
sensors

Article

Speckle Noise Filtering in Side-Scan Sonar Images
Based on the Tucker Tensor Decomposition

Jakub Grabek and Bogusław Cyganek *

Department of Computer Science, Electronics and Telecommunications, AGH University of Science and
Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
* Correspondence: cyganek@agh.edu.pl

Received: 25 May 2019; Accepted: 28 June 2019; Published: 30 June 2019
����������
�������

Abstract: Real signals are usually contaminated with various types of noise. This phenomenon has a
negative impact on the operation of systems that rely on signals processing. In this paper, we propose
a tensor-based method for speckle noise reduction in the side-scan sonar images. The method
is based on the Tucker decomposition with automatically determined ranks of factoring tensors.
As verified experimentally, the proposed method shows very good results, outperforming other types
of speckle-noise filters.
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1. Introduction

Side-scan sonar allows for underwater object detection thanks to the measurement of the sent
and reflected low-frequency waves. This way, obtained sonar images can be processed for object
recognition, obstacle avoidance, and drone manoeuvring, to name a few. However, sonar images are
heavily contaminated with unwanted signals with the most prominent being speckle noise. This type
of noise arises from the coherent interference of backscattered waves due to the physical properties of
the object surfaces as well as wave propagation. In this paper, we tackle the problem of sonar image
filtering, which allows for noise removal while preserving useful information stored in the original
signals. For this purpose, the tensor-based filtering method is proposed, which accounts well for the
multi-dimensionality of the sonar images. To the best of our knowledge, this is the first work in which
the Tucker-based tensor decomposition with automatic rank determination is proposed for filtering of
the side-scan sonar images. The obtained results show that the proposed method outperforms many
other filtering methods [1–3].

The rest of the paper is organized as follows. Section 2 describes the related works. Section 3
briefly highlights the physical properties of the speckle noise, its model, as well as various filter types
for its reduction. Our proposed tensor-based denoising method is explained in Section 4. Experimental
results with a discussion on results are described in Section 5. Finally, Section 6 concludes the paper.

2. Related Works

Speckle noise is an unwanted phenomenon encountered in many electronic systems. In this
section, we provide an overview of the known methods that were proposed for filtering of this type
of signal distortion. Many papers address the speckle noise problem encountered in the domains of
medical ultrasound, radars and optical coherence tomography (OCT), often proposing state-of-the-art
solutions to the problem [2–5].

The speckle noise reduction is a well-defined problem, and many methods have been developed
to achieve a stable balance between the level of filtering and detail preservation. Apart from the
well-known simple filters, the hybrid and wavelet filters have gained attention from the researchers.

Sensors 2019, 19, 2903; doi:10.3390/s19132903 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s19132903
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/13/2903?type=check_update&version=3


Sensors 2019, 19, 2903 2 of 21

In this respect, the system proposed by Yu and Acton employs a nonlinear anisotropic diffusion
technique (SRAD) for removing multiplicative noise in imagery [4]. They used a partial differential
equation approach which, due to the filter size and shape, allows for the generation of an image scale
space without bias. SRAD, as an adaptive technique, not only preserves edges but also enhances them
by inhibiting diffusion across edges.

Karthikeyan and Chandrasekar proposed a method combining the SRAD filter with the
wavelet-based BayesShrink technique [5]. An input image is decomposed using the Discrete Wavelet
Transform, followed by a nonlinear thresholding step. The data are then reconstructed by the Inverse
Discrete Wavelet Transform. Their method achieved a PSNR metric value of over 70 dB, as measured
on a test dataset.

On the other hand, in the paper by Vanithamani et al. [1], the Modified Hybrid Median Filter is
presented. The method is a three-step ranking operation using a non-standard window. The system
uses neighbors forming “X” and “+” shapes, overcoming the problem of edge degradation.

A system for speckle reduction for the OCT images was proposed by Adabi et al. [2]. It is based
on a multi-layer perceptron neural network, which estimates parameters for the filtering module of the
system. As reported, the achieved average parameter estimation is above 99%. The denoising, based
on the Rayleigh distribution model, is conducted independently on the small blocks generated from
the image. The final output is combined into one image, with simultaneous block artifacts reduction.

