
sensing was implemented and reported in [13]. In [14], a sensing system inside the knee implant for 
the force measurement was designed, fabricated and tested. The sensing system could be used to 
measure the contact force up to 1.5 times the body weight, and it was suitable for long-term 
monitoring. In [15–17], an instrumented smart knee prosthesis for the in-vivo measurement of the 
contact force and kinematics was proposed. This system could be used to monitor the knee prosthesis 
after the implantation with three magnetic sensors and a permanent magnet, and to prevent the 
possible damage to the prosthesis by detecting the load imbalance or abnormal forces and kinematics 
in the knee prosthesis. In [18], a long-term knee implant fatigue monitoring system using a floating-
gate sensor array was introduced for the long-term, battery-less fatigue monitoring. All the above-
mentioned designs were successful in measuring knee prosthesis contact force, and some could also 
measure the kinetic movement of the knee prosthesis. Nevertheless, they were designed to monitor 
the knee prosthesis after the TKA surgeries. It is also very meaningful to develop the technique to 
improve the implantation surgery quality during the process of TKA surgeries. The motivation of 
this work is to provide a device to help the surgeons to improve the TKA surgery quality during the 

Figure 1. A total knee replacement prosthesis (side view).

A successful TKA surgery improves the knee function, and relieves the knee joint pain. However,
the improper placement of the knee prosthesis may accelerate the attrition of the plastic spacer, which
will result in a reduced working life, and cause severe pain to patients [2]. The integrity of a successful
TKA surgery depends on several factors, including the appropriate alignment of the components, the
rotational congruency between the prosthetic proximal tibia and the prosthetic femoral condyles, and
the ligamentous balance of the knee joint [3]. Recent research [4] shows that the overall TKA failure
rate is about 2.3%, and more than 74% of TKA failures are caused by non-infection reasons such as
instability, aseptic loosening, stiffness, etc. Actually, most TKA failures are directly or indirectly caused
by the operative mechanical reasons such as malalignment [5]. Traditionally, the quality of the TKA
surgery is determined exclusively by the experience of the surgeons. The digitally guided assistance
equipment will be meaningful to improve the surgery quality, and reduce the failure rate caused by
the operative reasons.

Many efforts have been made to develop the instrumentation of the knee joint prosthesis, for
the purpose of surgery quality evaluation or long-term monitoring. Some investigations focused on
measuring the contact force inside the joint prosthesis under different conditions [7–15]. In [7–9], a
tibia tray was designed to measure the six load components in TKA. The in-vivo experiment under
the conditions of walking or stair climbing during the postoperative follow-up of 6 to 10 months was
conducted, in which the contact force of the prosthesis components were measured for five subjects.
Similarly, a set of force sensing components were measured in [10–13] for three subjects in the scenarios
of exercising and recreational activities after the TKA surgery, and the in-vivo experiment validated
the effectiveness of the method. An implantable tibia prosthesis with the multiaxial force sensing
was implemented and reported in [13]. In [14], a sensing system inside the knee implant for the force
measurement was designed, fabricated and tested. The sensing system could be used to measure the
contact force up to 1.5 times the body weight, and it was suitable for long-term monitoring. In [15–17],
an instrumented smart knee prosthesis for the in-vivo measurement of the contact force and kinematics
was proposed. This system could be used to monitor the knee prosthesis after the implantation with
three magnetic sensors and a permanent magnet, and to prevent the possible damage to the prosthesis
by detecting the load imbalance or abnormal forces and kinematics in the knee prosthesis. In [18], a
long-term knee implant fatigue monitoring system using a floating-gate sensor array was introduced
for the long-term, battery-less fatigue monitoring. All the above-mentioned designs were successful
in measuring knee prosthesis contact force, and some could also measure the kinetic movement of
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the knee prosthesis. Nevertheless, they were designed to monitor the knee prosthesis after the TKA
surgeries. It is also very meaningful to develop the technique to improve the implantation surgery
quality during the process of TKA surgeries. The motivation of this work is to provide a device to help
the surgeons to improve the TKA surgery quality during the surgery process. Such a device is used
only during the TKA surgery for measurement of less than one hour.

Some efforts have been made to provide the auxiliary methods to help the surgeons to improve
the quality in the surgery procedure. In [19], a “VERASENSE Knee System” is presented, in which an
array of sensors provides the dynamic, intraoperative feedback regarding tibiofemoral position and
quantitative pressure at peak contact points in the medial and lateral compartments in the TKA surgery.
The kinematic tracking can also be assessed. In [20], a wireless knee joint force measurement system
is proposed to increase the accuracy of the ligament balancing procedure. In [21], a force amplitude-
and location-sensing device has been designed to improve the ligament balancing procedure in TKA.
However, the above-mentioned systems only acquire the single modal sensor data, which may miss
some important information. The sensing system can be more comprehensive with additional sensor
data such as the image data.

A wireless visualized sensing system has been proposed and implemented in this work for
multimodal signal sensing inside the knee joint prosthesis. The system is used during the surgery
as a trial component for adjustment and calibration of the implant without reforming the standard
knee prosthesis or changing the standard clinical procedures. The proposed system consists of a
small-sized sensing device, a wireless data receiver and a data processing workstation. The system can
be used to acquire both the direct images and the contact force distribution inside the prosthesis. The
real-time images can help the surgeons directly see and understand the real situation in the joint. More
importantly, the image sensors have higher resolution than the piezoelectric, magneto-resistive and
other types of physical sensors, and the proposed system can acquire much richer information about
the knee joint prosthesis with the vision sensing.

