
sensors

Article

On the Prediction of Upwelling Events at the
Colombian Caribbean Coasts from
Modis-SST Imagery

José J. Alonso del Rosario 1,* , Juan M. Vidal Pérez 2 and Elizabeth Blázquez Gómez 3

1 Department of Applied Physics, University of Cádiz, CASEM, Avd. Rep. Saharaui s/n, 11510 Puerto Real,
Cádiz, Spain

2 Department of Ship-Building, University of Cádiz, CASEM, Avd. Rep. Saharaui s/n, 11510 Puerto Real,
Cádiz, Spain

3 Department of Earth Sciences, University of Cádiz, CASEM, Avd. Rep. Saharaui s/n, 11510 Puerto Real,
Cádiz, Spain

* Correspondence: josejuan.alonso@gm.uca.es; Tel.: +34-95-601-6054

Received: 18 March 2019; Accepted: 23 June 2019; Published: 27 June 2019
����������
�������

Abstract: The upwelling cores on the Caribbean Colombian coasts are mainly located at the Peninsula
de la Guajira and Cabo de la Aguja. We used monthly averaged Moderate Resolution Imaging
Spectroradiometer (MODIS) sea surface temperature as the only information to build up a prediction
model for the upwelling events. This comprised two steps: (i) the reduction of the complexity by
means of the Karhunen–Loève transform and (ii) a prediction model of time series. Two prediction
models were considered: (a) a parametric autoregressive-moving average (ARMA) time series from
the Box–Jenkins methodology and (b) a harmonic synthesis model. The harmonic synthesis also
comprised of two steps: the maximum entropy spectral analysis and a least-squares harmonic analysis
on the set of frequencies. The parametric ARMA time series model failed at the time of prediction with
a very narrow range, and it was quite difficult to apply. The harmonic synthesis allowed prediction
with a horizon of six months with a correlation of about 0.80. The results can be summarized using
the time series of the weights of the different oscillation modes, their spatial structures with the nodal
lines, and a high confidence model with a horizon of prediction of about four months.
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1. Introduction

One of the nine upwelling areas in the Southern Caribbean [1] is located in Punta Gallinas and
Cabo de la Aguja, on the Peninsula de la Guajira (Figure 1). Deep currents travel from the northward
branch of the Brazilian current, reaching the Caribbean Sea as the Caribbean current after crossing the
Lesser Antilles [2,3]. A description of the upwelling foci and an exhaustive study on the oceanography,
nutrient and pigment distribution, and a discussion of the role of the upwelling filaments in the
enrichment of open-sea areas in the Caribbean can be found in [4]. Remote sensing studies in the area
started with the use of coastal zone color scanner (CZCS) imagery, which showed a low phytoplankton
concentration in the open ocean and high concentrations at the coastal areas where upwelling occurs [5].
A study of the upwelling foci along the Southern Caribbean coast using advanced very high resolution
radiometer (AVHRR) imagery for the year 1996 can be found in [6]. Upwelling events from AVHRR
imagery were also studied in [7], where remote sensing information was combined with meteorological
data to link the wind forcing with the sea surface temperature (SST) field. Upwelling events occur
twice per year. The most important event occurs when the intertropical convergence zone (ITCZ) is
at its southernmost position (December until April–May) with the prevailing trade winds acting in
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the Southern Caribbean. The second and weaker event occurs in about June–August when the ITCZ
is at its northernmost position. This event is caused by intensification of the Caribbean low-level jet
(CLLJ) [8–11].
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Figure 1. Area under study. The upwelling events are located in the Colombian Caribbean Coast
between Punta Gallinas and Cabo de la Aguja at the Colombian Caribbean. The range of temperatures
spans from about 20 ◦C to about 32 ◦C. The monthly composite image corresponds to December 2003.

On the other hand, we studied the upwelling at the Peninsula de la Guajira from several points
of view. The application of mathematical morphology [12,13] revealed many internal features of the
SST signature. Computation of the fractal dimension of the skeletons of the SST signatures and joint
analysis with climate indexes provided insights on the influence of meteorological forcing on the
upwelling system. The influence of the upwelling at the Peninsula de la Guajira on some coastal water
bodies was studied from a numerical point of view [14].