However, neither of the above solutions accounts for the multi-dimensionality of the input signal.
A method proposed in this paper, which relies on signal representation and processing with tensors,
accounts for this effect what leads to superior results, as discussed below.

3. Characteristics of the Speckle Noise and Its Filtering Methods

Speckle noise is one of the primary sources of visual noise in sonar, ultrasound or radar
images [6,7]. It is mainly caused by the returning wave interference inside the transducer due to
the roughness of the material surface in the wavelength scale. The scattered signal adds coherently
producing patterns of constructive and destructive interference, visible as brighter or darker dots in an
image. Speckle noise can be modeled as follows.

g(m, n) = f (m, n)u(m, n) + η(m, n) (1)

where g(m, n) denotes corrupted image matrix at spatial position (m, n); u(m, n) and η(m, n) stand for
the multiplicative and additive component of of the noise, respectively; and f is the original image.

Speckle noise filtration is mainly based on assumptions that the signal and the noise are statistically
independent, and the sample mean and variance of a single pixel are equal to the mean and variance
of the whole local area. The different methods developed to eliminate speckle noise can be divided
into adaptive and non-adaptive ones. In theory, they are low pass filters removing high-frequency
noise. However, the negative side effect of this process is degradation of useful image features such as
edges, corners, and other high-frequency patterns [8]. The common filtering methods, as well as their
properties, are outlined in the following sections.

3.1. Average Filter

The average filter calculates the grey level from the mean of all pixels in a kernel surrounding the
center of the window and returns a value of this central position. The mean for m× n window region
is determined as follows:

I(x, y) =
1

mn ∑
k∈{m}

∑
l∈{n}

g(k, l) (2)

where I denotes pixel intensity of an m× n patch, g is intensity of a noisy pixel, at grid coordinates
{m} × {n} around the central pixel position (x, y).
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3.2. Median Filter

In the median filter, the grey level for actual window position is calculated from the median
value of all pixels in the surrounding kernel of m× n. Similar to the average filter, median filtering
smooths the image reducing also noise. However, due to its nonlinearity, the median filter has better
performance in edge preservation and impulse noise removal than the average filter. On the other
hand, the median filter has higher computational cost as a result of a need for sorting values of at least
half of the pixels in the kernel. The median filtering algorithm can be outlined as follows [9]:

1. Take an m× n kernel centered around a pixel (x, y).
2. Sort the intensity values of the pixels in the kernel into ascending order.
3. Select the middle value as the new value for the pixel (x, y).

3.3. Frost Filter

The Frost filter calculates the grey level for each pixel using an exponentially dumped convolution
kernel that can adapt its parameters [4]. This is kind of a guided filter in which its local adjustment
level is controlled by the adaptive filter coefficient calculated for each window.

The filter smooths image data without removing edges or sharp features in the images while
minimizing the loss of valuable information. In homogeneous areas, speckles are removed using a
low-pass filter. On the other hand, in the areas containing isolated point targets, the filter preserves the
observed value. More precisely, the Frost filter can be defined as follows

Is = ∑
p∈ηs

mp Ip (3)

mp = exp(−KC2
s ds,p)/ ∑ exp(−KC2

s ds,p) (4)

ds,p =
√
(x− xp)2 + (y− yp)2) (5)

where K denotes dumping factor and Is is an intensity value of the center pixel in the kernel. Values
(x, y) and (xp, yp) indicate grid coordinates of the centre of the window and the pixel p, respectively.
Cs is a local statistic value used for adaptive computation of the filter coefficients.

3.4. Lee Filter

The Lee filter is another adaptive method based on calculation of a local statistics [10]. A low
value of the variance of the kernel causes the algorithm to have a lower impact on the image as a low
pass filter. This allows for detail preservation in both low and high contrast images. Formally, the Lee
filter is defined as follows

Is(i, j) = Im + W(Icp − Im) (6)

where Im and Icp denote mean intensity value of the kernel window and a value for the center pixel,
respectively. The size of its filter window W is given as follows

W = σ2(σ2 + ρ2) (7)

where σ2 and ρ2 are variances computed for an image and estimated for the additive noise, respectively.