The proposed sensing device is used during the surgery when the patient lies flat. Once the
sensing device is placed in the knee joint, the surgeons will move the shin manually, and the device
records the inside images and the contact forces. The further signal processing reconstructs the instant
pose, and the kinematic trajectory of the relative movement between the femoral component and
spacer. The surgeons can use the obtained information to calibrate the position of the components
in the joint prosthesis. During the surgery, the sensing device is temporarily inserted into the knee
implant as a trial component and will be replaced by the real spacer component once the femoral
component and tibia component are fitted to the proper position. The influence on the TKA procedure
is quite small. The TKA surgeons can easily use it in the standard clinical procedures. In general, the
proposed sensing device cannot be used to monitor the progression of the prosthesis over time after
the surgery, partially due to the limited battery lifetime with the huge power consumption associated
with image data acquisition and processing.

The rest of the paper is organized as follows. In Section 2, the proposed system architecture and
the design considerations are presented. Section 3 describes the hardware design details of the sensing
device as well as the wireless data receiver. In Section 4, the detailed data processing procedures and
algorithms will be introduced. Section 5 gives the experimental results. This work is concluded in
Section 6.

2. Design Considerations and System Design

The proposed wireless sensing measurement system consists of three parts, namely, the multimodal
sensing device, the wireless data receiver, and the workstation, as shown in Figure 2.
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Figure 2. Proposed system architecture.

The small-sized multimodal signal sensing device has the identical shape and size as the real
spacer of the knee joint prosthesis. During the surgery, before the final placement of the real spacer, the
sensing device is placed in its position inside the joint prosthesis as a trial of the spacer. The sensing
device can take two types of data: (1) the images of the femoral component viewed from the spacer
side; (2) the contact force distribution between the spacer and the femoral component. To facilitate the
image data processing, some simple but easily recognizable markers are printed on the surface of the
femoral component.

The wireless data receiver is used to receive the sensing data acquired by the sensing device
through a 432 MHz wireless link. The data receiver is then connected with the workstation through
a USB cable. The signal processing will be carried out in the workstation, which will recognize the
real-time relative position between the spacer and the femoral component from the multimodal sensing
data. The algorithm implemented in the workstation can also the 3D kinematic trajectory of the femoral
component with respect to the spacer. The surgeons can use the reconstructed information to evaluate
if the knee joint prosthesis is properly installed, and make the adjustment if necessary.

Generally speaking, the force data acquired through this system is only 2D data, and it is difficult
to obtain the 3D information from the force data only. The image data is also 2D data, but the
high-resolution images also contain the depth information. With the proposed kinetic pose estimation
algorithm in this work, the presented system can output a 3D motion trajectory which is not available
from other systems that acquire the force data only.

There are some abnormal TKA situations that cannot be identified using the force data only, and
there are also some abnormal situations that cannot be detected only using the image data. Figure 3
gives some examples to show the advantage of multimodal sensing data instead of the single-modal
data. As shown in Figure 3a, if the knee joint is appropriately installed, the spacer and the femoral
component is well aligned with a certain relative pose in both the static and kinetic conditions, and
the ligament around the two sides of the knee joint is well balanced. The sensing device presented
in [21] could be used to determine if the ligament is well balanced by comparing the contact forces of
the two sides, since it could only measure the contact force distribution between the spacer and the
femoral component. Such a device could detect the inappropriate condition as shown in Figure 2b, in
which the spacer is tilted, and the contact force distribution is not in equilibrium if the patients stand
straight. However, the sensing device in [21] could not report the inappropriate situation as shown in
Figure 2c. In this situation, the contact forces between the two sides of the knee joint are equal, and
therefore the device in [21] would faultily judge it as a good situation, although the spacer and the
femoral component are misaligned. Nevertheless, the malalignment can be detected by processing the
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direct images taken inside the joint using the multimodal sensing device presented in this work. In
general, the surgery flaws shown in both Figure 3b,c can be detected using the presented multimodal
sensing system.Sensors 2019, 19, x FOR PEER REVIEW 5 of 22 
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3. Hardware Implementation

The hardware implementation of the presented sensing system will be presented in this section.

3.1. Multimodal Sensing Device

The functional diagram of the image and force sensing device is shown in Figure 4. It consists
of five key functional blocks, i.e., the image sensor, the force sensors array in together with an
analog-to-digital converter (ADC) for signal conversion, the wireless data transmitter, the sensor
interface chip to bridge the sensors and the transmitter, and the microcontroller (MCU) for the system
initialization. There are four white LEDs distributed evenly around the image sensor lens. These four
LEDs provide the necessary lighting for the image sensing, since the sensing device will work in the
dark or dim environment side the knee joint. The illuminance can be tuned by adjusting the driving
current of the LEDs to avoid the overexposure or underexposure.
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The MSP430 MCU by Texas Instruments Inc. provides the initial settings for all the other chips in
the sensing device during the power-up phase. Since the wireless data transmitter and the sensors
operate autonomously, the MCU is programmed to power off to save power consumption once the
device starts the full operation.

The OV7670 image sensor used in this device is a CMOS sensor manufactured by Omnivision
with a maximum resolution of 640 × 480. In this application, it can be programmed to output images
with 480 × 480 or 240 × 240 resolution. A view angle of 140◦ is achieved by using a specially designed
wide-angle macro lens. Since the image sensor is very close to the femoral component, this wide view
angle macro lens can guarantee that most of the surface of the femoral component can be “seen” by the
image sensor.

The sensing device contains six low profile force sensors manufactured by Honeywell based on
silicon-implanted piezo resistors. Each sensor has a measurement range of 0–45 N. A 6-channel 24-bit
Σ∆ ADC by ADI is used to quantize the force sensors’ output.

