
sensors

Article

NINQ: Name-Integrated Query Framework for
Named-Data Networking of Things

Muhammad Atif Ur Rehman 1 , Rehmat Ullah 1 and Byung Seo Kim 2,*
1 Department of Electronics & Computer Engineering, Hongik University, Sejong City 30016, Korea
2 Department of Software and Communications Engineering, Hongik University, Sejong City 30016, Korea
* Correspondence: jsnbs@hongik.ac.kr; Tel.: +82-41-860-2539

Received: 20 May 2019; Accepted: 25 June 2019; Published: 30 June 2019
����������
�������

Abstract: Information-Centric Networking (ICN) is a paradigm shift from host-to-host Internet
Protocol (IP)-based communication to content-based communication. In ICN, the content-retrieval
process employs names that are given through different naming schemes such as hierarchical, flat,
attribute, and hybrid. Among different ICN architectures, Named-Data Networking (NDN) has
gained much interest in the research community and is actively being explored for the Internet of
Things (IoT) and sensor networks, and follows a hierarchical naming format. NDN protocol follows
a pull-based communication model where the content consumer gets content irrespective of the
location of the content provider. The content provider in NDN and sensor networks can be considered
to be a distributed database that monitors or controls the environment and caches the sensed data or
controls information into their memory. The proposed Name-INtegrated Query (NINQ) framework
for NDN-based IoT provides a flexible, expressive, and secure query mechanism that supports content
retrieval as well as control and configuration command exchange among various nodes in a smart
building. Different use cases are presented in this paper that expand on the behavior of proposed
query framework in different scenarios. Simulation results of data collection and exchange of control
commands show that proposed query framework significantly improves Interest Satisfaction Rate
(ISR), Command Satisfaction Rate (CSR), energy efficiency, and average delay. Moreover, it is evident
from the simulation results that proposed query framework significantly reduces the number of
transmissions in the network in both data collection and exchange of control command scenarios,
which improves the network performance.

Keywords: Named-Data Networking; internet of things; query; commands; smart building; Pull and
Push Support

1. Introduction

In traditional Internet architecture, communication between a client and a server occurs once
a stable connection comprising two client-side steps has been established. These steps are (1) the
translation of a user-friendly hierarchical URL to the IP address of a host machine using Domain
Name System (DNS) lookup, and (2) forwarding the request to the server machine whose IP address is
obtained in step one. This Internet architecture was designed for client–server applications such as
Hypertext Transfer Protocol (HTTP), File Transfer Protocol (FTP), and Simple Mail Transfer Protocol
(SMTP) to cope with the early Internet need for location-aware scarce resource sharing. However,
today’s Internet has evolved from this host-oriented communication to a more content-based model
instead. As reported in the Cisco Visual Networking Index 2017–2022 [1], 82% of Internet traffic in 2022
will be video content and 72% will be carried by Content Delivery Networks (CDNs). To satisfy these
huge content-related requirements, incremental patches such as DNS, CDNs, and peer-to-peer (p-to-p)
content sharing have been introduced. The core functionality of DNS resolves content names to content

Sensors 2019, 19, 2906; doi:10.3390/s19132906 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-6812-8620
https://orcid.org/0000-0002-6475-2434
https://orcid.org/0000-0001-9824-1950
http://dx.doi.org/10.3390/s19132906
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/13/2906?type=check_update&version=2

Sensors 2019, 19, 2906 2 of 30

location (IP addresses). However, CDN and p-to-p significantly improves the content-retrieval process
by bringing the content closer to the end user. However, still they are an overlay on existing traditional
IP-based location-aware Internet architecture.

The paradigm shift in user demand and the limitations of existing architecture have motivated
researchers to look for alternative solutions for the future Internet with Information-Centric
Networking (ICN) [2] appearing as promising candidate. There have been many architectures proposed
under the ICN umbrella, such as Named-Data Networking (NDN) [3] which has gained much interest
in the research community and is actively being explored. NDN treats names as a first-class entity
and adopts a pull-based consumer-driven communication model where the consumer’s request for
content is forwarded by a content router (CR) if not already cached in the content store (CS) of the CR.
The Interest packet then reaches a content provider which responds with a Data packet sent back to
the consumer along a breadcrumb path that is created with the help of a Pending Interest Table (PIT).
NDN has an adaptive forwarding mechanism and employs a Forwarding Information Base (FIB) table
that retains information for forwarding planes.

Another fundamental difference between IP and ICN/NDN is the stateless and stateful nature of
their CRs, or relay nodes. In IP, since the nodes are stateless, they are not aware of the content
of the packets routing through them and do not cache the content in their memory. However,
in NDN, the nodes are stateful; they are aware of the content that passes through them and cache
Data packet content so that the same content can be provided quickly for future demands. Thus,
NDN uses its routers as storage devices, and the interconnection of these routers can be considered
a distributed database.

The content of such a distributed database can be homogeneous and/or heterogeneous in nature,
particularly when a network comprises sensor nodes or devices associated with the Internet of Things
(IoT). NDN uses a hierarchical naming scheme to fetch the desired content from a network. However,
this naming scheme is not fully compatible with IoT applications or a network that comprises sensor
nodes because the contents of the networks can be highly dynamic and changeable. Moreover,
IoT devices may also exchange control commands with each other which is not fundamentally
supported in conventional NDN naming schemes. Dealing with this situation by using legacy naming
schemes creates a lot of unnecessary packet transmission in the network and, as a result, decreases
Interest and command satisfaction rates (ISR and CSR, respectively), increases overall round-trip time,
and increases the chances of congestion in the network.

To address these limitations, this paper proposes a name-based query framework, the
Name-INtegrated Query (NINQ), which is an overlay on existing NDN architecture and provides
an efficient query mechanism to extract heterogeneous content from the nodes. Even though name
resolution in the proposed framework follows a conventional mechanism, once the name is resolved,
a consumer-driven query is evaluated to filter the content. Moreover, the NINQ framework also
provides a secure and reliable mechanism to exchange control commands between different nodes on
the network.

The contributions of the proposed NINQ framework are as follows:
1. The NINQ framework provides a hybrid naming scheme for NDN that incorporate the

hierarchical name components, hash-based flat part, and flexible, expressive, and secure query part to
gather the heterogeneous data from the IoT devices.

2. The NINQ framework introduces a sub-part in the content name to support the execution of
configuration or control commands on IoT devices with the help of different constraints.

3. NINQ framework enables efficient push-based unsolicited data packet transfer to the
appropriate consumer(s) to support periodic and event-driven communication in a network.

4. The NINQ framework employs a flat component to secure its query, constraint,
and command components;

5. We consider a smart building equipped with heterogeneous IoT devices such as a thermostat,
smoke detectors, and smart air cleaner, to evaluate the proposed query framework. The simulation

Sensors 2019, 19, 2906 3 of 30

results of query-based data collection and exchange of action commands between these heterogeneous
devices show that the proposed framework significantly outperforms the most recent naming schemes
in terms of ISR, CSR, average delay, and energy consumption, and also reduces the number of Interest
and Data packet transmissions.

We believe that the applicability of the proposed NINQ framework is not limited to smart
buildings, and that it could be used for other IoT applications such as personal health and wellness,
smart vehicular networks, and wireless sensor networks.

The rest of this paper is organized as follows: Section 2 provides a brief overview of the IoT
and NDN, and Section 3 presents the most recent related work. A motivation with the help of
communication service models in IoT-based smart building is presented in Section 4, while a detailed
description of the proposed NINQ framework is described in Section 5. The simulation scenario,
results, and discussion are presented in Section 6. Subsequently, we present some of the open research
challenges and future directions of the NINQ framework in Section 7 and, finally, we conclude the
study in Section 8.

2. Internet of Things and Named-Data Networking (in a Nutshell)

The IoT is a vision of connecting all ‘things’ from every aspect of life including smart phones,
household electronic equipment, smart vehicles [4], the smart electrical grid [5], smart home [6,7],
smart campus [8,9], monitoring and gathering data from sensors or actuators deployed in agricultural
contexts [10], and RFID tags [11] through a different set of networking technologies. The IoT is
content-centric, and, most of the time, its users are more interested in getting updated content rather
than the location of that content [12]. IoT devices often produce content on a massive scale and/or
exchange control commands to perform management tasks. For example, IoT devices in the field of
wireless sensor networks (WSNs) do specific tasks such as gleaning raw data or useful information
on a large scale from their surroundings; each sensor node performs its assigned task, for instance
a humidity sensor only measures moisture in the air whereas a temperature sensor will only measure
the temperature of its environment. Furthermore, IoT devices in a building management system often
exchange control information, for example, by using a centralized controller (CC) that can forward
turn-on commands to the air conditioner (AC) in a specific room based on the temperature information
it has received.

There are many practical challenges in the IoT that need to be addressed such as handling the
dynamic changes in the network, enabling communication between heterogenous and constrained
devices, and maintaining consistent and secure communication across the network [13]. The IoT
devices are still using conventional host-centric IP-based Internet architecture which is not suitable
for them [13] because they are often resource-constrained in terms of computation, communication,
and storage, or are deployed in inauspicious environments, sometimes buried under the ground or
underwater, with intermittent connectivity that makes it harder to sustain a stable connection. To solve
such issues in the current IoT era, NDN has appeared as a promising solution.