In this study, we consider the prediction of the upwelling events at the Peninsula de la Guajira from
monthly averaged MODIS-SST imagery. Higher frequency composites show cloud cover, and the main
objective of this work is the development of a prediction model. This comprises two steps. The first
is the reduction of the complexity by means of the Karhunen–Loève transform (KLT). This allows
the decomposition of a time series of digital images onto a double-linked basis set consisting of
orthonormal spatial modes and their corresponding temporal modes. The second step is the prediction
of the temporal modes. This is carried out by two different methods. The Box–Jenkins methodology
for time series models (ARMA) produces low-quality predictions. However, the study of frequency
composition to apply harmonic synthesis presents some difficulties because of the short length of the
time series. The power spectral density (PSD) is computed by maximum entropy spectral analysis
(MESA) to avoid spectral leakage of the Fourier transform [15]. The set of frequencies is used to build
up a harmonic regression, leading to a high-confidence prediction model.

This manuscript is structured as follows: the descriptions of the available imagery,
its pre-processing, a brief introduction of the KLT, some guidelines about reading the information from
it, and a description of the time-series prediction model are presented in Section 2. The results and the
discussion are presented in Section 3. Finally, the conclusions are drawn in Section 4.

2. Materials and Methods

2.1. Satellite SST Imagery

The available satellite imagery consisted of a set of 118 monthly composite MODIS-SST images
with a 1 km2 spatial resolution (December 2002 to September 2012). They were downloaded from [16],
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but they were originally generated by the Institute of Marine Remote Sensing at the College of Marine
Science at University of South Florida. The digital images were cut to the study area (NW corner
at [16◦N, 77◦W], SE corner at [10.5◦N, 71.5◦W]) to focus the analysis on the Peninsula de la Guajira.
The digital images were transformed to an 8-bit grey scale for computation and were translated to
degrees Celsius at the time of presenting the results.

The upwelling system at the Caribbean Colombian coasts is linked to the dynamics of the
Atlantic ITCZ. This is defined as a narrow zonal strip where atmospheric convergence of both
hemispheres occurs. The generation of the westward trade winds conforms to the Caribbean low-level
jet (CLLJ) [8–11]. The latitude of the ITCZ spans from 4◦N to 13◦N. From December to April, the ITCZ
is in its southernmost position at around 4◦N, causing intensification of the trade winds and moving
them over the southern Caribbean Sea, generating the main upwelling episode. A full discussion can
be found in [3,4,7–11,17].

An example of the upwelling event from November 2007 to June 2008 is shown in Figure 2.
The image of November 2007 (Figure 2a) is the initial stage with no upwelling conditions
(weak westward trade wind) and a high SST close to the coast. The image of December 2007
(Figure 2b) shows how the upwelling starts. The growth of the area with colder waters is very quick
in January 2008 (Figure 2c), with a coastal core temperature of about 23 ◦C. This becomes larger in
February (Figure 2d), March (Figure 2e), and April (Figure 2f). Finally, when the ITCZ goes northward,
deactivating the episode, the CLLJ takes place and activates the mid-year event (Figure 2g,h).
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Figure 2. Sequence of sea surface temperature (SST) imagery from (a) November 2007, (b) December
2007, (c) January 2008, (d) February 2008, (e) March 2008, (f) April 2008, (g) May 2008, and (h) June
2008. Units are degrees Celsius. The coordinates are detailed in Figure 1.
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2.2. The Karhunen–Loève Transform

The KLT was independently proposed by [18,19]. The method is widely known under a variety of
names, but the main basis is the so-called Hotelling transform [20], also known as principal component
analysis [21,22]. The KLT is a commonly used tool to project a time series of a two-dimensional
scalar field onto a double empirical-linked basis conformed by self-oscillation spatial modes and
their corresponding temporal weights. Decreasing the dimensions of the problem was one of its first
applications [23], and it is commonly used for the denoising of time series of two-dimensional fields or
for facial and pattern recognition [24–26].

In the frame of the KLT, each scene of a time series of equally sampled digital images is named
snapshot, Φn(x, t), where x represents the position vector and t stands for time. Their ensemble,
Φ(x, t) =

{
Φn(x, t)

}
n=1,m

, is named super-snapshot, and it must be decomposed of using the KLT. Let a

super-snapshot of n be centered on two-dimensional digital images Φ(x, t) −Φ(x). The mean field is
Φ(x). Consider the decomposition of the n-th snapshot, Φn(x, t), in terms of the sum of an orthonormal
basis of m spatial modes

{
Ψi(x)

}
i=1,m

, a time-dependent basis
{
Ai(t)