The wireless data transmitter chip is a highly integrated system-on-a-chip (SoC) which is an
improved design of that reported in [22]. The ultra-low power SoC was originally designed to transmit
the image sensor data. It is mainly composed of a minimum shift keying (MSK) transmitter working at
the 400 MHz band and an image data compressor. In this application, the transmitter is configured to
work at 416 MHz, and it provides a raw data rate of 3 Mbps. The image data compressor provides a
near-lossless data compression ratio of ~3, which can help to boost the transmission frame rate. In this
application, the transmitter SoC can be configured to transmit 480 × 480 images with a frame rate of
~3 fps, or 240 × 240 images with a frame rate of 6–8 fps. The SoC contains one charge-pump boost
regulator and three programmable low-dropout (LDO) linear regulators, which provide 4 V, 2.5 V,
1.8 V and 1.2 V power supplies to all the other circuits in the SoC and the other function blocks in the
sensing device. The 4V power supply is used to drive four white LEDs, which serve as the flash lights
for image sensing. A coil antenna with −8.9 dBi peak gain and a voltage standing wave ratio (VSWR)
of less than 2.0 at the 416 MHz center frequency with the proper matching between the antenna and
the RF power amplifier. The RF transmitter has an energy efficiency of 1.3 nJ/bit not including the
power amplifier.

Since the wireless transmitter SoC was originally designed to transmit the image data, it can only
receive the data from the image sensor using an 8-bit parallel data port. The dedicated sensor interface
chip is used to pack the sensing data from the force sensor array and the image sensor into the format
of 8-bit parallel image data, which is readable by the SoC. Actually, the first four data rows of each
480 × 480 or 240 × 240 image is replaced by the force sensor data with careful consideration of data
synchronization. From the view point of the transmitter SoC, it just receives and transmits the “image”
data from the interface chip. By doing so, each frame of the image will lose the first four rows, which is
affordable, considering that each image contains at least 240 rows.

The sensing device is supplied by a 3 V lithium manganese battery with a capacity of 170 mAh.
There is the potential risk to use this type of battery since it is not dedicated for the medical applications.
Regardless, this battery is only used for the experiments before the clinical trial. In the future, the
lithium manganese battery can be replaced by a safer battery, such as the lithium/iodine cell battery for
the real medical product. The currently used battery has a peak current of 30 mA that occurs when the
image sensor is enabled, with the image sensor drawing 15 mA from a regulated 2.5 V supply and the
flash lights consuming ~14 mA current. The transmitter SoC has a peak current of ~6 mA. Note that
the image sensor and the transmitter are not enabled simultaneously to avoid too much peak current.
The force sensors and the ADC has a peak current of less than 1 mA. In overall, the sensing device
consumes a peak current of ~30 mA.

All the circuits in the sensing device are powered on only when necessary, the sensing device
has an average current of ~10 mA from the 3 V supply. Roughly, 40% of the total average current
is contributed by the transmitter SoC and almost all the remaining 60% is contributed by the image
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sensor in together with its flash lights. The force sensors and the following ADC are enabled at very
low duty cycle ratio, and the contribution to the average current is less than 1%.

As shown in Figure 5a, the force sensors and the image sensor reside on the same printed circuit
board (PCB) which has the same outline as the spacer. The PCB is sealed inside a transparent shell which
is composed of the upper shell and lower shell. The central region of the upper shell is transparent
and polished to ensure the image quality. The entire sensing device is shown in Figure 5b. It has the
identical shape and size as the real spacer used in the knee joint prosthesis. Since there are many
versions of spacers with various sizes to meet the requirements of different patients, the sensing devices
in the real product should also have as many as versions to match the spacers. The shell of the sensing
device is made of the medical-level polycarbonate. Since the device is not permanently implanted,
the wear issue is not of concern. Note that the sensing device is used when the patient lies flat. It is
estimated that the force applied to the shell of the device is less than 20 kilograms. The mechanical
architecture of the sensing device is well designed so that it can tolerate the loads up to 50 kilograms.
Experiments have been performed to validate the mechanical reliability of the sensing device with a
50 kg load.
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The performance of the sensing device is summarized in Table 1.

Table 1. Sensing device performance summary.

Specification Performance

Typical size (varies with the prosthesis model) 76 mm × 52 mm × 17 mm

Typical weight (varies with the prosthesis model) 25.56 g

Force sensing Number of sensors 6

Measurement range (each sensor) 0–45 N

Image sensing Resolution 240 × 240 or 480 × 480

Maximum frame rate 8 fps (240 × 240)

Wireless transmitter
Carrier frequency 416 MHz

Maximum data rate 3 Mbps

Power supply 3 V

Average power consumption ~10 mA@3V

Battery Lifetime(CR2025 Li/MnO2) >5 h
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3.2. Wireless Data Receiver

The data receiver in the proposed wireless visualized measurement system is used to receive the
multimodal data from the sensing device. The block diagram of the receiver is shown in Figure 6. The
key parts of the data receiver are the RF receiver and the FPGA-based MSK demodulator. The digital
demodulator receives the digitized intermediate frequency (IF) signals from a pair of 8-bit 24 Msps
ADCs, and performs the MSK demodulation. Note that in the sensing device, the image sensor output
and the force sensors’ output are packed. Correspondingly, the image data and the force data are
decomposed from the received data in the data receiver. The data receiver is then connected to the
workstation through a USB cable for further data processing.
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124 × 86 × 22 mm3. It contains a li-iron battery of 4000 mAh, and the battery life is about 10 h.
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4. Multimodal Sensor Data Processing

The multimodal sensing data is eventually sent to the workstation for further processing to acquire
the relative pose of the components in the knee joint prosthesis.

The force sensors’ data can be used to check the ligament balance of the knee prosthesis, and
the details of the force data processing can be found in the paper previously published by our
group [21]. As shown in Figure 8, the image data processing is composed of three steps, i.e., the image
data pre-processing, the instant pose reconstruction from the individual image, and the kinetic pose
reconstruction based on multiple consecutive images.
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4.1. Image Pre-Processing

In the image pre-processing part, the images are denoised, and then the contrast is enhanced, and
the lens distortion is corrected. Note that the contrast enhancement is necessary since all the images
are taken under the low illumination scenario inside the knee prosthesis. The distortion introduced
by the wide-angle macro-lens must also be corrected before further processing. The steps of the
pre-processing are shown in Figure 8.