NDN follows a hierarchal human-readable naming format with a sequence of components
separated by “/”. This hierarchal system provides aggregation of content names in a routing table
which potentially leads to a smaller routing table and reduces router storage and computation
requirements. In NDN, content name is assigned by the producer of the content and this helps
in forwarding the Interest and Data packets between the consumer and producer and in caching
the content at intermediate relay nodes. The NDN naming format is similar to URLs, for example
“http://www.hongik.ac.kr/” can be represented as “ndn:hongik/ac/kr”. In terms of the IoT, the CC
in a smart building (detailed discussion of which is presented in Section 4) may issue an Interest
packet carrying a hierarchical name such as “ndn:hongik/sejong/d/4/425/temperature” to request
the current temperature from the thermometer installed in room 425 on the fourth floor of D building
at Hongik University Sejong Campus. The thermometer may then respond to this request with a Data
packet that contains the current temperature value in that room. After receiving the content, the CC

http://www.hongik.ac.kr/

Sensors 2019, 19, 2906 4 of 30

forwards another Interest packet (command and/or constraints) to take the appropriate action to
adjust the AC settings.

In NDN, each node maintains three types of data structure: (1) a PIT; (2) a CS; and (3) FIB. Figure 1
presents the NDN communication process in a network. When a consumer node wants to access
specific content, it inserts the name of the desired content into an Interest packet and forwards it to
the network. When the CR receives the Interest packet, it first checks the PIT entries to check whether
a request for the same content is already in the queue. If the CR has a matching PIT entry, it simply
stores the incoming face ID of the current request. In the absence of a PIT entry, it checks its own
CS for the desired content; if a match is found, the CR responds with the Data packet through the
interface from which the Interest arrived. However, if the desired content is not present in the CS,
the CR forwards the Interest packet to the producer using the longest prefix matched on the FIB and
inserts a new entry in the PIT table. The producer node only responds with a Data packet once it
receives the Interest packet. The Data packet comprises the name of the content, the content itself,
and other optional fields. When the Data packet arrives at the CR, it searches the corresponding PIT
entry and forwards the data to all downstream face IDs. Moreover, the CR stores the data in its CS to
satisfy any future requests for the same data without having to fetch it from the producer. Finally, the
CR removes the corresponding entry from the PIT table.

Figure 1. NDN communication process

Sensors 2019, 19, 2906 5 of 30

3. Related Work

IoT devices produce content on a massive scale, and it is expected that billions of data may be
produced in a single second. This makes heterogeneity and scalability a fundamental requirement of
IoT architecture, but to meet these requirements with existing TCP/IP solutions is extremely complex
and inefficient [13].

The ICN on the other hand, with the help of its naming techniques may meet the aforementioned
IoT requirements. There are four types of naming techniques outlined in the ICN literature (Figure 2):
hierarchical, flat, hybrid, and attribute. In hierarchical naming, names are given in plain and
human-readable components, separated by “/”. The most prominent ICN architectures, CCN and
NDN, follow this hierarchical naming convention. Flat names are self-certifying and used in
ICN architectures such as PSIRP [14], PURSUIT [15], MobilityFirst [16], DONA [17], NetInf [18],
COMET [19], CONVERGENCE [20] and SAIL [21]. The attribute-based technique was first introduced
in Combined Broadcast and Content-Based [22] routing, and hybrid naming combines all these other
three techniques [23,24]. In the ICN literature about the IoT, most research focuses on and explores
hierarchical [13,25–36] and hybrid [8,9,37–40] naming specifications. Flat [41,42] and attribute-based
[43] naming techniques are beyond the scope of this paper and so the related work only covers the
hierarchical and hybrid approaches which are most relevant to the smart building scenario and follow
NDN protocols.

Figure 2. Naming Schemes in ICN.

Sobia et al. [8] introduce a hierarchical and flat-based hybrid naming (HFHN) scheme for
smart buildings.

The hierarchical components of the Interest packet consist of the domain name, location, and task,
while the flat component is the hash of the device name. The payload in the Data packet is secured by
taking the cryptographic hash of its value. In this study, the authors evaluated their naming scheme by

Sensors 2019, 19, 2906 6 of 30

considering both static and mobile nodes in the network. However, they only increased the number of
nodes and did not increase the node speed which greatly affects the collection of transient data from
IoT devices. Moreover, the authors did not provide a query structure for such transient data collection.

In [31], a push-based data broadcast control naming scheme for smart buildings is proposed.
The scheme consists of a hierarchical namespace for contents, a hierarchical namespace for IoT devices,
and minor modifications to Data packets to support emergency scenarios. This naming scheme only
supports a push mechanism and lacks pull-based communication which is a fundamental requirement
for the IoT. Moreover, this study only considers static nodes in the network. Elsewhere, [30] propose
a pull-based hierarchical naming framework for an IoT smart home with a scheme that consists of
root/homeID, task class, task type, task sub-type, and location. This proposed naming scheme covers
both action and sensing tasks; however, it does not provide any security mechanism for the critical
sub-components of task type, task sub-type, and location. Moreover, the proposed pull mechanism for
data collection is inefficient for transient IoT content and creates unnecessary packet transmission in
the network.

The scheme proposed in [37] only considers mobile nodes and was specifically designed for
vehicular ad hoc networks. Moreover, the naming scheme here does not provide a query mechanism
for efficient data extraction from the network. Bouk et al. [32] propose a further hierarchical naming
scheme, this time for underwater sensor networks, that consists of time, location, sensed data type,
and preference components. The authors of this study only consider pull-based communication
between the underwater sensor nodes and, in addition, their naming scheme does not provide
any mechanism to secure the critical components of time, location, and preference. Similarly,
Marica et al. [33] do not secure the service name which constitutes the most important component in
their naming scheme for both content and services to process large amounts of IoT data at the network
edge. Instead, the tag IoTNCN is used to distinguish content from service names. Moreover, this study
also only considered static nodes in the network which limits its applicability in mobile scenarios.

In summary, these naming schemes try to address issues of communication between IoT devices.
However, most lack either one or all core IoT requirements: (1) they do not consider mobility and
security in the proposed schemes; and/or (2) they do not provide an efficient query structure to
extract transient IoT data; (3) they do not support action/configuration command exchange among
IoT devices. In contrast, our proposed name-based query mechanism not only includes hierarchical
components but also a flat element to secure the Interest and Data packets, querying logic as the query
component to extract data from the transient IoT, and a command and/or constraint component to
take appropriate action on a node. A summary comparison of our proposed naming scheme with
other recent proposals is presented in Table 1.

Table 1. Description of Packet Components.

Naming Scheme HC FC QC Pull Support Push Support Mobility

Naming scheme for smart building: HFHN [8] X X 7 X X X

Naming scheme for smart home: Marica et al. [30] X 7 7 X X 7

Naming scheme for smart building: Rehmat et al. [31] X 7 7 7 X 7

Naming scheme for VANET: Bouk et al. [37] X X 7 X 7 X

Naming Scheme for UWSN : Bouk et al. [32] X 7 7 X 7 7

Naming scheme for smart building: ISI [34] X 7 7 X X X

Naming scheme for Edge computation [33] X 7 7 7 7 X

Proposed Naming Scheme for smart building X X X X X X

4. Motivation: A Smart Building Use Case

The motivation of this paper can be illustrated with an example of communication in a smart
building. A smart building is composed of heterogenous devices with different communication

Sensors 2019, 19, 2906 7 of 30

protocols and applications including thermometers, the lighting system, smoke detectors, an air
quality control system, an automatic door locking system, gas detectors, a heating, ventilation, and air
conditioning (HVAC) system, and elevators. These heterogenous devices often produce data on
a massive scale, control different peripherals in the smart building, and provide real-time feedback to
end users. Communication between these devices, as well as with end users, follows different service
models and can be broadly classified in 4 categories: pull (data collection), pull (action-based control
commands), periodic push, and event-driven push. These service models are explained through
different use cases presented in Figure 3.

Figure 3. Smart building communication service models.

4.1. Pull (Data Collection)

The pull (data collection) service model can be described by the following example: A user
(Bob) in the smart building is interested in getting the temperature of room three on the second floor.
Thus, Bob will generate a request which carries the network address information of the relevant
temperature sensor. The network forwards this request to the temperature sensor, which respond with
the temperature value. In this service model, the end user will always initiate the request, and the
temperature sensor or destination node will only forward data in response to a request.

4.2. Pull (Action-Based Control Commands)

A smart building may comprise different control systems that operate on specific commands.
For example, an air quality control system is installed on the second floor of a smart building,
and a user (Alice) wants to turn it on. In this case, Alice will generate a request which carries the
network address information of the air quality control system and the action command (for example,
“turn on”). The network will forward this request by employing the network address information
and, once the request reaches the destination, the air quality control system will be turned on.
After executing the command, the air quality control system may respond with a Data packet that
carries an acknowledgment message such as “The system has been turned on”. In this service model,
an end user initiates the request, but the request carries an action command that needs to be executed
at the destination node.

Sensors 2019, 19, 2906 8 of 30

4.3. Push (Event-Driven)

In the occurrence of a particular event, especially in the case of an emergency, a sensor node or
IoT device may forward an unsolicited Data packet transmission to end users or to other devices in the
smart building. For instance, a smoke detector in room one on the second floor has sensed smoke in
the room. Thus, it will immediately forward a Data packet to the fire alarms, as well as to the end user
(John), so that precautionary action can be taken to avoid a more dangerous situation. In this service
model, the end user does not generate the request but, rather, the end device or sensor node generates
a Data packet in response to an event. The Data packet in this case must carry the destination network
address information of the fire alarms and of John.