3.5. Kuan Filter

The Kuan filter transforms the multiplicative noise model into an additive noise model and then
applies the local linear minimum mean square error criteria [11]. This method is similar to the Lee
filter except that the weighting function is defined as follows

W =
(1− Cu/Ci)

(1 + Cu)
(8)
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where Cu denotes an estimated noise variance and Ci is a variance of an image.

3.6. Enhanced Lee Filter

The Enhanced Lee method calculates the grey level for each pixel similar to the already described
Lee filter but additionally using two threshold values [12]. These thresholds control the allowable
local variance and determine filter performance. Namely, low pass filtering is active when the local
variance coefficient is below a lower threshold. On the other hand, the all pass filter is applied
when the coefficient is above the higher threshold. For the coefficient value between the thresholds,
the output is calculated with a weighting function balancing between averaging and the identity
operations, respectively.

4. Tensor-Based Speckle Noise Filtering

Tensors are mathematical objects which can be regarded as multidimensional arrays of data,
in which each separate dimension corresponds to a different degree of freedom of a measurement.
Such an approach provides tools which extend the classical matrix analysis, and which can take into
account correlations hidden in data, to yield better results in various applications, such as filtering [9].

4.1. Multi-Dimensional Signals Filtering in the Tensor Framework

Tensors extend the notion of vectors and matrices into higher-dimensional objects [9,13–15].
As discussed below, they allow for better representation and processing of the multidimensional
signals and, in effect, also for better filtering.

A multidimensional measurement T can be expressed as a sum of pure signal tensor S and noise
N caused by imperfections introduced during the measurement process as well as by other physical
phenomena [15]. Hence,

T = S +N (9)

where T ,S ,N ∈ <N1×N2×...×NP are Pth order tensors. The multidimensional filtering can based on
the following tensor product

T̂ = T ×1 F1 ×2 F2...×P FP (10)

where filtered version of noisy tensor T is denoted as T̂ , whereas Fi is the ith mode filtering matrix.
In the above equation, the kth modal product T ×k M of a tensor T ∈ <N1×N2×...×NP and a matrix
M ∈ <Q×Nk is used. The result is also a tensor S ∈ <N1×N2×...Nk−1×Q×Nk+1×...×NP , whose elements are
expressed as follows:

Sn1n2...nk−1qnk+1...nP = (T ×k M)n1n2...nk−1qnk+1...nP =
Nk

∑
nk=1

tn1n2...nk−1qnk+1...nP mqnk (11)

As shown below, the filter matrices Fi, called factors, can be obtained using the Tucker
decomposition of tensors [16]. Thanks to the proper selection of the ranks of the tensor decomposition
factors, decomposition usually well separates useful signal from noise, at the same time taking
multidimensional characteristics of the signal into account. The decomposition procedure of the tensor
T is done by calculation of an approximating tensor T̂ that is close to the input tensor in terms of the
Frobenius norm. Hence, a minimization function is defined as follows

Θ(T̂ ) = ||T̂ − T ||2F (12)

The concept of the Tucker decomposition of a 3D tensor is presented in Figure 1. Assuming that
the approximating tensor T̂ contains the same amount of useful information as the original tensor T ,
it can be expressed as follows

T̂ = Z ×1 S1 ×2 S2 ×3 ...×P SP (13)
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where Z ∈ <R1×R2×...×RP is a core tensor and Si ∈ <Ni×Ri are the so-called mode matrices. Using
algebraic operations, from Equation (13), the formula for the core tensor is obtained:

Z = T̂ ×1 ST
1 ×2 ST

2 ×2 ...×P ST
P (14)

Combining Equation (14) with Equations (12) and (13) yields

Θ(T̂ ) = ||T̂ − T
P

∏
k=1
×k(SkST

k )||
2
F (15)

The Tucker decomposition in Equation (15) reads that a tensor T is approximated by its projection
onto space spanned by the matrices Sk. To compute the series of Sk matrices, the alternating method
can be used [9,17–19].