The Block-Matching and 3D filtering (BM3D) algorithm [23] is used for the denoising. In this
algorithm, the similar blocks in the femoral component surface images are used to eliminate the noise,
and the image quality is improved in terms of both the peak signal-to-noise ratio (PSNR) and the
subjective visual quality.

For the contrast enhancement, a modified Multi-Scale Retinex (MSR) algorithm [24] is used to
enhance the edge features of the images. For each input image data matrix S(x,y), the output of the
MSR processing is the reflectance matrix R(x,y) given by:

R(x, y) = S(x, y)/(F(x, y) ∗ S(x, y)) (1)

in which F(x,y) is a Gaussian filter. F(x,y) is given by:

F(x, y) = exp
(
−

(
x2 + y2

)
/c2

)
(2)

where c is the scale factor. To simplify the calculation, the logarithmic matrix r(x,y) is used, and r(x,y) is
calculated as:

r(x, y) = ln R(x, y) = ln S(x, y) − ln(F(x, y) ∗ S(x, y)) (3)

Following the method in [25], three Gaussian filters Fk(x, y) = exp
(
−

(
x2 + y2

)
/c2

k

)
, k = 1, 2, 3 are used

to generate three outputs, i.e., rk(x, y), k = 1, 2, 3 and the weighted summation of rk(x, y), k = 1, 2, 3 is
calculated to find the final MSR output.

R(x, y) = exp
(∑3

k=1
Wkrk(x, y)

)
(4)

In this application, based on the experiments on the image data taken in the emulated environment,
the MSR processing is only applied to the G channel of the original RGB image data, which yields the
best subjective quality. Also based on the experimental data, the following set of parameters are used
for the MSR processing, i.e., c1 = 15, c2 = 80, c3 = 250, and W1 = W2 = W3 = 1/3.
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The R, G and B channels after the MSR processing are normalized separately, to balance the
relative intensities of the three-color channels.

The last step in the pre-processing is to correct the lens distortion. The camera calibration
method from OpenCV [26] is used. A test board with the chess board pattern is utilized to find the
camera matrix, distortion coefficients, rotation and translation vectors, etc., which is then used for the
distortion correction.

4.2. Establishment of the Pose Reconstruction Problem

To facilitate the image data processing, five pairs of control points are marked on the femoral
component, by printing some special markers on its surface. Those control points are numbered as
1L/1R, 2L/2R, 3L/3R, 4L/4R and 5L/5R. As shown in the side view of the femoral component given in
Figure 9, the five pairs of control points are spaced approximately evenly on the femoral component
surface with an angle difference of 30◦. Any two pairs of control points form a rectangle. The femoral
component is usually made of reflective materials, which will bring difficult to take the. However, the
most concerned features of the images are the five pairs of control points. Non-reflective material with
high contrast should be chosen to print the control points, so that they can then easily be distinguished,
even if the entire image is affected by the surface reflection issue.
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Geometrically, the spacer and the femoral component are represented by two coordinate 
systems, namely, the spacer coordinate system {OCXCYCZC}, and the femoral coordinate system 
{OFXFYFZF}, as shown in Figure 10. For the spacer coordinate system, the origin OC is the center of the 
space bottom plane, the X axis OCXC is defined as the long axis the space bottom plane, and the Y axis 
OCYC is the axis perpendicular to OCXC on the space bottom plane, and the Z axis OCZC is vertically 
perpendicular to the space bottom plane. Ideally, when the femur is alignment with the tibia, the 
femoral coordinate system {OFXFYFZF} is fully parallel to {OCXCYCZC}, and the two origins OF and OC 
are apart vertically. The spacer coordinate system is used as the camera coordinate system in this 

Figure 9. Femoral component with five pairs of control points on its surface: (a) side view, (b) front
view (partial).

Only three types of markers are used, namely, the triangle, round and square markers. 1L/1R
markers are triangle, 2L/2R and 3L/3R markers are round, and 4L/4R and 5L/5R markers are square.
Since the movement of the femoral component has limited freedom, the control point numbers can be
easily recognized by recognizing the shapes of the markers. For example, if the surface image of the
femoral component contains two round markers and two square markers, the control point numbers
are recognized as 3L/3R and 4L/4R.

The image data processing of this system turns to finding the relative position between the spacer
(sensing device) and the femoral component from the surface images of the femoral component “seen”
by the spacer (sensing device) with the aid of the control points.

Geometrically, the spacer and the femoral component are represented by two coordinate systems,
namely, the spacer coordinate system {OCXCYCZC}, and the femoral coordinate system {OFXFYFZF},
as shown in Figure 10. For the spacer coordinate system, the origin OC is the center of the space bottom
plane, the X axis OCXC is defined as the long axis the space bottom plane, and the Y axis OCYC is the
axis perpendicular to OCXC on the space bottom plane, and the Z axis OCZC is vertically perpendicular
to the space bottom plane. Ideally, when the femur is alignment with the tibia, the femoral coordinate
system {OFXFYFZF} is fully parallel to {OCXCYCZC}, and the two origins OF and OC are apart vertically.
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The spacer coordinate system is used as the camera coordinate system in this implementation. The
relative position of the spacer and the femoral component can be described by the rotational angles [φ,
θ, ψ], and the 3-dimensional translation tCF = [tx, ty, tz]T between the two origins. φ is the the roll
angle about the OCYC axis. θ is the flexion-extension rotation angle, namely, the pitch angle about
the OCXC axis. ψ is the internal–external rotation angle, namely, the yaw angle about the OCZC axis
between the two coordinate systems. tx is the mediolateral translation, namely, the horizontal distance
between the centers of the femoral component and the spacer along the OCXC axis. For a successful
TKR surgery, it is expected that φ, ψ and tx are all zero when the tibia moves relative to the femur.