4.4. Push (Periodic)

Devices in smart buildings, or sometimes end users themselves, may require measurements from
a specific device at fixed intervals, typically in minutes or hours. For example, a smart energy system
in a building monitors the energy consumption of different devices in room one and periodically
forwards the to a user (James). In this service model, an end device initiates communication by
forwarding a Data packet which carries the destination network address information of James.

All the above-mentioned service models employ traditional IP-based solutions which are
inefficient and may cause significant challenges if more and more devices are installed in the
building [12]. For example, fetching data from a single sensor can require complete address information
on different layers including VLAN ID, subnet, IP address, port number, and device ID [13]. As a result,
managing a variety of devices and applications is a significantly complex and time-consuming task,
particularly on an enterprise scale where thousands of data acquisition points may be deployed across
different applications. Moreover, to overcome certain address challenges, middleware is often used to
provide mapping functionality from descriptors to lower-level network addresses [13], and this creates
additional configuration burden and can decrease performance.

To address these limitations, NDN can be used as an alternative because it forwards application
layer names directly to the network layer and therefore mitigates the need for middleware. Moreover,
the name-based forwarding mechanism in NDN eliminates the need for individual and complex
network address mechanisms for each device. In this paper, we propose a name-based query
framework that uses NDN as the network layer protocol to resolve the challenges of efficient
heterogenous data extraction from different IoT devices in a smart building, of providing a reliable
mechanism for the exchange of action-based control commands among different nodes, and of securing
the communication flow between devices.

5. The Proposed Name-INtegrated Query (NINQ) Framework

A sensor network is a collection of resource-constrained nodes equipped with limited battery
capacity, low computational power, restricted memory storage, and low-power transceivers.
These nodes are deployed in an environment, such as a smart building, for monitoring, sensing,
or controlling various parameters such as temperature, pressure, humidity, and air quality [44].
These nodes often generate heterogeneous and transient raw data in abundance, and the transmission
of such heterogeneous content requires single or multiple hops from sensor nodes to resourceful
sink nodes or to a CC. The CC or sink nodes may store the content in their memory, and, later,
it can be requested by an end user. In NDN, the CRs cache the content as it is returned to the end
user, thus creating a sort of distributed database in the network. The NDN architecture employs
a hierarchical naming scheme to extract the content from provider nodes, which can be any sink or
intermediate node that has content. This is an inefficient approach (name-only) when the content
is heterogeneous, and values are scalar and updating in real time. The proposed NINQ framework
provides an efficient, flexible, and expressive query mechanism to filter the content based on the

Sensors 2019, 19, 2906 9 of 30

consumer’s own custom logic. Moreover, the NINQ framework supports command execution on the
node based on constraints.

5.1. Interest Packet Components in the NINQ Framework

The proposed framework divides the Interest packet into three components: (1) hierarchical
name; (2) cryptographic hash of the query; and (3) the query (filtration logic and/or action command).
Further detail about each component is described below.

5.1.1. Name Components

In a NINQ, the name component is generated by combining several sub-components: (1) unique
location identifier; (2) building name or sub-location identifier; (3) floor number; and (4) room number.
These sub-components are joined to form the kind of hierarchical name component that is best suited
for building management in, for example, a smart home, campus, or hospital. The name component is
used as a prefix to locate the information retrieval site and aggregate the subsequent same requests
on the router to optimize the routing table entries. Figure 4 illustrates the format of the Interest and
Data packets in the proposed NINQ framework, and Table 2 summarizes the definitions of these
components. A detailed description of the flat and query components now follows.

Figure 4. NINQ packet format.

Table 2. Description of Packet Components.

Component Description

Unique Location identifier This sub-component is used as a unique domain to identify the location

Sub-Location identifier This sub-component is used to define the regions inside a building

Floor Number This component is used to locate the floor in a building

Room Number This component is used to locate the room number on some floor

Flat Component (HMAC) FNV1a hash of query or query with command component

Query This component is used to filter the content inside a namespace

Command This component is used to perform action which may base on the query

Data This component represents the filtered data obtained by executing the query

Separator (|) Separator is used to separate the hierarchical, flat, query/command, and data.

Separator (:) This separator is used to separate query from command

5.1.2. Flat Component

To secure the query/command component, the FNV1a non-cryptographic hashing algorithm [45]
is employed. The high distribution of the FNV hash function makes it well suited to hashing strings

Sensors 2019, 19, 2906 10 of 30

such as hostnames, filenames, URLs, and IP addresses [46]. The 32-bit FNV1a algorithm has already
been employed in an NDN naming scheme [8] to generate a flat component although the purpose
there was to secure the name and data components in that scheme. In the NINQ framework, it is
used to maintain the integrity of the query/command component. The algorithm to compute the
hash is presented in Algorithm 1. In this algorithm, all variables, such as offset_basis, FNV_Prime
and octet_of_data, are unsigned integers, and their lengths are the same except for octet_of_data
which is an 8-bit unsigned integer. Since the flat component is a 32-bit hash, the values of offset_basis
and FNV_Prime are therefore 16,777,619 (0x01000193) and 2,166,136,261 (0x811C9DC5), respectively.
The hash for a query with the command component “WHERE_TEMP.VALUE_GTE_25:SET_AC_ON”
is 0x70018fd7 [47].

Algorithm 1 FNV1a hashing algorithm

hash← offset_basis
for each octet_of_data to be hashed
hash← hash xor octet_of_data
hash← hash * FNV_Primes
return hash

Once the hash is obtained, it is inserted between the name and query components separated
by “|” in the Interest and Data packets. Whenever the CC receives an Interest, it first extracts the
query component and computes its hash using the FNV1a algorithm and then compares its value with
the flat component. If the hash values are equal, it will process the request and execute the query.
However, if the values are not equal, the query component has been modified by an intruder, and,
therefore, the CC will not execute the query. Instead, it may respond with a Data packet that contains
information that a security flaw has been detected.

5.1.3. Query Component

The query component begins immediately after the separator “|” with a “WHERE” keyword
which denotes that the content should be filtered according to whatever logic follows it.
Each subsequent element is separated by “_” and plays a key role in filtering the content. The first
element is a combination of two dynamic keywords separated by “.” in which the first represents the
name of a content collection (e.g., temperature or pressure) to be filtered while the second defines
the field name such as ID, VALUE, or TIME. These two words are combined to form a unique key
that is used to filter the collection content. For example, the element “TEMP.TIME” describes that the
temperature collection should be filtered based on the time values were obtained, and “PRESR.VALUE”
asks that the pressure collection be filtered according to the values in it.

The second element in the query structure is a comparison operator which plays the most
important role in the filtering of the content. For example, the comparison operator “GTE”,
meaning greater than or equal to, can be used to compare the value in the field name. A detailed
description of all operators is presented in Table 3. The last part of the query component is a constant
value which is used by the comparison operator to filter the content. When combined, the examples
above could form an expressible query such as “WHERE_TEMP.TIME_GTE_10” which describes
a filter for all temperature values obtained after 09:59.

A query may also return aggregated results. For example, “WHERE_TEMP.TIME _BET_9_AND
_14_SELECT_AVG” would filter all content in which the temperature is obtained between 09:00 and
14:00, and the CC would then compute the average of the returned temperature values. The average
value is then forwarded to the consumer as the result. Table 4 describes the interpretation of several
queries although query scope is not limited to those presented; many other combinations based on IoT
application requirements can also be used to define the filtration logic further.

Sensors 2019, 19, 2906 11 of 30

Table 3. Description of Keywords.

Keywords Description

GT Greater Than: Values in a collection must be greater the value written
on right side of ”GT” operator

GTE Greater Than Equal : Values in a collection must be greater than or equal
to the value written on right side of ”GTE” operator

LT Less Than: Values in a collection must be less the value written
on right side of ”LT” operator

LTE Less Than Equal : Values in a collection must be less than or equal to the
value written on right side of ”LTE” operator

EQ Equal : Values in a collection must be equal to the value written on right
side of ”EQ” operator

NEQ Not Equal : Values in a collection must not be equal to the value written on
right side of ”NEQ” operator

BET Between : Values in a collection must be in between to the values written on
right side of ”BET” operator

IN Include: Check whether collection contain the value written on right
side of “IN” operator

LIMIT Limit the results to the number written on the right side of “LIMIT” operator

ASC, DESC Ascending and Descending order

AVG, MIN, MAX, COUNT, SUM Aggregate functions

Table 4. Description of Keywords.

Queries Description

WHERE_TEMP.VALUE_GT_25 Select temperature sub-collection in which values are
greater than to 25

WHERE_TEMP.VALUE_GTE_25 Select temperature sub-collection in which values are
greater than or equal to 25

WHERE_TEMP.VALUE_LT_25 Select temperature sub-collection in which values are
less than 25

WHERE_TEMP.VALUE_LTE_25 Select temperature sub-collection in which values are
less than or equal to 25

WHERE_TEMP.VALUE_EQ_25 Select temperature sub-collection in which values are
equal to 25

WHERE_TEMP.VALUE_NEQ_25 Select temperature sub-collection in which values are
not equal to 25

WHERE_TEMP.VALUE_IN_25 Check whether the temperature collection have value
25 or not. Result will contain a Boolean value.