}
i=1,m and a factor to measure the

importance (a singular value) of each i-th mode, Mi, in such a way that

Φn(x, t) =
m∑

i=1

MiAi(t)Ψi(x) (1)

The product of the i-th temporal and spatial terms is the i-th mode. However, it is convenient to
compute them separately. The usual dual estimates are

Ai(t) =
1

Mi

〈
ΨiΦ(x, t)

〉
Ψi(x) =

1
Mi

〈
Ai(t)Φ(x, t)

〉
(2)

where <> stands for the projection operator in the Hilbert space [27]. This can be also written as an
eigenproblem:

ΛiAi(t) =
∑

t′
Ctt′Ai(t′) (3)

where the i-th eigenvalue Λi is related to the i-th singular value Mi by Λi = M2
i and the symmetric,

positively defined covariance matrix Ctt′ =
〈

Φ(x, t)Φ(x, t′)
〉

. The latter is computed as the
autocorrelation function of the super-snapshot and stored in matrix form.

The easiest approach to carry out the eigen-decomposition of Equation (3) is to consider the
expression of one snapshot in terms of Equation (1):

φp(x, t) =
∑
i=1

µiai(t)ψi(x) (4)

where ai(t) and ψi(x) are the i-th temporal and spatial modes, respectively, and µi is the associated
singular value that gives the importance of the i-th mode. The above self-covariance matrix is then
written by means of singular value decomposition:

Ctt′ =

t∫
0

dt
∫ ∑

k

µkak(t)ψk(x)


∑

l

µlal(t
′)ψl(x)

dx =

1∫
0

∑
k

λkak(s)ak(s)

ds (5)

taking advantage of the ortho-normality of each two bases. The identity described by Fukunaga [22]
for the temporal covariance matrix is easily reached:

C(s, t) =
∑

k

λkak(s)ak(t) (6)
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where λk = µ2
k is the k-th eigen-value. Finally, the eigen-functions are computed by writing the

self-covariance matrix by using a combination of the temporal correlation between times t and t‘ and
the spatial modes weighted by their variances:

Ψm(x) =
1
µm

∑
t′

am(t′)
∑
i=1

λiai(t)ψi(x) (7)

The following remarks could be useful for clarifying the above exposition and for computational
details. As usual, in the methodology of the principal component analysis, the variables must be
centered. The mean field must be computed pixel-by-pixel to prevent bias error through the averaging
of undesired areas. So, the first result from the KLT is the mean field, Φ(x), the second result is the
set of spatial modes, and the third is the set of temporal modes. In addition, the spectrum of the
eigenproblem sheds light on how many modes must be considered.

The spatial modes give the spatial structure of the oscillation and the intensity (amplitude) of
the spatial variation. These modes have time-invariant lines (zero amplitude) or nodal lines, and the
field pivots around them. The temporal modes give the corresponding time evolution. They allow
the correlation to any exogenous variable to identify external influences if required. The importance
of each mode allows us to simplify the problem and filter out the important amount of noise that is
always present in any geophysical signal.

Another question is how many eigenmodes must be computed. When a set of N images is
submitted to a KLT, N modes are computed, as in the principal component analysis. However, this may
be not the best option, because the first eigenvalue is sensitive to round-off errors, and its correction is
very difficult. It is convenient to think that the covariance matrix holds the signal and noise subspaces
and that the eigenmodes to be computed are assigned to the signal subspace. From a practical point
of view, the number of eigenmodes can be one-fifth, and perhaps one-quarter, of the number of
available images.

2.3. Time-Series Prediction Models

2.3.1. Parametric Time-Series Models

After Box–Jenkins, the most celebrated parametric time-series model is the auto-regressive
integrated moving averaged (ARIMA) model [28,29]. The integration is introduced to take trends
into account, and the AR and MA terms are devoted to the so-called deterministic and noise parts,
respectively. The temporal modes from the KLT oscillate around a mean value with no trend, so the
integration is not needed, and it leads to the ARMA(p,q) model:

x(t) = 1 +
p∑

n=1

an·xt−n +

q∑
n=1

bn·θt−n (8)

where p and q represent the order of the AR and MA parts, respectively; an represents the reflection
coefficients; bn represents the coefficients of the MA part; and θt is the noise at time t. The coefficients
are computed by the Yule–Walker equations, and they must verify the Levinson recursion to ensure
that the roots of the polynomials in Equation (8) lie in the unit circle [28,29].