Sensors 2019, 19, x FOR PEER REVIEW 11 of 22 

 

implementation. The relative position of the spacer and the femoral component can be described by 
the rotational angles [ϕ, θ, ψ], and the 3-dimensional translation tCF = [tx, ty, tz]T between the two 
origins. ϕ is the the roll angle about the OCYC axis. θ is the flexion-extension rotation angle, namely, 
the pitch angle about the OCXC axis. ψ is the internal–external rotation angle, namely, the yaw angle 
about the OCZC axis between the two coordinate systems. tx is the mediolateral translation, namely, 
the horizontal distance between the centers of the femoral component and the spacer along the OCXC 
axis. For a successful TKR surgery, it is expected that ϕ, ψ and tx are all zero when the tibia moves 
relative to the femur. 

ZF

XF
YF

OF

YA

ZAOA

XA

C1

C2

C3

C4

Camera (spacer) 
coordinate system

Control point 
coordinate system

XC

YC

ZC

OC

Pitch θ 

Yaw ψ 

Roll φ 

Femoral component 
coordinate system

 
Figure 10. The coordinate systems to represent the relative position between the spacer and the 
femoral component. 

In the image data processing, it is more convenient to use the rotation matrix R instead of the 
rotational angles [ϕ, θ, ψ]. [ϕ, θ, ψ] can easily calculated from R based on the definition of R as follows: 

φ ψ φ ψ φ
θ ψ ψ φ θ ψ θ φ ψ θ φ θ
ψ θ φ ψ θ θ φ ψ ψ θ φ θ

 − 
 = + − − 
 − + + 

cos cos cos sin sin
cos sin cos sin sin cos cos sin sin sin cos sin
cos cos sin sin sin cos sin sin cos sin cos cos

CFR  (5) 

The relative pose reconstruction problem is converted to the problem to find RCF and tCF between 
two coordinate systems {OCXCYCZC} and {OFXFYFZF}. 

It is not easy for the sensing device to directly recognize the coordinate system {OFXFYFZF}. 
However, with the wide view angle of the image sensor in the sensing device, any femoral component 
image taken by the sensing device contains at least 2 pairs of control points, which can define an 
assistant control point coordinate system {OAXAYAZA}. There are a series of control point coordinate 
systems {OAXAYAZA} defined by the control points, and the rotation matrix RAF and the translational 
distance tAF between any {OAXAYAZA} and {OFXFYFZF} are exactly known. On the other hand, RCA and 
tCA between {OCXCYCZC} and {OAXAYAZA} can be calculated using the image data processing shown 
next.  

Assume that the coordinates of a given point in these three coordinate systems are CC = [xC, yC, 
zC]T, CA = [xA, yA, zA]T, and CF = [xF, yF, zF]T, respectively. The coordinate transformation gives the 
following equations: 

( )= −F CF C CFC R C t  (6) 

( )= −F AF A AFC R C t  (7) 

Figure 10. The coordinate systems to represent the relative position between the spacer and the
femoral component.

In the image data processing, it is more convenient to use the rotation matrix R instead of the
rotational angles [φ, θ, ψ]. [φ, θ, ψ] can easily calculated from R based on the definition of R as follows:

RCF =


cosφ cosψ − cosφ sinψ sinφ
cosθ sinψ+ cosψ sinφ sinθ cosψ cosθ− sinφ sinψ sinθ − cosφ sinθ
− cosψ cosθ sinφ+ sinψ sinθ cosθ sinφ sinψ+ cosψ sinθ cosφ cosθ

 (5)

The relative pose reconstruction problem is converted to the problem to find RCF and tCF between
two coordinate systems {OCXCYCZC} and {OFXFYFZF}.

It is not easy for the sensing device to directly recognize the coordinate system {OFXFYFZF}.
However, with the wide view angle of the image sensor in the sensing device, any femoral component
image taken by the sensing device contains at least 2 pairs of control points, which can define an
assistant control point coordinate system {OAXAYAZA}. There are a series of control point coordinate
systems {OAXAYAZA} defined by the control points, and the rotation matrix RAF and the translational
distance tAF between any {OAXAYAZA} and {OFXFYFZF} are exactly known. On the other hand, RCA

and tCA between {OCXCYCZC} and {OAXAYAZA} can be calculated using the image data processing
shown next.

Assume that the coordinates of a given point in these three coordinate systems are CC = [xC, yC,
zC]T, CA = [xA, yA, zA]T, and CF = [xF, yF, zF]T, respectively. The coordinate transformation gives the
following equations:

CF = RCF(CC − tCF) (6)

CF = RAF(CA − tAF) (7)
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CA = RCA(CC − tCA) (8)

Substituting (6) and (7) into (8) gives:

CF = RAF(RCA(CC − tCA) − tAF)⇒ CF = RAFRCA
(
CC −

(
tCA + R−1

CAtAF
))

(9)

Comparing (6) and (9), it follows that:[
RCF tCF

]
=

[
RAFRCA R−1

CAtAF + tCA
]

(10)

The problem to solve RCF and tCF is finally converted to the coplanar perspective-4-points
problem [27] to find [RCA, tCA], with [RAF, tAF] as the known parameters.

4.3. Instant Pose Reconstruction

After the pre-processing, the control points in the femoral component images are recognized. The
images are firstly filtered by an adaptive threshold filter to generate the binary images. The contours of
the control point markers are then recognized using the method by [28]. The numbers of the control
points are recognized by the markers’ shapes. For each individual image, four adjacent control points
which form the biggest rectangle area in this image are chosen to establish the control point coordinate
system {OAXAYAZA}.

An analytic and non-iterative method is then proposed to solve the coplanar perspective-4-points
problem to find [RCA, tCA] as described in the previous subsection. There are many classical methods
to solve this perspective problem, including the non-iterative method Epnp [29], the iterative linear
solution using unbiased statistics [30,31], some simple methods based on P3P problem [32,33] and
many linear analytic solutions [34–38] and so on. Compared to these classical methods, the proposed
method has the advantage of low computational complexity.