WHERE_TEMP.VALUE_BET_25_AND_50 Select temperature sub-collection in which values are
between 25 and 50

WHERE_TEMP.VALUE_GT_25_LIMIT_10_DESC Select top 10 (descending order) temperature sub
collection in which values are greater than 25

WHERE_TEMP.VALUE_GT_25_LIMIT_10_ASC Select top 10 (ascending order) temperature sub
collection in which values are greater than 25

WHERE_TEMP.VALUE_GT_25_SELECT_COUNT Get the number of temperature sub collection in which
values are greater than 25

WHERE_TEMP.TIME_BET_9_AND_14_SELECT_AVG Get average temperature values of current day for time
between 9 a.m. and 2 p.m.

WHERE_TEMP.TIME_BET_9_AND_14_SELECT_MIN Get minimum temperature value of current day for time
between 9 a.m. and 2 p.m.

Sensors 2019, 19, 2906 12 of 30

Table 4. Cont.

Queries Description

WHERE_TEMP.TIME_BET_9_AND_14_SELECT_MAX Get maximum temperature value of current day for time
between 9 a.m. and 2 p.m.

WHERE_TEMP.TIME_BET_9_AND_14_SELECT_SUM Get sum of temperature values of current day for time
between 9 a.m. and 2 p.m.

5.1.4. Command Component

A command component starts with a “SET” keyword and contains the action that needs to be
performed by the device. A command may be concatenated with a constraint by using “:”. For example,
“WHERE_TEMP.VALUE_BET_25_AND_50:SET_AC_ON” has both constraint and command elements
separated by “:”. The syntax of the constraint is similar to a query but differs in how it works.
For instance, the constraint in “WHERE_TEMP.VALUE_BET_25_AND_50:SET_AC_ON” indicates that
the temperature value must be between 25 and 50 ◦C. The overall interpretation of this command,
therefore, is to turn on the AC if the temperature in the room is between 25 and 50 ◦C. Most of the
queries outlined in Table 4 can be used as constraints when combined with a command component.
For example, “WHERE_TEMP.VALUE_LTE_20:SET_AC_OFF” represents the scenario that if the
temperature is less than or equal to 20◦C, the AC will be turned off. In another example, the command
“WHERE_TEMP.VALUE_GTE_25:SET_AC_OFF” is an instruction to turn off the AC if the room
temperature is greater than or equal to 25 ◦C.

A command can also be sent without a constraint, for example, “SET_AC_OFF” or “SET_AC_16”.
These commands simply turn off the AC or set the temperature to 16 ◦C. Table 5 presents some of the
commands that can be used in a smart building, and Table 3 shows the keywords that have special
meanings in the proposed NINQ framework.

Table 5. Example of NINQ Commands with Constraints.

Queries Description

SET_AC_ON Turn on the AC

SET_AC_16 Set the temperature value of AC to 16

WHERE_TEMP.VALUE_LTE_20:SET_AC_OFF Turn of the AC if temperature is less than or equal to 20

WHERE_TEMP.VALUE_BET_25_AND_50 SET_AC_ON Turn on AC if temperature is between 25 and 50

WHERE_TEMP.VALUE_LTE_20:SET_AC_OFF Turn off AC if temperature is less than or equal to 25

5.2. Communication Scenarios

To analyze communication scenarios in the proposed NINQ framework, this paper uses a smart
campus as a reference model. A smart campus may consist of numerous sub-buildings, each with
multiple floors and rooms. Moreover, each room may be equipped with various resource-constrained
sensors and control systems, such as temperature sensors and air quality or lighting control systems,
and one resourceful CC (sink node) deployed at one-hop distance. These sensor or control devices
perform set tasks in the room and forward the detected values, control information, and status to the
CC. The CC caches the received heterogenous content in its memory so that a consumer may fetch
(pull) it by sending a query-based Interest packet. The following subsection describes the workings of
a simple pull mechanism when employing the NINQ framework.

5.2.1. Simple Pull

Figure 5 depicts a simple pull service model and describes the workings of the proposed
NINQ framework in this scenario. A consumer node issues a query-based Interest message (step 1)
with the following name: “hongikSejong/building-d/ floor-4/room-425|94949460|WHERE_TEMP.

Sensors 2019, 19, 2906 13 of 30

VALUE_GTE_25”. The name consists of multiple hierarchical components (excluding flat and query
components) that are used to locate the information retrieval site, a flat component to secure the query
component, and the query component itself. In this Interest packet, the consumer node is interested
in all temperature values that are greater than or equal to 25 ◦C. This message is forwarded by the
outgoing face of the consumer node and received by the relay node at its incoming face. After receiving
the Interest packet, any intermediate node with the requested content may satisfy the incoming request.
However, if the relay node does not have the content, the Interest packet is forwarded via its outgoing
face and received by the CC’s incoming face (step 2). Since the interest has now reached the producer
node, it can be satisfied. The CC extracts the query component and compute its FNV1a hash. Once the
hash value is obtained, it is compared with the flat component of the Interest packet. If these values
are different, an intruder has modified the query component, and the CC will simply respond with
a Data packet that contains information that a security flaw has been detected. However, if the hash
values are the same, the CC will filter the data based on the logic defined in the query. The CC may
then respond with the filtered content, or it may send “No results found” in the Data packet if the
executed query returned an empty string. The filtered content or “No results found” message will be
forwarded back to the consumer (step 3). Once this message reaches the relay node, it will be cached
inside it with the query. The rationale of caching the data with the query is that if an Interest packet
with the same query arrives in the future, it can be satisfied straight away without spending time to
evaluate the query again. After caching, the relay node forwards the Data packet to the consumer node
(step 4) and concludes the communication. To support this pull communication scenario, Algorithm 2
describes the forwarding of the Interest packet from the consumer to the producer.

Figure 5. Pull service model.

Sensors 2019, 19, 2906 14 of 30

Algorithm 2 Received Interest (Query) in the Proposed NINQ

procedure FILTERING CONTENT BASED ON QUERY

ContentName← Substring(Hierarchical Name Component);
HashValue← Substring(Flat Component);
Query← Substring(Query Component);
ValidateQuery = COMPUTEFNV1AHASHANDCOMPARE(HashValue, Query)
if (Validation Pass) then

resultCollection← FILTERCONTENTSTORE(Query)
if (resultCollection is empty) then

Check PIT;
if (Record Not in PIT) then

Create PIT entry with incoming and outgoing face id;
Initialize timer (s);;
Forward interest using FIB;

else
Discard Interest;

end if
else

SendDataPacket: resultCollection
end if
SendDataPacket: ValidationFailed status code

end if
end procedure

5.2.2. Pull (Action-Based Control Commands)

Figure 6 depicts a simple pull with action command service model and describes how the
proposed NINQ framework works in this scenario. A consumer node issues a query-based
Interest message (step 1) with the name “hongikSejong/building-d/floor-4/room-425|70018fd7|
WHERE_TEMP.VALUE_GTE_25 SET_AC_ON”. In this Interest packet, the consumer node is issuing
a command that the AC in room 425 must be turned on if the room temperature is greater than or equal
to 25 ◦C. This message is forwarded from the consumer node’s outgoing face and received by the relay
node at its incoming face. The intermediate node will simply forward the message (step 2) because it
cannot perform the action command. Once the Interest packet reaches the producer, it can be satisfied.
The CC extracts the command component and computes its FNV1a hash. The computed FNV1a will
then be compared to the flat component of the Interest packet. In the case of a mismatch, the CC may
respond with a Data packet containing a security flaw message. However, if the hash values are equal,
the CC fetches the constraint “WHERE_TEMP.VALUE_GTE_25” and subsequently checks whether
the temperature in the room is greater than or equal to 25 ◦C (steps 3 and 4). If the temperature is
greater than or equal to 25 ◦C, the CC will execute the command and the AC will be turned on (steps 5
and 6). The CC can then respond with a Data packet that contains a form of acknowledgment that
will be forwarded to the consumer node (steps 7 and 8). To support this communication scenario,
Algorithm 3 describes the forwarding of the Interest packet from the consumer to the producer node.
The command can only be satisfied by the CC.

Sensors 2019, 19, 2906 15 of 30

Figure 6. Pull (command) service model.

5.2.3. Push (Event-Driven or Periodic)

In a push-based service model, an end device starts the communication based either on some
event or on pre-configured periodic transmissions (Figure 7). Imagine an emergency situation where
smoke is detected in room 425 on the fourth floor of D building; the smoke detector immediately
forwards a Data packet (hongikSejong/building-d/floor-4/room-425|87Y464G0|Smoke_Detected)
to the CC installed in that room (step 1). To support the push transmission of unsolicited data,
the NINQ framework modifies the existing Networking Forwarding Daemon (NFD) “forwarder”
class implementation to allow unsolicited transmissions to all available node faces except that
from which the Data packet was received. Since the CC is attached to a relay node, it will
forward the data via the relay node’s face (step 2). As soon as the Data packet arrives at the
relay node, it will repeat the same process as the CC and eventually deliver the information to
the consumer (step 3). To control data broadcast in the case of wireless ad hoc or simple wired
networks in which a single node is connected to multiple other nodes, the NINQ framework
employs our previous work presented in [31]. In this periodic push service model, a CC may send
data at intervals of, for example, four hours, although the interval may vary from application
to application. An example of this type of transmission using the NINQ framework might be
“hongikSejong/building-d/floor-4/room-425|70018fd7|WHERE_TEMP.TIME_BET_02-10-19-14_AND
_03-11-2016-18|20,22,23,23” by which the CC will forward temperature of room 425 from 14:00
to 18:00.