Figure 1. Visualization of the Tucker decomposition of a 3D tensor.

Finally, it can be shown that the factor matrices Fi can be obtained from the tensor decomposition
matrices Si, as follows [15]

Fi = SiST
i (16)

The approximation in Equation (13) includes only the components conveying the majority of
energy available in the signal. However, to ensure the best quality, the estimation of the proper ranks
R1, R2, and R3 of the mode matrices Si is necessary. Although fixed values can be used as a first
approximation, in real dynamic systems with unpredictable noise value, the proper ranks need to be
based on the signal content. To solve this problem, the method presented by Muti and Bourennane [14]
is used. For this purpose, the minimum description length parameter (MDL) is computed for each
dimension separately. For an argument i, 1 ≤ i ≤ Nk , a value of MDL is given as follows

MDL(i) = − log
∏Nk

j=i+1 λ
1/(Nk−i)
j

[1/Nk − i]∑Nk
j=i+1 λj

+
1
2

i(2Nk − i) log ck (17)

where λj denotes jth eigenvalue in the eigendecomposition and ck is a number of observations. Such an
approach is also used in the presented filtering system.

4.2. The Tensor Filtering Algorithm

The Tucker tensor decomposition algorithm consecutively computes the dominating eigenspace
spanned by the flattened tensor at each tensor dimension [9]. In each such a step, a minimum imin is
sought as a last component number from eigenvalues with significant decomposition impact.

The proposed method utilizes a moving window pattern, which is common in image
processing [6]. The kernel of size of ws × ws traverses image I from the upper-left to the bottom-right
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corner, respectively, with the step fixed as ws/4 to ensure area overlapping for better representation.
Such movement of the kernel results in a number of patches that are collected into the input tensor T .
Depending on the Close Neighbor Distance (CND) parameter, more or fewer windows from the close
neighborhood are included. For CND = 1, which is the lowest possible value, there are nine windows
combined into the input tensor. This procedure is outlined in Algorithm 1.

This way, the prepared tensor is Tucker decomposed with the help of the Higher Order Orthogonal
Iteration (HOOI) algorithm [16]. In the result, the core tensor and the set of mode matrices are obtained.
These, in the reverse signal synthesis process, are then used for signal filtering, as described in the
previous section. This way approximated signal contains most important information with noise
significantly attenuated due to properly adjusted rank of the tensor decomposition. In the next step,
this way filtered signal patch is inserted to the output image X into a position corresponding to the
actual position of the kernel in I. The process repeats itself until the end position is reached. Then each
pixel in X is scaled by dividing its value by a number of its occurrences during the filtering process.
The output image is then returned. The routine is implemented as shown in Algorithm 2. As alluded
to previously, to determine proper ranks of the tensor, the MDL calculation process, as in Equation (17),
is performed for all tensor dimensions.

Algorithm 1 Tensor assembler.

1: procedure GENERATE TENSOR(I, x, y, ws, CND)
2: T = ∅
3: for m = x− CND : x + CND do
4: for n = y− CND : y + CND do
5: crop a rectangular patch with a top-left corner point at n, m and size ws
6: append window to T
7: end for
8: end for
9: return T

10: end procedure

Algorithm 2 Filtering algorithm.

1: procedure FILTER TUCKER(I, tr, ws, CND)
2: form a zero filled initial output image X of the same dimensions as I
3: for m = 1 : ws/4 : M do
4: for n = 1 : ws/4 : N do
5: GENERATE TENSOR(I, m, n, ws, CND) . generate filtering tensor
6: if tr = ∅ then
7: for k = 1 : 3 do
8: calculate tr[k] for k-axis using MDL
9: end for

10: end if
11: reconstruct window Y with Tucker reconstruction and the ranks tr
12: add window Y to X
13: end for
14: end for
15: rescale window X
16: return X
17: end procedure
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5. Experimental Results

The presented method was implemented in Python, using the numpy, scipy and skimage libraries.
Additionally, for tensor decomposition, the TensorLy library was used [20]. The benchmark methods
were implemented using the PyRadar library with small changes, allowing them to be run in the test
environment. Experiments presented in this section were performed on a laptop computer equipped
with 16 GM of RAM, 6-core processor i7-8750H with the 2.2 GHz base clock, and 64-bit Ubuntu
18.04 OS.