The geometry of the proposed method is explained in Figure 11. As shown in Figure 11, the four
control points C1, C2, C3, C4 are projected to the image plane as the image points m1, m2, m3, m4, and
the correspondence between the control points and the image points is known. The point O is the
perspective center of the camera. Solving the estimation problem can be equivalent to solving the

depth of OC1, OC2, OC3, and OC4. The vector
⇀
ri is the unit vector with the same direction as

⇀
Omi (I =

1, 2, 3, 4) and γ1, γ2, γ3 are the angles between
⇀
r1 and

⇀
r2,

⇀
r3,

⇀
r4, respectively. H1, H2, H3 are the points

on line OC2, OC3, and OC4 with C1H1⊥OC2, C1H2⊥OC3 and C1H3⊥OC4.
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To simplify this problem, assume that OC1 has a length of x and C1H1, C1H2, C1H3 equal to k1x,
k2x and k3x respectively. How to find the values of k1, k2, k3 and x is explained as follows. In the
triangle C1C2C3:

C1C2
2 = D2

1 = C1H1
2 + H1C2

2 = x2
(
sin2 γ1 + k2

1

)
(11)

C1C3
2 = D2

1 + D2
2 = C1H2

2 + H2C3
2 = x2

(
sin2 γ2 + k2

2

)
(12)

where D1 and D2 are the two side lengths of rectangle C1C2C3C4. According to the cosine theorem:

cos ∠C2C1C3 =
D1√

D2
1 + D2

2

=

→

C1C2 ∗
→

C1C3∣∣∣∣∣ →C1C2

∣∣∣∣∣ ∗ ∣∣∣∣∣ →C1C3

∣∣∣∣∣ =
→

C1C2 ∗
→

C1C3

D1/
√

D2
1 + D2

2 ∗C1C32
(13)

According to the geometry relationship:

→

C1C2 =
→

OC2 −
→

OC1 = x
[
(cosγ1 + k1)

→
r2 −

→
r1

]
(14)

→

C1C3 =
→

OC3 −
→

OC1 = x
[
(cosγ2 + k2)

→
r3 −

→
r1

]
(15)

Substitute (14) and (15) into (13):

D2
1

D2
1 + D2

2

(
sin2 γ2 + k2

2

)
x2 = x2

[
(cosγ1 + k1)

→
r2 −

→
r1

][
(cosγ2 + k2)

→
r3 −

→
r1

]
(16)

(16) can be expanded to (17):

a1k2
2 + b1k2 + c1 = k1(d1k2 + e1) (17)

Substitute (17) into (11)/(12):

f1k4
2 + g1k3

2 + h1k2
2 + i1k2 + j1 = 0 (18)

Similarly, in the triangle C1C4C3:

a2k2
2 + b2k2 + c2 = k3(d2k2 + e2) (19)

f2k4
2 + g2k3

2 + h2k2
2 + i2k2 + j2 = 0 (20)

While in the triangle C1C2C4:

C1C2⊥C1C4 ⇒ x2
[
(cosγ1 + k1)

→
r2 −

→
r1

][
(cosγ3 + k3)

→
r4 −

→
r1

]
= 0 (21)

Combining (17), (19) and (21) leads to an equation without k1 or k3:

f3k4
2 + g3k3

2 + h3k2
2 + i3k2 + j3 = 0 (22)

In (17)–(22), the coefficients ai, bi, ci, di, ei, f i, gi, hi, ii, ji (I = 1, 2, 3) are used without explanation.
Actually, these coefficients all have the analytical expressions in terms of γ1, γ2, γ3, which are shown in
Appendix A. (18), (20) and (22) can be combined and written in the form of matrix operation:

f1 g1 h1 i1 j1
f2 g2 h2 i2 j2
f3 g3 h3 i3 j3

( k4
2 k3

2 k2
2 k2 1

)T
=


0
0
0

 (23)
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The unique solution of k2 can be found from these homogeneous linear equations, based on the
right singular vectors of null space of the 3 × 5 matrix [20]. Consequently, k1, k3 and length x can be
calculated from (17), (19) and (11), respectively. Note that:

→

OC1 = x
→
r1

→

OC2 = x(cosγ1 + k1)
→
r2

→

OC3 = x(cosγ2 + k2)
→
r3

→

OC4 = x(cosγ3 + k3)
→
r4

(24)

Consequently, RCA and tCA can be calculated as:

→

tCA =
[

tx ty tz
]T

=
1
4

(
→

OC1 +
→

OC2 +
→

OC3 +
→

OC4

)
(25)

RCA =

[
→

C1C2

‖

→

C1C2‖

→

C1C4

‖

→

C1C4‖

→

C1C2×
→

C1C4

‖

→

C1C2×
→

C1C4‖

]
(26)

RCF and tCF can then be calculated using (10), and the rotational angles [φ, θ, ψ] can be calculated
from RCF using (5).

Obviously, the proposed method can solve the problem without any iteration, and the computation
complexity can be characterized as O(1). As a result, the instant pose reconstruction can be implemented
in real time, while requiring limited computation overhead.

4.4. Kinetic Pose Reconstruction

During the TKA surgeries, the instant relative pose reconstructed by the image data and the
ligament balance indicated by the force sensor data should be checked by slowly moving the tibia with
respect to the femur. As shown in Figure 12, there are some typical angles between the tibia and the
femur, such as 0◦, 45◦, 90◦ and 130◦ [39].
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Figure 12. Typical angles for instant prosthesis pose check: (a) 0◦, (b) 90◦.

It is also of great significance to check the kinematic trajectory of the femoral component “seen”
by the spacer when moving the tibia with respect to the femur. A successful surgery will lead to
a trajectory that is central symmetric and smooth. The symmetry of the kinetic trajectory indicates
the balance of the prosthesis, and the smoothness indicates the knee joint can move freely without
interference between the prosthesis components.