The parametric time-series models are barely constrained by the parsimony principle. This means
that the order of the model must be the lowest possible [28,29]. Once the coefficients of Equation (8)
are known, the prediction is easily computed.

2.3.2. Harmonic Prediction Model

The harmonic prediction model in based on the frequency composition of the time series. Because
the time series of the modes are short, the Fourier transform is not efficient for computing the power
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spectral density due to the spectral leakage and low resolution [15]. The maximum entropy spectral
analysis (MESA) was used instead. This consists of fitting the autoregressive parametric model

x(t) = 1 +
P∑

n=1

an·xt−n. (9)

By taking its z-transform and making a sine–cosine recursion, the result is a Fourier-like
decomposition with very sharp peaks and very well located frequencies [15]. Once the spectral
information has been computed and the frequency composition is known, the harmonic least-squares
fit is

w(t) = w0 +

p∑
i=1

[ai· cos(ωit) + bi· sin(ωit)] (10)

which gives the mean value w0 and the amplitudes of the circular functions [a,b]i. Now, it is possible to
compute a prediction at a given time.

The key point is the determination of the order of the AR model. This is not constrained to the
parsimony principle, and the order of the AR model can be chosen to be as high as needed from the
considerations of Wold’s Theorem [28]. The upper limit occurs when spontaneous line splitting is
observed [15].

3. Results and Discussion

3.1. KLT

The first 112 available MODIS-SST images (December 2002 to March 2012) were processed using
the KLT (Section 2.2). The cumulative explained variance was computed from the spectrum of the
eigenproblem (Figure 3a). The first mode explained up to 93% of the whole variance, and the first five
modes explained close to 99%. The temporal weights of the first four are presented in Figure 3b–d.
The first and most important mode presents a very regular pattern with a period of about one year
(Figure 3b). The second and third modes (Figure 3d) have many short-period components and a
smooth evolution. The fourth and higher modes are minor modes. It is desirable for the second to
fourth modes to increase their explained variance by about 5% and to take into account short-term
oscillations for predictions.

The logarithmic MESA-PSD values of the first four temporal modes are shown in Figure 4a–d,
and more relevant periods can be found in Table 1. The first and most important mode (Figure 4a)
presents a well-defined temporal pattern (Figure 3b) with a period of one year and six months
(Figure 4a). The second mode (Figure 4b) presents the same periods and some others, such as 9,
6.8, 5.2, and 4 months. The third and fourth modes (Figure 4c,4d) have the same periods in their
compositions, and a new one of 54 months long is detected. The only clear periods for reading are the
annual and semiannual periods; they are used in most of the geophysical signals. The other periods
are intentionally left for further works, but some of them were previously noted in [8] and [10].
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Figure 4. Logarithmic power spectral density computed by maximum entropy spectral analysis
(MESA-PSD) of the first four temporal modes. The frequency is cycles per month (cpm).

Table 1. Relevant components for the first four SST modes.

Mode Period (Months)

1 11.9, 6.8
2 11.9, 9.0, 6.8, 6.0, 5.2, 4.0
3 54.3, 11.9, 9.0, 6.8, 6.0, 5.2, 4.0
4 54.3, 11.9, 9.0, 6.8, 6.0, 5.2, 4.0

The mean SST field and the first four spatial modes are presented in Figure 5. Because the variables
submitted to a KLT must be centered, one of the results of the KLT is the average SST field (Figure 5a).
It shows a permanent structure at Punta Gallinas and along the Colombian coast, but not at Cabo de
la Aguja. The mean value at the upwelling cores is about 22–23 ◦C, and when there is no upwelling,
it is about 28–29 ◦C. The first mode (Figure 5b) presents the structure of the developed upwelling.
The maximum values follow the coast, and all values have the same sign, except at the mouth of Lake
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Maracaibo and around Santa Marta. The second mode (Figure 5c) presents two differentiated areas.
The first is close to the coast, and the other takes the open sea into account, both with different signs
in their values. The third and fourth modes (Figure 5d,e) show small scattered structures that can
be thought of as noise. Although the fourth mode (Figure 5d) reveals a nice spatial structure, it is
necessary to keep in mind that it has a small contribution to the explained variance (Figure 3a).
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field in degrees Celsius; (b–e) represent spatial modes 1 to 4, respectively. The continuous lines in the
spatial modes are the zero-value level, or the nodal lines.
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The zero value lines, the nodal lines, are also represented in the spatial modes (Figure 5).
The time-invariant lines in a given mode are where each spatial mode pivots, and they can be
considered as the statistical limits of the upwelling events in a given area. The most important mode,
i.e., the first one in Figure 5b, has no nodal lines, and all fields will oscillate up and down with the
corresponding temporal mode. The highest amplitudes cover the area affected by the upwelling.
The second mode (Figure 5c) has a nodal line dividing the domain into two halves with different signs,
which oscillate up and down depending on the temporal weight. The highest amplitudes correspond to
the areas with the coldest waters, and the nodal line can be considered the limit of the most important
part of the upwelling. The third mode (Figure 5d) presents some noise, and the fourth mode (Figure 5e)
has a banded structure with three areas that are well-delimited by two nodal lines.