However, finding proper test sonar images is difficult. Therefore, for the quantitative evaluation,
the synthetic sonar images were generated, which contain different types of objects. During the
experiment, the set of five images was contaminated by the addition of speckle noise generated as follows

g = f + n · f (18)

where n is a uniform noise with the mean x̄ = 0 and variance σ2 = 0.0001, 0.0005, 0.001, 0.005, 0.01,
0.05, and 0.1. Matrices g and f denote corrupted image and original image, respectively. For better
demonstration of filtering capabilities of all methods, the real sonar images were also used. Examples
are presented in Figures 2 and 3 for the synthetic and and real side scan sonar images, respectively.

(a) (b)
Figure 2. Exemplary synthetic images used as an input. (a) Sample image containing larger generated
objects; (b) Sample image containing smaller generated objects.

The full code, as well as all generated images and plots, are available in an online repository [21].
The quantitative results were measured in terms of the Peak Signal to Noise Ratio (PSNR),
Structural Similarity (SSIM), and Mean Squared Error (MSE) parameters calculated for each picture,
respectively [22,23]. The MSE for an n×m image I and its noised approximation K is defined as follows:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− K(i, j)]2 (19)

On the other hand, PSNR is a term for the ratio between a maximum possible pixel value Imax

and the value MSE of a noise corrupted signal. It is defined as:

PSNR = 10 log10(
I2
max

MSE
) (20)
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Finally, the SSIM denotes a way for a quality assessment based on the degradation of the structural
information between two signals x and y, respectively, and is defined as follows:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(21)

where µ represents an average and σ2 the variance of a given image. σxy is the covariance between x
and y, and C1 and C2 are constants stabilising the division with small factors in the denominator.

(a) (b)
Figure 3. Exemplary real side scan sonar images used as an input. (a) Sample image
containing man-made circular objects (tyres); (b) Sample image containing man-made circular and
box-shaped objects.

Edges of the objects were visually inspected to determine the impact of a filtering algorithm on
their sharpness. To provide a benchmark for the proposed algorithm, the filters such as Mean, Median,
Frost, Lee, Lee enhanced and Kuan were used. The window size and other input parameters for the
benchmark filters were set to achieve a balance between speckle reduction and edge preservation.

In the presented experiments, the noise reduction, as well as the influence of various parameters
on this process, were measured. This way, the obtained performance of the different denoising methods
is presented in Table 1. P1 and P2 denote results for the proposed method with different values of the
input parameters. Their exact values, for each P1 and P2, respectively, are presented in Table 2. The next
proposed method, called PAuto, is the one endowed with the MDL algorithm for the automatic rank
calculation. In this case, for every assembled tensor, a new set of ranks is estimated. The average
execution time for each algorithm is presented in Table 3. On the other hand, the comparative results
for all tested algorithms are collected in Figure 4. For each filtering method, a figure consisting of
original, noised, filtered and difference image was prepared. The difference image was calculated as an
absolute difference between the original and filtered data and visualizes advantages and disadvantages
of each denoising method.

There are few visible trends between changes in the input parameters and achieved values of the
MSE, PSNR, and SSIM, as well as in respect to the execution time. The resulting figures with plotted
metrics against noise variance are presented in Figure 5.