In the instant pose reconstruction, the coordinate of the femoral component coordinate origin in
the spacer coordinate system is described as tCF = [tx, ty, tz]T. The change of tCF = [tx, ty, tz]T when
moving the tibia with respect to the femur can be used as the kinetic trajectory. However, this trajectory
has limited amplitude. To amplify this trajectory, another point P which is the lowest central point
of the femoral component is defined and the relative trajectory of P in the spacer coordinate system
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is described. As shown in Figure 13, the point P has a coordinate of [0, 0, −50]T, then in the spacer
coordinate system, the coordinate of point P is given by:

CP,C = R−1
CFCP,F + tCF = R−1

CF

[
0 0 −50

]T
+

[
tx ty tz

]T
(27)Sensors 2019, 19, x FOR PEER REVIEW 15 of 22 
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Figure 13. Kinetic pose reconstruction actually reconstructs the trajectory of point P in the
femoral component.

The kinetic pose reconstruction is just to sketch the trajectory of point P with the coordinate CP,C

in the camera coordinate system.

5. Experimental Results

5.1. Prototype Sensing System

The prototype system implemented in this work is shown in Figure 14a. The sensing device
can be programmed take images with resolution of 240 × 240 or 480 × 480. The frame rate of image
transmission can reach 8 fps when transmitting the compressed 240 × 240 images. The frame rate is
actually limited by the data rate of the wireless transmitter. Considering that the knee joint moves
quite slowly, this frame rate is acceptable. The refreshing rate of the force data acquisition is 30 Hz.Sensors 2019, 19, x FOR PEER REVIEW 16 of 22 
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In the experiment, the spacer (sensing device) is placed in a test platform, which can be used to
resemble the situation that the femoral component moves around the spacer during the TKA surgery.
As shown in Figure 14b, the test platform includes a base which is used to fix the spacer (sensing device)
and a movable femoral component. The femoral component can rotate along a track to resemble
the flexion-extension (pitch) rotation around the OCXC axis in the spacer coordinate system. The
base to hold the spacer can also rotate to resemble the internal–external (yaw) rotation of the femoral
component around the OCZC axis. The mediolateral distance between the femoral component and the
spacer can also be adjusted to resemble the translational displacement. The test platform consists of
the rotation and translation tracks with the scales, and the pitch and yaw angles and the translational
displacement of the femoral component can be precisely controlled. The sensing devices take the
image of the femoral component and record the contact force between the sensing device and the
femoral component during the rotation and translation.

5.2. Experiment Results of Instant Pose Reconstruction

The signal processing steps of the instant relative pose reconstruction is shown in Figure 15.
Figure 15a gives one typical original image before the processing. Figure 15b–d give the image after
the denoising and contrast enhancement, the distortion correction, and the control point recognition,
respective. Figure 15e gives the relative pose reconstruction result, including the pitch, yaw, and the
roll angles, and the translational distance.
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Figure 15. Instant relative pose reconstruction: (a) original image, (b) after denoising and
contrast enhancement, (c) after lens distortion correction, (d) control point recognition, (e) instant
pose reconstruction.

To evaluate the pose reconstruction accuracy, more than 400 images of the femoral component are
taken by the sensing device, with the flexion-extension (pitch) angle varying from 0◦ to 90◦ with a step
of 10◦, the internal–external (yaw) angle varying from−15◦ to 15◦ with a step of 5◦, and the mediolateral
translation varying from 0 to 30 mm with a step of 5 mm. During the instant pose reconstruction
experiment, the femoral component is placed on the test platform. The relative flexion-extension
(pitch) angle, internal–external (yaw) angle and translational displacement of the femoral component
with respect to the spacer are adjusted, and the motion degrees/distances are read from the scales on
the test platform. The measurement errors are obtained by comparing the reconstructed pose to the
motion values read from the scales. The detailed pose reconstruction error distribution is shown in
Figure 16. With the proposed system, the flexion-extension angle estimation error of 0.01◦ ± 1.06◦

(mean ± σ), and the internal–external estimation error is 0.03◦ ± 0.50◦ (mean ± σ). As a contrast,
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in [17], the flexion-extension angle estimation error is 0.0◦ ± 0.9◦ (mean ± σ), and the internal–external
estimation error is 0.2◦ ± 1.1◦ (mean ± σ). The presented vision system has a smaller estimation error.
In addition, the most important performance for this system is the absolute maximum error. The
absolute maximum flexion-extension (pitch) and internal–external (yaw) reconstruction errors are
1.73◦ and 1.08◦, respectively. And the absolute maximum mediolateral translation reconstruction error
is only 1.55 mm. The instant relative pose reconstruction accuracy is summarized in Table 2.
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Figure 16. Experimental pose reconstruction errors of flexion-extension (pitch) angle, internal–external
(yaw) angle, and mediolateral translation.

Table 2. Pose Reconstruction Errors.

Maximum Error
(Absolute Value)

Average Error
(Absolute Value) Mean Error Standard

Derivation σ

flexion-extension (pitch) 1.73◦ 0.67◦ −0.01◦ 1.06◦

internal–external (yaw) 1.08◦ 0.51◦ 0.03◦ 0.50◦

mediolateral translation 1.55 mm 0.82 mm −0.04 mm 0.72 mm

5.3. Balance Measurement with Force Sensing

The force sensing data can be used to determine the contact force between the spacer and the
femoral component is balanced between the sides. In the experiment, imbalanced forces are applied
to the sides of the spacer (sensing device), and the force sensors in the sensing device measure the
force difference (imbalance). Figure 17a shows the measured force imbalance versus the actual force
imbalance, and Figure 17b shows the force imbalance measurement error versus the actual force
imbalance. The maximum force imbalance measurement error is less than ±5 N, which is adequately
small to judge the ligament balance of the knee joint prosthesis.
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5.4. Kinetic Pose Reconstruction 

In this kinetic pose reconstruction experiment, the femoral component is placed in two typical 
situations, and the relative trajectories of the femoral component “seen” by the spacer are acquired 
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Figure 17. Contact force imbalance measurement: (a) measured force difference vs. actual force
difference, (b) force imbalance measurement error vs. actual force difference.