3.2. A Prediction Model for the Upwelling Events

The advantage of the KLT is the drastic reduction in complexity, because the modes are considered
separable in time and space (see Section 2.2). So, it is possible to build up a simple prediction model
from the temporal modes without getting into the complexities of a numerical model. Although
the predicting method is customary, its effectiveness depends on the experience of the researcher in
time-series analysis. The set of 119 digital images was divided in two. The first 112 images (December
2002 to March 2012) was the training set, and it was submitted to a KLT decomposition. The temporal
modes were predicted by two different methods, and their compositions (Equation (4)) were compared
to the last six images (April 2012 to September 2012).

The worst situation in which to test the methodology is when the upwelling is deactivated and
the warmer water of the open Caribbean reaches the Colombian coasts. Two methods were used to
test this unfavorable situation. The first one consists of prediction using the autoregressive-moving
average (ARMA) parametric time-series model. An ARMA(2,1) (see Section 2.3) was estimated for
most of the temporal modes after the analysis of the autocorrelation and partial autocorrelation
functions [28,29] and six projected time steps. One of the temporal modes was fitted to an AR(2)
because the MA part could not be computed. The predicted SST field was computed from Equation (4)
considering the prediction of the temporal factor and adding the mean SST field. The second method
used for prediction was the harmonic method. The spectral information of the temporal modes was
computed using MESA (Figure 4 and Table 1). Then, the least-squares method in Equation (8) led to
the prediction model.

Figure 6 presents the MODIS-SST images for April to September 2012 (Figure 6a, from left to
right), and the predictions of the same scenes using the ARMA model are presented in Figure 6b.
The same parameters with harmonic synthesis are presented in Figure 6c. The first inspection reveals
that the parametric time-series ARMA mode failed in the prediction, because the temperature range
was quite narrow and far from the observed imagery. The harmonic method performed better, and its
solutions were smoother, with results close to the observed data.

The correlations between the original MODIS-SST images and the predictions are presented in
Table 2. The land was kept out of the analysis to avoid biased results. The goodness of fit was extremely
good for the ARMA models (>0.9) for the months of April and May, and the harmonic prediction the
worst (about 0.8). This is because there was no upwelling and no organized structures. However,
for the rest of the months, when a weak upwelling episode started, the ARMA model predictions were
the worst, falling under 0.75, lower than the harmonic prediction (which was consistently about 0.8).
It may be concluded that the harmonic method works better for longer time predicting horizons and
when there are organized structures.
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Table 2. Correlations of the predictions from autoregressive-moving average (ARMA) and harmonic
models with the MODIS-SST images for the six last months of the imagery set (April to September 2012).

Months ARMA Harmonic

April 0.9760 0.8130
May 0.9103 0.8154
June 0.7278 0.8091
July 0.5855 0.8007

August 0.4366 0.7939
September 0.5123 0.8043

4. Conclusions

The Colombian Caribbean upwelling system is almost permanent due to the combination of the
morphology of the coast, the bathymetry, and the persistently blowing westward trade winds related
to the dynamics of the ITCZ. The KLT is very useful for simplifying the analysis of a time series of
digital images to obtain three types of information: the spectrum of the problem, the temporal modes,
and the spatial modes. The spatial modes give information on the intensity of the spatial variations
and the very important nodal lines. These show a banded spatial structure with an area near the coast,
another at the open sea, and the third as a transitional area in the middle. The visual inspection of the
temporal weights revealed periodic patterns in many modes.