Sensors 2019, 19, 2906 16 of 30

Algorithm 3 Received Interest (Command) in the Proposed NINQ

procedure COMMAND EXECUTION

ContentName← Substring(Hierarchical Name Component);
HashValue← Substring(Flat Component);
Constraint← Substring(Constraint Component);
Command← Substring(Command Component);
if (Centralize Controller) then

Validate = COMPUTEFNV1AHASHANDCOMPARE(HashValue, Constraint, Command)
if (Validation Pass) then

checkConstraint← APPLYCONSTRAINT(Constraint)
if (constraint passed) then

EXECUTECOMMAND(Command)
if (command executed) then

SendDataPacket: Command Executed Successfully
else

SendDataPacket: CommandExecutionFailed status code
end if

else
SendDataPacket: ContraintFailed status code

end if
else

SendDataPacket: ValidationFailed status code
end if

else
Check PIT;
if (Record Not in PIT) then

Create PIT entry with incoming and outgoing face id;
Initialize timer (s);
Forward interest using FIB;

else
Discard Interest;

end if
end if

end procedure

5.3. Advantages of the NINQ Framework

The NINQ framework reduces the number of transmissions in the network which results in high
Interest and command satisfaction rates, reduces overall round-trip time, and eliminates the chance of
congestion in the network. Moreover, and in addition to static environments, the proposed framework
is well suited for networks which include mobile nodes. Before the simulation results are presented,
this section will provide a logical comparison of the NINQ framework with the other recent NDN
naming schemes such as HFHN or ISI.

We will first use a simple pull service model example. Figure 8 depicts a scenario in which an end
user is interested in getting temperature values from between 12:00 and 21:00 from the temperature
sensor and CC installed in room number 425 on the fourth floor of D building at Hongik University
Sejong Campus. In conventional naming scheme, the consumer will forward 10 different Interest
packets to the CC. According to the solution proposed in ISI, the format of the Interest packet would
be “/temperature/HongikUniversitySejong/ComputerScience/BuildingD/room425/02-10-19/12”

Sensors 2019, 19, 2906 17 of 30

which asks for the temperature values in room 425 at 12:00. The response to this Interest packet will be
the single value recorded at 12:00 on the given date. According to this format, the consumer node must
then forward nine additional packets, one each for the different time values of interest. This technique
is highly inefficient because it creates numerous Interest packet transmissions in the network which
may increase the chance of congestion, particularly if there are multiple consumers on the network,
and any response delay could be increased because of the high request load on the CC. Moreover,
if the consumer node is mobile, there is a high chance that it will be disconnected from the access
point before all Interest packets have been sent. Another aspect is that the length of the requested
temperature data is very short which wastes the opportunity to provide more information in the
Data packet.

Figure 7. Push service model.

The NINQ scheme, on the other hand, overcomes these limitations through its efficient,
expressible, and human-readable query mechanism. In the NINQ framework, if a user
is interested in the same information as above, the format of the Interest packet would be
“hongikSejong/building-d/floor-4/room-425|70018fd7|WHERE_TEMP.TIME_BET_02-10-19-12_AND
_03-11-2016-21” which requests the temperature values from the CC for the period between 12:00 and
22:00 on the given date. Using this format, only one Interest packet transmission is required because it
will fetch all values within the requested range.

Moving to a pull (action-based commands) service model example, an end user is interested in
configuring the AC unit in room 425 based on the temperature in that room. For this configuration,
the consumer requires temperature readings from the CC from the morning to the evening, for example,
from 08:00 to 18:00. In conventional naming schemes, the consumer node must fetch each reading
from the CC and then forward the AC configuration command to the CC. As such, two major tasks

Sensors 2019, 19, 2906 18 of 30

are being performed: (1) the consumer is fetching 11 different temperature readings from the CC by
sending 11 different Interest packets; (2) the consumer must analyze the returned data, for example by
computing an average, and forward the resulting AC configuration command. Across these two tasks,
the consumer node sends 12 requests to fulfil the requirement.

Figure 8. A comparison of NINQ with conventional naming scheme.

In contrast, the entire process can be completed with a single NINQ request. The NINQ Interest and
Data packets for the above example would be “hongikSejong/building-d/floor-4/room-425|70018fd7|
WHERE_TEMP.TIME_BET_9_AND_14_SELECT_AVG_EQ_21 SET_AC_18” and “hongikSejong/
building-d/floor4/room425|70018fd7|WHERE_TEMP.TIME_BET_9_AND_14_SELECT_AVG_EQ_21
SET_AC_18 Processed”, respectively.

Sensors 2019, 19, 2906 19 of 30

6. Performance Evaluation

This section will discuss the performance evaluation of the proposed NINQ framework by
considering communication scenarios at a smart campus.

6.1. Simulation Environment

We consider multiple buildings on a smart campus, each with numerous floors and rooms.
Each room is equipped with a CC which is connected to temperature and smoke sensors and an AC
system. Each building has two wireless access points (WAPs) connected to the various CCs which
also provide wireless connection to the mobile nodes within each building. The simulation scenario
is presented in Figure 9, and the NINQ framework was simulated using ndnSIM [48] on Linux
Ubuntu. A Core i7 PC with 8 GB RAM was used for both implementation and performance evaluation.
The NFD and ndnSIM codebase were modified in accordance with the requirements of the proposed
framework. For the WAPs, a constant position mobility model was employed with different x- and
y-axis. For mobile consumer nodes, a constant velocity mobility model was used. The mobile nodes in
buildings on the left are moving vertically while those on the right-hand side are moving horizontally
(Figure 9). We vary the speed of the mobile nodes to analyze the behavior of the proposed framework,
although the number of nodes employed in the simulation is fixed. However, the NINQ framework
is scalable and can be validated for use on a large scale. The remaining simulation parameters are
summarized in Table 6.

Figure 9. Simulation environment.

Sensors 2019, 19, 2906 20 of 30

Table 6. Simulation Parameters.

Parameter Value

Simulator NS-3 (ndnSIM 2.5)

Communication Stack NDN

NDN Constant Speed Propagation Delay Model

Propagation Loss Model Range Propagation Loss Model

Mobility Model Constant Position Mobility Model , Constant Velocity Mobility Model

Simulator NS-3 (ndnSIM 2.5)

Number of Static Nodes 68

Number of Mobile Consumer Nodes 4, 8, 12, 16

Caching Policy LCE

Replacement Policy LRU

Content Store Size 1000

PIT Timer 4 s

Simulation Time 1800 s

6.2. Results and Discussion

The following performance metrics were used to evaluate the effectiveness of the NINQ
framework. We compare our framework with the recent HFHN and ISI schemes.

6.2.1. Interest Satisfaction Rate

The ISR in a network is the ratio of total Interests satisfied to total Interests generated. Figure
10 shows a performance comparison in terms of satisfied Interests that the NINQ approach achieved
as compared to the HFHN and ISI schemes. Two rounds of simulation were performed for all three
schemes, with four mobile consumers in the first and eight in the second. The speed of all mobile
nodes was constant throughout each simulation. For more in-depth analysis of the ISR, we then varied
the number of requested unique contents from 10 to 90 at intervals of 20. From these results, we find
that the NINQ approach achieves significantly better ISR in comparison to the HFHN and ISI schemes.
The reason for this is that a single Interest packet using the NINQ framework can fetch multiple unique
contents in a single Data packet by defining the custom logic in its query component. In contrast,
neither HFHN or ISI include a way of retrieving multiple contents collectively (as discussed earlier
in Section 5.3) and each forwards multiple single Interest packets which can cause congestion in the
network, hence reducing the ISR.

Another reason for the low ISR values is the presence of mobile consumer nodes in the network.
To analyze the impact of mobility on the ISR, we performed separate simulation by varying the
speed of the mobile nodes. A simple constant velocity mobility model was employed, and we
adjusted the speed from 10 to 50 m/s. A constant number of unique contents were requested during
the connection period. It is evident from the results presented in Figure 11 that the NINQ scheme
outperforms HFHN and ISI. This is possibly because when nodes are mobile, they may become
disconnected from the WAP before sending all requests for the 25 unique contents. Conversely, it is
highly likely that the single request required in a NINQ will fetch the number of unique contents
within the connection period.

Sensors 2019, 19, 2906 21 of 30

20 40 60 80

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

In
te

re
st

 S
at

is
fa

ct
io

n
R

at
e

Number of Unique Contents

 HFHN- 4 mobile nodes
 HFHN - 8 mobile nodes
 ISI - 4 mobile nodes
 ISI - 4 mobile nodes
 NINQ - 4 mobile nodes
 NINQ - 8 mobile nodes

Figure 10. ISR in a network by number of unique contents.

10 20 30 40 50
0.4

0.5

0.6

0.7

0.8

0.9

1.0

In
te

re
st

 S
at

is
fa

ct
io

n
R

at
e

Speed (m/s) - Mobile Consumer Nodes

 HFHN - 4 mobile nodes
 HFHN - 8 mobile nodes
 ISI - 4 mobile nodes
 ISI - 8 mobile nodes
 NINQ - 4 mobile nodes
 NINQ - 8 mobile nodes

Figure 11. ISR in a network by speed of mobile nodes.

6.2.2. Command Satisfaction Rate

The command satisfaction rate (ISR) of a network is the ratio of total commands satisfied to total
commands generated. In the HFHN and ISI frameworks, particular Interest packets only contain

Sensors 2019, 19, 2906 22 of 30

a command component because these schemes first fetch data from the producers, analyze it through
constraint processing, and then forward the resulting command to the producer to perform the
appropriate action. In this scenario, multiple requests are transmitted across the network before
the actual command is sent. In contrast, the NINQ framework Interest packets simultaneously
carry constraint and command components, the constraint component eliminating the need for
multiple packets.