It can be observed that increasing the CND parameter improves the SSIM metrics due to better
averaging capabilities of the proposed filter with a larger dataset. The improvement is more significant
for higher noise variance values. At the same time, a bigger value of this parameter increases the
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execution time and slightly worsens the PSNR. On the other hand, decreasing rank values of the
Tucker decomposition reduces execution time and does not affect significantly achieved metrics values.
As found experimentally, the filters achieve their best SSIM performance with window size = 32, 64
and window size = 8 for the PSNR, respectively. Performance of the methods for which their maximal
value in the Tucker rank is lower than the window size, is correlated with the execution time and the
noise variance level. Such correlation is not observed for filters with maximal value in the Tucker rank
greater than the window size, however. The achieved values of the SSIM metrics for the proposed
method usually are lower in the case of the selected benchmark methods. The difference is more
significant for higher noise variance, which leads to a conclusion that the proposed method has lower
filtering capabilities of structural distortions. The greater impact of structural component is visible in
Figures 6 and 7. However, Figures 8–13 show higher edge degradation in the benchmark methods.

Table 1. Results of speckle noise reduction for different algorithms. The best results of each case among
these methods are denoted by boldface.

σ2 Index
Methods

Mean Median Frost Lee Lee
Enhanced Kuan P1 P2 PAuto

0.0001
SSIM 0.98618 0.99462 0.99059 0.98967 0.98871 0.98964 0.99223 0.99595 0.9885
PSNR 33.08012 34.28427 33.80562 33.9245 33.23504 33.89692 34.66237 35.536 35.59227
MSE 4.801 × 10−4 3.701 × 10−4 4.165 × 10−4 4.052 × 10−4 4.655 × 10−4 4.074 × 10−4 3.496 × 10−4 2.932 × 10−4 2.96 × 10−4

0.0005
SSIM 0.9832 0.99067 0.98762 0.98663 0.98567 0.98661 0.98882 0.98155 0.96107
PSNR 27.7841 28.15245 28.01909 28.06141 27.83237 28.05204 28.42009 28.75497 28.86646
MSE 1.550 × 10−3 1.435 × 10−3 1.478 × 10−3 1.469 × 10−3 1.536 × 10−3 1.472 × 10−3 1.381 × 10−3 1.335 × 10−3 1.348 × 10−3

0.001
SSIM 0.97971 0.98621 0.98424 0.98303 0.98208 0.98303 0.9847 0.96531 0.93043
PSNR 25.1087 25.32174 25.24272 25.27095 25.1348 25.26519 25.54454 25.89716 26.05117
MSE 2.723 × 10−3 2.613 × 10−3 2.649 × 10−3 2.638 × 10−3 2.710 × 10−3 2.641 × 10−3 2.533 × 10−3 2.499 × 10−3 2.527 × 10−3

0.005
SSIM 0.95713 0.95753 0.9612 0.96007 0.9592 0.96011 0.95523 0.87239 0.83173
PSNR 18.51647 18.58405 18.55519 18.56429 18.52239 18.56241 18.74906 19.55913 19.675
MSE 9.949 × 10−3 9.900 × 10−3 9.876 × 10−3 9.854 × 10−3 9.938 × 10−3 9.858 × 10−3 9.704 × 10−3 9.746 × 10−3 9.787 × 10−3

0.01
SSIM 0.93345 0.92814 0.93689 0.93593 0.93518 0.93601 0.92394 0.79781 0.74624
PSNR 15.61236 15.65576 15.63202 15.64155 15.61553 15.64034 15.85178 16.95285 17.12022
MSE 1.670 × 10−2 1.672 × 10−2 1.663 × 10−2 1.660 × 10−2 1.669 × 10−2 1.661 × 10−2 1.644 × 10−2 1.655 × 10−2 1.664 × 10−2

0.05
SSIM 0.80955 0.78359 0.79237 0.80542 0.81024 0.80592 0.76942 0.57621 0.64057
PSNR 9.02068 9.11328 9.04919 9.16097 9.02168 9.12861 9.43093 11.63039 11.47503
MSE 4.618 × 10−2 4.643 × 10−2 4.616 × 10−2 4.607 × 10−2 4.617 × 10−2 4.608 × 10−2 4.591 × 10−2 4.635 × 10−2 4.605 × 10−2

0.1
SSIM 0.71967 0.68468 0.63478 0.48404 0.71972 0.49222 0.66803 0.48759 0.54534
PSNR 6.29977 6.40971 6.45613 9.15216 6.3006 8.96839 6.88114 9.69316 9.4846
MSE 6.521 × 10−2 6.557 × 10−2 6.529 × 10−2 6.579 × 10−2 6.520 × 10−2 6.571 × 10−2 6.496 × 10−2 6.561 × 10−2 6.520 × 10−2

Table 2. Input parameters for the P1 and P2 methods.