5.4. Kinetic Pose Reconstruction

In this kinetic pose reconstruction experiment, the femoral component is placed in two typical
situations, and the relative trajectories of the femoral component “seen” by the spacer are acquired and
plotted. Specifically, the femoral component rotates around the OCXC and OCZC axes of the sensing
device slowly with a rotation velocity of ~30◦ per second, and this rotation velocity is close to that in
the TKA procedure in which the surgeons check the trial implants by slowly moving the tibia with
respect to the femur.

As shown in Figure 18a, the femoral component is in an appropriate position. The measured force
data shows good ligament balance, the instant relative pose meets the expectation, and the kinetic
trajectory is smoot and resides on the YOZ plane.
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In this kinetic pose reconstruction experiment, the femoral component is placed in two typical 
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Figure 18. Examples of kinetic pose reconstruction: (a) successful surgery gives smooth kinetic trajectory,
(b) kinetic trajectory finds inappropriate surgery which cannot be found using force measurement or
instant pose reconstruction.

As shown in Figure 18b, the femoral component is in the good position, but the spacer does
not exactly fit the space between the femoral component and tibia component. In this case, both the
force measurement and the instant relative pose at some specific point show good result. But the
kinetic trajectory shows that relative movement between the spacer and the femoral component has
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some fluctuation which is does not meet the expectation. This case shows an example of TKA surgery
defection that can be found only using the kinetic pose reconstruction.

The experiment results show that it provides more comprehensive evaluation of the TKA
surgeries by combining the result of force sensing, the instant pose reconstruction, and the kinetic post
reconstruction, rather than that with only the force sensing in [8].

6. Conclusions

A wireless visualized measurement system has been proposed and implemented to improve the
quality of the TKA surgeries. The system consists of a multimodal sensing device, a wireless data
receiver and a multimodal data processing workstation. The multimodal sensing device can take the
images of the femoral component of the knee prosthesis and measure the contact force distribution
between the spacer and the femoral component. The system is capable of the instant and kinetic
prosthesis pose reconstruction based on the image sensing. With the image processing algorithms
proposed in this work, the proposed system can provide pose reconstruction with higher accuracy. The
absolute reconstruction errors of the flexion-extension rotation angle, the internal–external rotation
angle as well as the mediolateral distance between the femoral component and the spacer are less than
1.73◦, 1.08◦ and 1.55 mm, respectively. The force imbalance measurement error is less than ±5 N. With
the kinetic pose estimation algorithm, the presented system can output a 3D motion trajectory which is
not available from other systems that acquire the single modal data such as the force data. The system
is used during the surgery as a trial component. The influence on the TKA procedure is quite small.
The TKA surgeons can easily use it in the standard clinical procedures.

The current implementation has several limitations that can be improved in the future. The
image sensing frame rate is limited to 8 fps due to the limited data rate provided by the transmitter.
The wireless transmission distance is limited due to the limited antenna gain. In the future, the
transmitter and antenna design will be improved so that the system can provide higher image frame
rate and longer wireless communication distance. The device will soon be validated in the real clinical
environment. There is the possibility that the data processing algorithm performance may degrade
under real situations. The algorithms will be then optimized for the real situations.
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Appendix A

In (17)–(22), the coefficients ai, bi, ci, di, ei, f i, gi, hi, ii, ji (i = 1, 2, 3) are listed below:

a1 = D2
1/

(
D2

1 + D2
2

)
b1 = cos2 γ2 − cosγ1

→
r2 ∗

→
r3

c1 = a1 sin2 γ2 − cosγ1 cosγ2
→
r2 ∗

→
r3 + cos2 γ2 + cos2 γ1 − 1

d1 =
→
r2 ∗

→
r3

e1 = cosγ2
→
r2 ∗

→
r3 − cosγ1

(A1)

n1 = a1 sin2 γ2 − sin2 γ1 (A2)
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

f1 = a2
1 − a1d2

1
g1 = 2(a1b1 − a1d1e1)

h1 = b2
1 + 2a1c1 − a1e2

1 − n1d2
1

i1 = 2(b1c1 − n1d1e1)

j1 = c2
1 − n1e2

1

(A3)



a2 = D2
1/

(
D2

1 + D2
2

)
b2 = cos2 γ2 − cosγ3

→
r4 ∗

→
r3

c2 = a2 sin2 γ2 − cosγ3 cosγ2
→
r4 ∗

→
r3 + cos2 γ2 + cos2 γ3 − 1

d2 =
→
r4 ∗

→
r3

e2 = cosγ2
→
r4 ∗

→
r3 − cosγ3

(A4)

n2 = a2 sin2 γ2 − sin2 γ3 (A5)

f2 = a2
2 − a2d2

2
g2 = 2(a2b2 − a2d2e2)

h2 = b2
2 + 2a2c2 − a2e2

2 − n2d2
2

i2 = 2(b2c2 − n2d2e2)

j2 = c2
2 − n2e2

2

(A6)


m =

→
r2 ∗

→
r4

n3 =
(
cosγ3

→
r2 ∗

→
r4 − cosγ1

)
p =

(
cosγ1

→
r2 ∗

→
r4 − cosγ3

)
q =

(
cosγ1 cosγ3

→
r2 ∗

→
r4 − cos2 γ1 + sin2 γ3

) (A7)



f3 = a1a2m
g3 = m(a1b2 + a2b1) + n3(a1d2 + a2d1)

h3 = m(a1c2 + a2c1 + b1b2) + n3(a1e2 + b1d2) + p(a2e1 + b2d1) + qd1d2

i3 = m(b1c2 + b2c1) + n3(c1d2 + b1e2) + p(c2d1 + b2e1) + q(e1d2 + d1e2)

j3 = mc1c2 + n3c1e2 + pe1c2 + qe1e2

(A8)
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