Figure 12 compares scheme performance in terms of satisfied commands for the NINQ, HFHN,
and ISI naming schemes. Similar to the ISR results, the NINQ approach achieved a higher CSR than
the other schemes. The reason for this is that to forward, for example, 15 commands in HFHN and ISI,
it is first necessary to send hundreds of Interest packets. However, since a NINQ eliminates the need
for these huge numbers of packets, congestion can be avoided, and the nodes will receive a response
within the connection period.

10 15 20 25 30
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
om

m
an

d
Sa

tis
fa

ct
io

n
R

at
e

Number of Commands

 HFHN
 ISI
 NINQ

Figure 12. CSR in a network by number of commands.

6.2.3. Number of Packets Processed

In our simulation for number of packets processed in the network, it was assumed that the
producer node contains temperature sensor readings recorded every 15 min from which it creates a CS
of multiple Data packet collections. In HFHN or ISI, if a consumer wishes to fetch these packets from
the producer according to the time they were recorded, multiple separate Interest packets must be
sent to the producer, and so if a CS contains many different Data packets, each with a different time
value, the consumer node needs to forward a correspondingly large number of Interest packets. On the
other hand, in a NINQ, a small number of Interest packets can fetch multiple recordings by defining
an appropriate query.

Figure 13 shows the processing simulation results in which the average number of transmissions
in the HFHN and ISI schemes are higher compared to the proposed method because a separate request
is issued for each Data packet and the intermediate nodes regenerate each one. However, in the NINQ
approach, the number of transmissions is relatively small because a single Interest packet is enough

Sensors 2019, 19, 2906 23 of 30

to fetch multiple sensor readings in a single Data packet. Since the number of transmissions is very
small, the NINQ framework avoids the risk of network congestion and reduces the latency that can
occur due to large numbers of packet transmissions. Moreover, the NINQ framework also uses a small
amount of bandwidth in comparison to the other two naming schemes.

20 40 60 80 100 120 140 160 180 200
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

N

um
be

r o
f P

ac
ke

t P
ro

ce
ss

ed

Number of Unique Contents

 HFHN
 ISI
 NINQ

Figure 13. Number of packets processed in a network by number of unique content objects.

6.2.4. Energy Consumption

It is evident from previous results and discussion that the NINQ framework outperforms both
the HFHN and ISI schemes in terms of packet processing. The proposed framework minimizes the
number of Interest and Data packet transmissions in the network and maintains a smaller number
of PIT entries on the forwarding node. As a result, NINQ minimize transmission energy and save
battery resources. Instead of comparing the energy consumption of the NINQ framework with the
HFHN and ISI schemes, we therefore only consider the proposed framework with varying numbers of
mobile consumer nodes. Figure 14 shows the total amount of energy consumed by all nodes (static and
mobile) for different numbers of unique content objects. Energy consumption is directly proportional
to the number of requests for unique content objects forwarded in the network. However, the nodes
that participate in the execution of a query consume more energy than those that only forward the
Interest or Data packets. Thus, the total amount of energy consumed in the NINQ-based network
is the sum of the energy consumed in forwarding an Interest packet, in executing the query, and in
forwarding the Data packet back to the mobile consumers. As shown in the Figure 14, as the number
of mobile nodes increases in the network, energy consumption also increases. The reason for this is
that each mobile consumer forwards an equal number of requests across the network.

Figure 15 shows the total amount of energy consumed by all nodes (static and mobile) when
the consumer nodes are forwarding commands in the network. Comparing the results shown
Figures 14 and 15, it is evident that the network consumes more energy when it is processing commands.
The total amount of energy by commands is the sum of energy consumed in forwarding an Interest and
Data packet, in applying the constraint, and in executing the command.

Sensors 2019, 19, 2906 24 of 30

20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

En
er

gy
 C

on
su

m
pt

io
n

(J
)

Number of Unique Contents

 NINQ - 4 mobile consumers
 NINQ - 8 mobile consumers
 NINQ - 12 mobile consumers
 NINQ - 16 mobile consumers

Figure 14. Energy consumption in an NINQ-based network as function of the number of unique
content objects.

20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8

En
er

gy
 C

on
su

m
pt

io
n

(J
)

Number of Command Packets

 NINQ - 4 mobile consumers
 NINQ - 8 mobile consumers
 NINQ - 12 mobile consumers
 NINQ - 16 mobile consumers

Figure 15. Energy consumption in an NINQ-based network as function of the number of commands.

6.2.5. Average Delay

Average delay is the sum of the time it takes for an Interest packet to reach the CC or provider
node, to process the query/command on a node, and for the Data packet from the CC or provider to
reach the consumer node. Figure 16 presents the average delay for varying numbers of requests for
unique contents. Since, in the case of the HFHN and ISI schemes, multiple requests are forwarded
to fetch all unique contents, the average delay is significantly higher as compared to that in the
proposed NINQ framework. The average delay for NINQ-based command execution (Figure 17) is

Sensors 2019, 19, 2906 25 of 30

slightly higher than the average delay for NINQ queries (Figure 16). The reason here is that there is
an additional delay in command execution on a CC.

20 40 60 80 100 120 140 160 180 200

200

400

600

800

1000

1200

1400

A
ve

rg
ae

 D
el

ay
 (m

s)

Number of unique contents

 HFHN
 ISI
 NINQ

Figure 16. Average delay in a network as function of number of unique contents.

20 40 60 80 100 120 140 160 180 200

200

400

600

800

1000

1200

1400

1600

A
ve

ra
ge

 D
el

ay
 (m

s)

Total Number of Commands

 HFHN
 ISI
 NINQ

Figure 17. Average delay in a network as function of total number of commands.

7. Future Directions

The NINQ named-based query framework proposed here provides flexibility for the end user
to filter raw data from IoT devices based on their own custom logic. In addition, an end user or
device can express an action command with or without constraints. The proposed framework is
expressible, human-readable, and implements a secure query mechanism. However, this is only the

Sensors 2019, 19, 2906 26 of 30

first step towards query-based NDN for IoT infrastructure with following several important areas yet
to be explored.

7.1. NINQ Testbed Implementation

To derive practical benefits from the NINQ framework, there is a need to fully analyze and deploy
the proposed scheme on a real testbed. To do, the NINQ codebase could be deployed on the RIOT
operating system [49]. The authors of [50] provide design and implementation details of the NDN
protocol stack for RIOT. However, deployment of this stack with the NINQ codebase on supported
hardware such as Arduino Mega2560, STM32 Nucleo32-F303, or RE-Mote will be a challenging task
that will require much time and research effort.

7.2. Multiple Query Execution

Since the CC is attached to multiple sensing and controlling units, it may be possible that the end
user is interested in filtering content of different kinds, for example, temperature, pressure, and air
quality data. To filter such content, an end user may send an Interest packet with multiple queries.
However, to support the transmission of longer packets and the temporally complex execution of
multiple queries requires further research.

7.3. Query Execution Plan: Evaluation and Time Complexity

To optimize query execution, modern databases such as SQL and MongoDB employ execution
plans that use a query optimizer. In the proposed framework, a query execution plan could be
a set of sequences or steps that the CC performs to execute the query. A need to devise a proper
query plan for the NINQ scheme arises because the end user formulates their query using filtering
logic but does not tell the CC the exact order in which to execute it. Currently, there is no managed
way for a query execution plan, and so a proper query planner code module must be developed.
The responsibility of this type of module is to fetch the best query execution plan to efficiently filter
the raw content. Relatedly, there is a need to analyze the time complexity of filtering raw data and
executing action-based commands.

7.4. Augmented Reality and Edge Support

In the 5G communication environment, and beyond, demand for augmented reality (AR) services
is expected to increase. In AR, real-time feedback for the end user is required and, to fulfil this
requirement, there is a need to process huge amounts of data very quickly. To support these kinds of
services, edge computing is a promising concept in which highly powerful devices are placed near the
end user to process large data quickly and provide this real-time feedback [51,52]. There is a need to
further explore the proposed NINQ framework within the edge computing paradigm to potentially
support AR-based services.

7.5. NINQ-Lite for Wireless Sensor Networks

A WSN comprises a set of nodes equipped with limited resources such as low computational
power, constrained battery capacity, small memory size, and low-power transceivers. Consequently,
the maximum transmission unit (MTU) in WSNs is relatively very small at 127 bytes, as compared
to an MTU of 1280 bytes in devices on the Internet [34]. This limits the applicability of the proposed
framework in WSNs because it could not forward an Interest packet containing multiple filtration
logics. However, through further research, a lighter version of NINQ (NINQ-lite) may be developed
for WSNs which would aim to fit the query logic within a 127-byte MTU.

Sensors 2019, 19, 2906 27 of 30

7.6. Software-Defined Networking Interoperability

As the MTU of resource-constrained devices such as temperature and pressure sensors is small,
the protocols that run on them may be different to those that run on Internet devices. Thus, it could be
difficult, or impossible, to have direct communication between sensors and Internet devices. However,
indirect communication using protocol translation could be used. Software-defined networking (SDN)
is an emerging future Internet paradigm which supports interoperability between devices that run
different protocols. Further research in this area could solve the problem of NINQ and NINQ-Lite
protocol translation.

7.7. Multiple Chunks Analysis (Wireless)

In a NINQ, there is a possibility that a single query will return a large amount of data that may not
fit in a single Data packet, particularly in wireless communication scenarios. In this case, there would
be a need to divide the content into chunks and send these back to the end user one by one. On their
way back to the end user, these chunks would be cached in the intermediate nodes. Since the end result
is based on the custom filtering logic, a proper caching strategy is needed to store the most relevant
information either with the full query logic or a sub-component of it.