Two time-series prediction models were tested. The ARMA model presented a very high correlation
(>0.9) when there were no upwelling events; otherwise, it must be not considered. The harmonic
synthesis performed much better under upwelling conditions (>0.8). The horizon of prediction
depended on how developed the upwelling event was, but the harmonic prediction worked better than
the parametric ARMA model. The prediction models could be improved by considering additional
variables in the models with the contribution of exogenous variables as climate indexes (see [8,10] for
two examples).

Author Contributions: Conceptualization, J.J.A.d.R., J.M.V.P. and E.B.G.; Methodology, J.J.A.d.R.; Software,
J.J.A.d.R. and J.M.V.P.; Validation, J.J.A.d.R., J.M.V.P. and E.B.G.; Formal analysis, J.J.A.d.R., J.M.V.P. and E.B.G.;
Investigation, J.J.A.d.R.; Resources, E.B.G.; Data curation, J.J.A.d.R., J.M.V.P. and E.B.G.; Writing—original draft
preparation, J.J.A.d.R.; Writing—review and editing, J.J.A.d.R.; Visualization, J.J.A.d.R.; Supervision, J.J.A.d.R.;
Project administration, J.J.A.d.R.; Funding acquisition, J.J.A.d.R. and J.M.V.P.

Funding: This work has been partially supported by RNM160 of the local Andalusian government.

Acknowledgments: Most of the computations were done using MatLab on the cluster located at the Centro de
Ayuda a la Computación (Center for Super-Computing) at the University of Cadiz. The authors are very grateful
to the two anonymous reviewers for their help in drastically improving this work.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chollet, I.; Klein, E. Identificación de focos de surgencia y caracterización de la dinámica de los afloramientos
en el sur del mar caribe. In II Jornadas Nacionales de Geomática; Fundación Instituto de Ingeniería y Centro de
Procesamiento Digital de Imágenes: Mérida, Venezuela, 2007.

2. Fajardo, G.E. Surgencia costera en las proximidades de la península colombiana de la Guajira (Coastal
upwelling in the proximity of the Colombian peninsula of La Guajira). Boletín Científico CIOH 1979, 2, 7–19.
[CrossRef]

3. Andrade, C.A.; Barton, E.D. The Guajira upwelling system. Cont. Shelf Res. 2005, 25, 1003–1022. [CrossRef]
4. Müller-Karger, F.E.; McClain, C.R.; Fisher, T.R.; Esaias, W.E.; Varela, R. Pigment distribution in the Caribbean

Sea: Observations from Space. Prog. Oceanogr. 1989, 23, 23–69. [CrossRef]
5. Andrade, C.A. Variabilidad anual del contenido de carbón orgánico en la superficie del Caribe occidental

desde CZCS. (Annual variability of organic carbon content at the western Caribbean Sea surface from CZCS).
Boletín Científico CIOH 1995, 16, 15–24. [CrossRef]

http://dx.doi.org/10.26640/01200542.2.7_19
http://dx.doi.org/10.1016/j.csr.2004.12.012
http://dx.doi.org/10.1016/0079-6611(89)90024-4
http://dx.doi.org/10.26640/22159045.76


Sensors 2019, 19, 2861 13 of 13

6. Castellanos, P.; Varela, R.; Müller-Karger, F. Descripción de las áreas de surgencia al sur del Mar Caribe
examinadas con el sensor infrarrojo AVHRR. Mem. Fund. Salle Cienc. Nat. 2002, 154, 55–76.

7. Pétus, C.; García-Valencia, C.; Thomas, Y.F.; Cesaracio, M. Étude de la variabilité saisonnière et interannuelle
de la résurgence de la Guajira (Colombie) par analyse de données satellitaires Ami-Wind, Sea Winds et
AVHRR. (Study of the seasonal and interannual variability of the Guajira upwelling Colombia based on the
analysis of Ami-Wind and AVHRR satellite data). Revue Télédétection 2007, 7, 143–156.

8. Chiang, J.C.; Kushnir, Y.; Giannini, A. Deconstructing Atlantic Intertropical Convergence Zone variability:
Influence of the local cross-equatorial sea surface temperature gradient and remote forcing from the eastern
equatorial Pacific. J. Geophys. Res. Atmos. 2002, 107, ACL-3. [CrossRef]

9. Wang, C.; Lee, S.-K. Atlantic warm pool, Caribbean low-level jet, and their potential impact on Atlantic
hurricanes. Geophys. Res. Lett. 2007, 34, L02703. [CrossRef]

10. Wang, C.; Lee, S.-K.; Enfield, D. Climate response to anomalously large and small Atlantic warm pools
during the summer. J. Clim. 2008, 21, 2437–2450. [CrossRef]