Parameter P1 Value P2 Value

Tucker rank 30, 30, 2 10, 10, 2
Window size 32 8

Close neighbor distance (CND) 3 1

Table 3. Average execution time.

Method Mean Median Frost Lee Lee
Enhanced Kuan P1 P2 PAuto

Average time [s] 2.86 13.83 26.06 13.42 13.29 20.12 69.44 482.34 448.52

Hence, the proposed method has better edge preservation capabilities than benchmark methods,
at least as measured in the available test signals. Comparison between Figures 14 and 15 shows
significantly less edge erosion for presented method. The comparison of results in real side-scan sonar
images are presented in Figure 16.
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Figure 4. Cont.
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Figure 4. Filtering results comparison for different noise values. Top row σ2 = 0.01, middle row σ2 = 0.05, bottom row σ2 = 0.1: (A) Original image; (B) noised image;
(C) Mean; (D) Median; (E) Frost; (F) Lee; (G) Lee enhanced; (H) Kuan; (I) P1; (J) P2; and (K) PAuto.
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(a) Metrics for Tucker rank = [10, 10, 2] and window size = 8

(b) Metrics for Tucker rank = [30, 30, 2] and window size = 32
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(c) Metrics for Tucker rank = [50, 50, 2] and window size = 64

(d) Metrics for Tucker rank = [140, 140, 2] and window size = 128

Figure 5. Method performance measured with MSE and SSIM metrics in respect to the noise variance
σ2 as defined in Equation (18).
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Figure 6. Filtering results for parameters: Tucker rank = [10, 10, 2], window size = 8, close neighbor
distance = 1. Speckle noise σ2 = 0.05.

Figure 7. Filtering results for parameters: Tucker rank = [30, 30, 2], window size = 16, close neighbor
distance = 1. Speckle noise σ2 = 0.05.
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Figure 8. Filtering results for Mean filter. Speckle noise σ2 = 0.05.

Figure 9. Filtering results for Median filter. Speckle noise σ2 = 0.05.
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Figure 10. Filtering results for Frost filter. Speckle noise σ2 = 0.05.

Figure 11. Filtering results for Kuan filter. Speckle noise σ2 = 0.05.
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Figure 12. Filtering results for Lee filter. Speckle noise σ2 = 0.05.

Figure 13. Filtering results for Lee enhanced filter. Speckle noise σ2 = 0.05.
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Figure 14. Filtering results for Median filter.

Figure 15. Filtering results for parameters: Tucker rank = [10, 10, 2], window size = 8, close neighbor
distance = 1.
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Figure 16. Filtering results comparison for three different real side scan sonar images: (A) Original image; (B) Frost; (C) Kuan; (D) Lee; (E) Lee enhanced; (F) Mean;
(G) Median; and (H) PAuto.
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6. Conclusions

In this paper, a novel filtering method for speckle noise removal in sonar images is presented.
The method is based on the Tucker decomposition of tensors composed of local patches of the
sonar images. The presented algorithm performs well against images corrupted with speckle noise
characteristic of the broad variance range. It outperformed all used benchmark methods in terms of
the PSNR and MSE measures. As experimentally observed, the second advantage of the proposed
method is less degradation of the important features, such as edges. However, a disadvantage is the
high computational cost, especially observed for smaller sized patches. On the other hand, the Python
implementation leaves space for further improvements in this respect. Although the method was
developed mainly for sonar image enhancement, it can be useful for other signals contaminated with
speckle noise such as ultrasound, radar or the OCT images.
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