7.8. Efficient Caching

Since Data packets in the proposed NINQ framework contain content filtered by logic defined in
the query component, it is necessary to consider the following points at the time of caching: (1) The
query must be cached in the intermediate CS along with the content so that if the same query arrives in
the future for the same CC, the result can be provided from the intermediate node rather than from the
CC; (2) The content of smart building networks and, more generally, on the IoT is transient in nature
and the cached content should therefore be purged from the CS over time. This second point is highly
dependent on specific application requirements.

7.9. DDOS Attack Due to Unsolicited Data

To support a push-based communication model, the NINQ framework allows unsolicited data to
be processed across the network. However, permitting unsolicited data can cause DDOS attacks in
which a malicious node frequently sends raw data to waste the energy of legitimate nodes. As such,
there is a need to devise an effective solution that supports unsolicited data transmission as well as
avoids DDOS attacks against the network.

8. Conclusions

In this paper, we argue that the queries should be forwarded on the network layer in addition to the
names. Thus, we proposed a named-based query and command mechanism named NINQ framework.
The position of this paper is manifold. First, an overview of NDN and IoT is presented. Second,
we presented the most relevant and recent naming schemes proposed under the umbrella of NDN.
Third, we described 4 different communication service models in the smart building. Fourth, a detailed
explanation of the components of proposed naming scheme along with different communication
scenarios are presented. Here, we argued that conventional hierarchical or hybrid NDN naming
schemes are inefficient to extract the content that is transient in nature. To support our claim,
we presented a logical comparison of proposed NINQ and other naming schemes. Fifth, in addition to
the logical comparison we also showed our simulation results and discussed all the results in detail.
It is evident from the results that proposed NINQ framework outperform the most recent naming
schemes in terms of ISR, CSR, number of packets processed in the network, energy consumption,
and average delay. Sixth, open research challenges and future directions of our proposed NINQ
framework are presented.

Sensors 2019, 19, 2906 28 of 30

Author Contributions: Conceptualization, M.A.U.R. and R.U.; Methodology, M.A.U.R., R.U. and B.S.K.;
Validation, M.A.U.R., R.U. and B.-S.K.; Formal Analysis, M.A.U.R. and R.U.; Investigation, B.S.K., M.A.U.R. and
R.U.; Resources, B.S.K.; Writing—Original Draft Preparation, M.A.U.R.; Writing—Review & Editing, M.A.U.R.,
R.U., and B.S.K.; Supervision, B.S.K.; Funding Acquisition, B.S.K.

Funding: This research was supported in part by the National Research Foundation of Korea (NRF) through
the Korea Government (2018R1A2B6002399) and in part by the International Research & Development
Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT.
(No. NRF-2018K1A3A1A39086819).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cisco Visual Networking Index: Forecast and Trends, 2017–2022 White Paper; Cisco: San Jose, CA,
USA, 2019; Available online: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/white -paper-c11-741490.html (accessed on 24 March 2019)

2. Xylomenos, G.; Ververidis, C.N.; Siris, V.A.; Fotiou, N.; Tsilopoulos, C.; Vasilakos, X.; Katsaros, K.V.;
Polyzos, C. A survey of information-centric networking research. IEEE Commun. Surv. Tutor. 2014, 16,
1024–1049. [CrossRef]

3. Jacobson, V.; Content, N.N.; Content, N.N.; Plass, M.F.; Briggs, N.H.; Braynard, R.L. Networking Named
Content. In Proceedings of the 5th International Conference on Emerging Networking Experiments and
Technologies, Rome, Italy, 1–4 December 2009; pp. 1–12. [CrossRef]

4. Ullah, R.; Ahmed, S.H.; Kim, B. Information-Centric Networking with Edge Computing for IoT: Research
Challenges and Future Directions. IEEE Access 2018, 6, 73465–73488. [CrossRef]

5. Ullah, R.; Faheem, Y.; Kim, B. Energy and Congestion-Aware Routing Metric for Smart Grid AMI Networks
in Smart City. IEEE Access 2017, 5, 13799–13810. [CrossRef]

6. Ahmed, S.H.; Kim, D. Named data networking-based smart home. ICT Express 2016, 2, 130–134. [CrossRef]
7. Ray, A.K.; Bagwari, A. Study of smart home communication protocol’s and security & privacy aspects. In

Proceedings of the 2017 7th International Conference on Communication Systems and Network Technologies
(CSNT), Nagpur, India, 11–13 November 2017, pp. 240–245. [CrossRef]

8. Arshad, S.; Shahzaad, B.; Azam, M.A. Hierarchical and Flat based Hybrid Naming Scheme in Content-Centric
Networks of Things. IEEE Internet Things J. 2017, 5, 1070–1080. [CrossRef]

9. Arshad, S.; Azam, M.A.; Ahmed, S.H. Towards Information-Centric Networking (ICN) Naming for Internet
of Things (IoT): The Case of Smart Campus. In Proceedings of the International Conference on Future
Networks and Distributed Systems (ICFNDS), Cambridge, UK, 19–20 July 2017.

10. Deepika, G.; Rajapirian, P. Wireless sensor network in precision agriculture: A survey. In Proceedings
of the International Conference on Emerging Trends in Engineering, Technology and Science (ICETETS),
Pudukkottai, India, 24–26 February 2016; pp. 1–4. [CrossRef]

11. Jia, X.; Feng, Q.; Fan, T.; Lei, Q. RFID technology and its applications in Internet of Things (IoT).
In Proceedings of the 2nd International Conference on Consumer Electronics, Communications and Networks
(CECNet), Yichang, China, 21–23 April 2012; pp. 1282–1285. [CrossRef]

12. Arshad, S.; Azam, M.A.; Rehmani, M.H.; Loo, J. Recent Advances in Information-Centric Networking-Based
Internet of Things (ICN-IoT). IEEE Internet Things J. 2019, 6, 2128–2158. [CrossRef]

13. Shang, W.; Ding, Q.; Marianantoni, A.; Burke, J.; Zhang, L.Securing building management systems using
named data networking. IEEE Netw. 2014, 28, 50–56.

14. Tarkoma, S.; Ain, M.; Visala, K. The Publish/Subscribe Internet Routing Paradigm (PSIRP): Designing the
Future Internet Architecture. In Towards the Future Internet—A European Research Perspective; IOS Press:
Amsterdam, The Netherlands, 2009.

15. Fotiou, N.; Nikander, P.; Trossen, D.; Polyzos, G.C. Developing information networking further: From
PSIRP to PURSUIT. In Proceedings of the 7th International ICST Conference BROADNETS, Athens, Greece,
25–27 October 2010.

16. Seskar, I.; Nagaraja, K.; Nelson, S.; Raychaudhuri, D. MobilityFirst future Internet architecture project.
In Proceedings of the ACM Asian Internet Engineering Conference, Bangkok, Thailand, 9–11 November
2011; pp. 1–3.

http://dx.doi.org/10.1109/SURV.2013.070813.00063
http://dx.doi.org/10.1145/1658939.1658941
http://dx.doi.org/10.1109/ACCESS.2018.2884536
http://dx.doi.org/10.1109/ACCESS.2017.2728623
http://dx.doi.org/10.1016/j.icte.2016.08.007
http://dx.doi.org/10.1109/CSNT.2017
http://dx.doi.org/10.1109/JIOT.2018.2792016
http://dx.doi.org/10.1109/ICETETS.2016.7603070
http://dx.doi.org/10.1109/CECNet.2012.6201508
http://dx.doi.org/10.1109/JIOT.2018.2873343

Sensors 2019, 19, 2906 29 of 30

17. Koponen, T.; Chawla, M.; Chun, B.-G.; Ermolinskiy, A.; Kim, K.H.; Shenker, S.; Stoica, I. A Data-Oriented
(and Beyond) Network Architecture. In Proceedings of the ACM SIGCOMM, Kyoto, Japan, 27–31 August 2007.

18. Dannewitz, C. NetInf: An information-centric design for the future Internet. In Proceedings of the 3rd
GI/ITG KuVS Workshop on The Future Internet, Munich, Germany, 28 May 2009.

19. Comet Project Overview. Available online: http://www.comet-project.org/overview.html (accessed on
13 September 2018).

20. Fp7convergence Project. Available online: http://www.ict-convergence.eu/ (accessed on 15 Septembe 2018).
21. Fp7-Sail Project. Available online: http://www.sail-project.eu/ (accessed on 15 September 2018).
22. Carzaniga, A.; Rutherford, M.J.; Wolf, A.L. A routing scheme for content based networking. In Proceedings

of the INFOCOM 2004, Hong Kong, China, 7–11 March 2004; Volume 2, pp. 918–928.
23. Zhang, H.; Quan, W.; Guan, J.; Xu, C.; Song, F. Uniform information with a hybrid naming (hn) scheme,

draft-zhang-icnrg-hn-04. txt. In ICNRG Internet Draft; Technical Report; IETF: Fremont, CA, USA, 2016.
24. Quan, W.; Xu, C.; Guan, J.; Zhang, H.; Grieco, L.A. Social cooperation for information-centric multimedia

streaming in highway vanets. In Proceedings of the 2014 IEEE 15th International Symposium on World of
Wireless, Mobile and Multimedia Networks (WoWMoM), Thessaloniki, Greece, 12–14 October 2014; pp. 1–6.