11. Cook, K.; Vizy, E. Hydrodynamics of the Caribbean low-level jet and its relationship to precipitation. J. Clim.
2010, 23, 1477–1494. [CrossRef]

12. Alonso, J.; Blázquez, E.; Isaza, E.; Vidal, J. Internal structure of the upwelling events at Punta Gallinas
(Colombian Caribbean) from MODIS-SST imagery. Cont. Shelf Res. 2015, 109, 127–134. [CrossRef]

13. Blázquez, E.; Alonso, J.; Vidal, J. On the sensitivity of the fractal dimension of the skeleton of the sea surface
temperature signatures from upwelling events on the spatial resolution and threshold: Application on
imagery of the Caribbean Sea. Int. J. Remote Sens. 2017, 38, 371–390. [CrossRef]

14. Blázquez, E.; Alonso, J.; Vidal, J. On the Outflow of Lake Maracaibo, Venezuela. Reg. Stud. Mar. Sci. 2017, 15,
31–38. [CrossRef]

15. Marple, S.J.L. Digital Spectral Analysis with Applications; Prentice Hall Inc: Upper Saddle River, NJ, USA, 1987.
16. Observatorio Oceanográfico Digital de Venezuela. Available online: http://ood.intecmar.usb.ve (accessed on

27 June 2019).
17. Centro Control Contaminación del Pacífico (CCCP). Compilación Oceanográfica de la Cuenca Pacífica Colombiana;

Dirección General Marítima: Tumaco, Colombia, 2002; ISBN 958-33-3869-9.
18. Karhunen, K. Zur Spektraltheorie Stochastischer Prozesse. Ann. Acad. Sci. Fenn. Ser. AI 1946, 34, 3–79.
19. Loève, M.M. Probability Theory; VanNostrand: Princeton, NJ, USA, 1955.
20. Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1953,

24, 417–441. [CrossRef]
21. Stewart, G.W. On the Early History of the Singular Value Decomposition. SIAM Rev. 1993, 35, 551–566.

[CrossRef]
22. Fukunaga, K. Introduction to Statistical Recognition; Academic Press: San Diego, CA, USA, 1990.
23. Burl, J.B. Reduced-order system identification using the Karhunen-Loève transform. Int. J. Model. Simul.

1993, 13, 183–188. [CrossRef]
24. Yamashita, Y.; Ogawa, H. Relative Karhunen-Loève Transform. IEEE Trans. Signal Process. 1996, 44, 371–378.

[CrossRef]
25. Kirby, M.; Sirovich, S. Application of the Karhunen-Loève Procedure for the characterization of human faces.

IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12, 103–108. [CrossRef]
26. Murase, H.; Nayar, S. Visual learning and recognition of 3-D objects from appearance. Int. J. Comput. Vis.

1995, 14, 5–24. [CrossRef]
27. Berberian, S.K. Introduction to Hilbert Spaces; Oxford University Press: Oxford, UK, 1961.
28. Peña Sánchez de Rivera, D. Análisis de Series Temporales; Alianza Editorial: Madrid, Spain, 2005;

ISBN 978-84-206-9128-2.
29. Vandaele, W. Applied Time Series and Box-Jenkins Models; Academic Press: Orlando, FL, USA, 1983;

ISBN 0127126503.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1029/2000JD000307
http://dx.doi.org/10.1029/2006GL028579
http://dx.doi.org/10.1175/2007JCLI2029.1
http://dx.doi.org/10.1175/2009JCLI3210.1
http://dx.doi.org/10.1016/j.csr.2015.09.008
http://dx.doi.org/10.1080/01431161.2016.1266103
http://dx.doi.org/10.1016/j.rsma.2017.07.008
http://ood.intecmar.usb.ve
http://dx.doi.org/10.1037/h0071325
http://dx.doi.org/10.1137/1035134
http://dx.doi.org/10.1080/02286203.1993.11760202
http://dx.doi.org/10.1109/78.485932
http://dx.doi.org/10.1109/34.41390
http://dx.doi.org/10.1007/BF01421486
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Satellite SST Imagery 
	The Karhunen–Loève Transform 
	Time-Series Prediction Models 
	Parametric Time-Series Models 
	Harmonic Prediction Model 


	Results and Discussion 
	KLT 
	A Prediction Model for the Upwelling Events 

	Conclusions 
	References