25. Burke, J.; Gasti, P.; Nathan, N.; Tsudik, G. Securing instrumented environments over content-centric
networking: The case of lighting control and NDN. In Proceedings of the 2013 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), Turin, Italy, 14–19 April 2013; pp. 394–398.

26. Burke, J.; Gasti, P.; Nathan, N.; Tsudik, G. Secure sensing over named data networking. In Proceedings of the
2014 IEEE 13th International Symposium on Network Computing and Applications (NCA), Cambridge,
MA, USA, 21–23 August 2014; pp. 175–180.

27. Baccelli, E.; Mehlis, C.; Hahm, O.; Schmidt, T.C.; Whlisch, M. Information centric networking in
the IOT: Experiments with NDN in the wild. In Proceedings of the 1st International Conference
on Information-Centric Networking. Association for Computing Machinery (ACM), Paris, France,
24–26 September 2014; pp. 77–86. [CrossRef]

28. Bouk, S.H.; Ahmed, S.H.; Park, K.; Eun, Y. Interest Broadcast Suppression Scheme for Named Data Wireless
Sensor Networks. IEEE Access 2019, 7, 51799–51809. [CrossRef]

29. Amadeo, M.; Campolo, C.; Quevedo, J.; Corujo, D.; Molinaro, A.; Iera, A.; Aguiar, R.L.; Vasilakos, A.V.
Information-centric networking for the internet of things: Challenges and opportunities. IEEE Netw. 2016,
30, 92–100. [CrossRef]

30. Amadeo, M.; Campolo, C.; Iera, A.; Molinaro, A. Information centric networking in IoT scenarios: The case
of a smart home. In Proceedings of the 2015 IEEE International Conference on Communications, London,
UK, 8–12 June 2015; pp. 648–653.

31. Ullah, R.; Rehman, M.A.U.; Kim, B.S. Push-based Data Broadcast Control for Information-Centric Internet
of Things. In Proceedings of the International Conference on Green and Human Information Technology,
Kuala Lumpur, Malaysia, 16–18 January 2019.

32. Bouk, S.H.; Ahmed, S.H.; Kim, D. NDN goes deep: Foreseeing the underwater named data networks.
In Proceedings of the Symposium on Applied Computing, Marrakech, Morocco, 3–7 April 2017; pp. 642–646.

33. Amadeo, M.; Campolo, C.; Molinaro, A.; Ruggeri, G. IoT data processing at the edge with named data
networking. In Proceedings of the 24th European Wireless Conference, Catania, Italy, 2–4 May 2018; pp. 1–6.

34. Adhatarao, S.S.; Arumaithurai, M.; Kutscher, D.; Fu, X. ISI: Integrate Sensor Networks to Internet with ICN.
IEEE Internet Things J. 2018, 5, 491–499. [CrossRef]

35. Rehman, M.A.U.; Ullah, R.; Kim, B.S. An In-Network Query Structure for Information Centric Sensor
Networks. In Proceedings of the International Conference on Green and Human Information Technology,
Kuala Lumpur, Malaysia, 16–18 January 2019.

36. Abidy, Y.; Saadallahy, B.; Lahmadi, A.; Festor, O. Named data aggregation in wireless sensor networks.
In Proceedings of the 2014 IEEE Network Operations and Management Symposium (NOMS), Krakow,
Poland, 5–9 May 2014; pp. 1–8.

37. Bouk, S.H.; Ahmed, S.H.; Kim, D. Hierarchical and hash based naming with compact trie name management
scheme for vehicular content centric networks. Comput. Commun. 2015, 71, 73–83. [CrossRef]

38. Rehman, M.A.U.; Ullah, R.; Kim, B.S. Named Query Framework for Named Data Networking of Things.
In Proceedings of the Named Data Networking Community Meeting 2018 (NDNComm), Gaithersburg, MD,
USA, 19–20 September 2018.

http://dx.doi.org/10.1145/2660129.2660144
http://dx.doi.org/10.1109/ACCESS.2019.2910281
http://dx.doi.org/10.1109/MNET.2016.7437030
http://dx.doi.org/10.1109/JIOT.2017.2741923
http://dx.doi.org/10.1016/j.comcom.2015.09.014

Sensors 2019, 19, 2906 30 of 30

39. Quan, W.; Xu, C.; Guan, J.; Zhang, H.; Grieco, L.A. Scalable name lookup with adaptive prefix bloom filter
for named data networking. IEEE Commun. Lett. 2014, 18, 102–105. [CrossRef]

40. Zhang, M.; Guan, J.; Quan, W.; Xu, C.; Zhang, H. HFA: Novel naming and routing design for future Internet
architecture. In Proceedings of the IEEE 3rd International Conference on Cloud Computing and Intelligence
Systems, Shenzhen, China, 27–29 November 2014; pp. 207–211. [CrossRef]

41. Hong, J.; Chun, W.; Jung, H. A flat name based routing scheme for information-centric networking.
In Proceedings of the 2015 17th International Conference on Advanced Communication Technology (ICACT),
Seoul, South Korea, 1–3 July 2015; pp. 444–447.

42. Dinh, N.-T.; Kim, Y. Potential of information-centric wireless sensor and actor networking. In Proceedings
of the 2013 International Conference on Computing, Management and Telecommunications (ComManTel),
Ho Chi Minh City, Vietnam, 21–24 January 2013; pp. 163–168.

43. Li, B.; Verleker, A.P.; Huang, D.; Wang, Z.; Zhu, Y. Attribute-based access control for icn naming scheme.
In Proceedings of the IEEE Conference on Communications and Network Security (CNS), San Francisco, CA,
USA, 29–31 October 2014; pp. 391–399.

44. Ghayvat, H.; Mukhopadhyay, S.; Gui, X.; Suryadevara, N. WSN- and IOT-based smart homes and their
extension to smart buildings. Sensors 2015, 15, 10350–10379. [CrossRef] [PubMed]

45. Fowler, G.; Noll, L.C.; Vo, K.-P.; Eastlake, D. The FNV Noncryptographic Hash Algorithm; IETF-draft:
Fremont, CA, USA, 2011.

46. Fowler Noll Vo Hash Function Source Code. Available online: https://github.com/sindresorhus/fnv1a
(accessed on 14 January 2019).

47. Fowler Noll Vo Hash Function. Available online: http://will.thimbleby.net/algorithms/doku.php
(accessed on 14 January 2019).

48. Mastorakis, S.; Afanasyev, A.; Moiseenko, I.; Zhang, L. ndnSIM 2.0: A New Version of the NDN Simulator for
NS-3; Technical Report NDN-0028; UCLA: Los Angeles, CA, USA, 2015.

49. Baccelli, E.; Gündoğan, C.; Hahm, O.; Kietzmann, P.; Lenders, M.S.; Petersen, H. RIOT: An Open Source
Operating System for Lowend Embedded Devices in the IoT. IEEE Internet Things J. 2018, 5, 4428–4440.
[CrossRef]

50. Shang, W.; Afanasyev, A.; Zhang, L. The Design and Implementation of the NDN Protocol Stack for RIOT-OS.
In Proceedings of the 2016 IEEE Globecom Workshops (GC Wkshps), Washington, DC, USA, 4–8 December
2016; pp. 1–6.

51. Ullah, R.; Rehman, M.A.U.; Kim, B. Design and Implementation of an Open Source Framework and Prototype
for Named Data Networking-Based Edge Cloud Computing System. IEEE Access 2019, 7, 57741–57759.
[CrossRef]

52. Ullah, R.; Rehman, M.A.U.; Kim, B.S. Poster: A Testbed Implementation of NDN-based Edge Computing
for Mobile Augmented Reality. In Proceedings of the 20th International Workshop on Mobile Computing
Systems and Applications (HotMobile ’19), Santa Cruz, CA, USA, 27–28 February 2019; ACM: New York,
NY, USA, 2019; p. 181. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/LCOMM.2013.112413.132231
http://dx.doi.org/10.1109/CCIS.2014.7175730
http://dx.doi.org/10.3390/s150510350
http://www.ncbi.nlm.nih.gov/pubmed/25946630
http://dx.doi.org/10.1109/JIOT.2018.2815038
http://dx.doi.org/10.1109/ACCESS.2019.2914067
http://dx.doi.org/10.1145/3301293.3309565
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Internet of Things and Named-Data Networking (in a Nutshell)
	Related Work
	Motivation: A Smart Building Use Case
	Pull (Data Collection)
	Pull (Action-Based Control Commands)
	Push (Event-Driven)
	Push (Periodic)

	The Proposed Name-INtegrated Query (NINQ) Framework
	Interest Packet Components in the NINQ Framework
	Name Components
	Flat Component
	Query Component
	Command Component

	Communication Scenarios
	Simple Pull
	Pull (Action-Based Control Commands)
	Push (Event-Driven or Periodic)

	Advantages of the NINQ Framework

	Performance Evaluation
	Simulation Environment
	Results and Discussion
	Interest Satisfaction Rate
	Command Satisfaction Rate
	Number of Packets Processed
	Energy Consumption
	Average Delay

	Future Directions
	NINQ Testbed Implementation
	Multiple Query Execution
	Query Execution Plan: Evaluation and Time Complexity
	Augmented Reality and Edge Support
	NINQ-Lite for Wireless Sensor Networks
	Software-Defined Networking Interoperability
	Multiple Chunks Analysis (Wireless)
	Efficient Caching
	DDOS Attack Due to Unsolicited Data

	Conclusions
	References

