
sensors

Article

Vehicle Counting in Video Sequences:
An Incremental Subspace Learning Approach

Leonel Rosas-Arias 1 , Jose Portillo-Portillo 1, Aldo Hernandez-Suarez 1 ,
Jesus Olivares-Mercado 1 , Gabriel Sanchez-Perez 1 , Karina Toscano-Medina 1 ,
Hector Perez-Meana 1 , Ana Lucila Sandoval Orozco 2 and Luis Javier García Villalba 2,*

1 Instituto Politecnico Nacional, ESIME Culhuacan, Mexico City 04440, Mexico;
lrosasa1800@alumno.ipn.mx (L.R.-A.); jportillop@ipn.mx (J.P.-P.);
ahernandezs1325@alumno.ipn.mx (A.H.-S.); jolivares@ipn.mx (J.O.-M.); gasanchezp@ipn.mx (G.S.-P.);
ltoscano@ipn.mx (K.T.-M.); hmperezm@ipn.mx (H. P.-M.)

2 Group of Analysis, Security and Systems (GASS), Department of Software Engineering and Artificial
Intelligence (DISIA), Faculty of Computer Science and Engineering, Office 431,
Universidad Complutense de Madrid (UCM), Calle Profesor José García Santesmases, 9,
Ciudad Universitaria, 28040 Madrid, Spain; asandoval@fdi.ucm.es

* Correspondence: javiergv@fdi.ucm.es; Tel.: +34-91-394-7638

Received: 20 April 2019; Accepted: 19 June 2019; Published: 27 June 2019
����������
�������

Abstract: The counting of vehicles plays an important role in measuring the behavior patterns of
traffic flow in cities, as streets and avenues can get crowded easily. To address this problem, some
Intelligent Transport Systems (ITSs) have been implemented in order to count vehicles with already
established video surveillance infrastructure. With this in mind, in this paper, we present an on-line
learning methodology for counting vehicles in video sequences based on Incremental Principal
Component Analysis (Incremental PCA). This incremental learning method allows us to identify the
maximum variability (i.e., motion detection) between a previous block of frames and the actual one
by using only the first projected eigenvector. Once the projected image is obtained, we apply dynamic
thresholding to perform image binarization. Then, a series of post-processing steps are applied to
enhance the binary image containing the objects in motion. Finally, we count the number of vehicles
by implementing a virtual detection line in each of the road lanes. These lines determine the instants
where the vehicles pass completely through them. Results show that our proposed methodology
is able to count vehicles with 96.6% accuracy at 26 frames per second on average—dealing with
both camera jitter and sudden illumination changes caused by the environment and the camera
auto exposure.

Keywords: video processing; motion detection; incremental learning; Incremental PCA; traffic flow

1. Introduction

Video surveillance systems are multistage computer vision systems capable of performing high
end tasks [1]. Due to the increasing capabilities of hardware and software, the algorithms used to
perform motion detection are getting better performance. However, there is still an increasing interest
for developing new algorithms that are able to overtake limitations produced by human errors, since
most of the systems cannot be checked automatically [2].

Video surveillance systems are broadly used in roads, banks, shops, schools, and other public
places in order to protect social security [2,3]. At the present time, the challenge for these video
systems is to provide accuracy and confidence for detecting motion in any scenario. Thus, many
applications, for example traffic monitoring, are based on the unsupervised analysis of video sequences

Sensors 2019, 19, 2848; doi:10.3390/s19132848 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-2007-0087
https://orcid.org/0000-0002-4867-2717
https://orcid.org/0000-0002-0337-5364
https://orcid.org/0000-0002-4735-205X
https://orcid.org/0000-0002-9555-4705
https://orcid.org/0000-0002-7786-2050
https://orcid.org/0000-0002-2846-9017
https://orcid.org/0000-0001-7573-6272
http://www.mdpi.com/1424-8220/19/13/2848?type=check_update&version=1
http://dx.doi.org/10.3390/s19132848
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 2848 2 of 16

and are mainly focused in detecting and monitoring objects or elements of interest that appear in the
scene [4]. In general, regions of interest in the scene are: Pedestrians, vehicles, and other elements that
normally do not belong to the scene [5]. Motion detection is also a first step prior to performing more
sophisticated tasks such as tracking or categorization of vehicles by their type.

Currently, the main methods for motion detection are optical flow, frame difference, and
background subtraction [6]. Although all these pixel-based models support gradual and long-term
illumination changes, they underperform in the presence of sudden ones [7]. Frame difference and
background subtraction using Gaussian Mixtures methods often suffer from the phenomena called
the foreground aperture problem, when parts of large moving homogeneous regions become part of
the background instead of being selected as moving pixels—also, they tend to present ghost regions,
which are the traces of the moving objects in some consecutive frames [8–10]. However, they are more
robust to sudden illumination changes.

In this paper, we propose a different and novel methodology for detecting motion using
incremental subspace learning in order to count vehicles passing over the roadway in video sequences.
Our motivation lies in the fact that several applications require having knowledge about the vehicular
flow. In the same way, a set of parameters needs to be known beforehand in order to implement
Intelligent Transport Systems (ITSs) and to analyze traffic patterns [1,11]. Such parameters are:
Levels of vehicular occupation, the vehicular average speed, and the number of vehicles transiting
through each lane. These parameters also help to implement active traffic management solutions and
to automate route planning [12,13]. On top of that, vehicle counting is one of the key technologies
of intelligent transportation system and has received considerable interest in industry and research
communities [14].

In the literature, there have been several approaches to addressing the problem of vehicle detection
and counting. Some of them make use of traditional techniques such as background subtraction [13,15,16],
filtering [17,18], Optical Flow [19], or Hidden Markov Models [13]. New emerging techniques based on
Deep Learning such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs),
and Long short-term memory (LSTM) networks have also been proposed [14,20–23]. The problem of
vehicle detection and counting has been addressed from different points of view, such as top view [12,21],
top-front view [15,16] and even on-road view for autonomous cars [18,24].

In addition, as stated in [22], the successful detection and classification of vehicle classes is
essential to extract important traffic flow information needed by regulators, such as vehicle counts,
average estimated speed of the vehicles, driver behavior (e.g., preferred lane usage), and violation of
traffic rules (e.g., trucks using the high speed lanes).

Some local governments around the world are developing their own ITSs to address the new
challenges of traffic crowding [25]. Video sources can provide overall information about the vehicles
and are easy and cheap to both obtain and maintain [25]. On top of that, the use of already established
video surveillance infrastructure in emerging countries makes it possible to implement ITSs with a
minor or any need of additional hardware. Therefore, the use of economic and non-invasive sensors
like video cameras allows us to identify useful parameters for ITSs while maintaining low operating
costs [26].

The remainder of this paper is organized as follows: First, Section 2 presents the general idea
and theory about Incremental PCA. Then, Section 3 presents our proposed methodology for counting
vehicles, divided into three subsections: Motion detection using Incremental PCA, where we describe
how we use this novel approach for detecting motion in video sequences; post-processing, where we
describe all the steps used to improve regions of motion in the image obtained from the previous
stage; and vehicle counting, where we show and implement our algorithms for performing the actual
task. Subsequently, Section 4 presents the results of our methodology in different scenarios and under
different testing conditions. Next, in Section 5 we discuss the limitations of our work and establish a
comparison between similar works. Finally, Section 6 concludes this paper giving conclusions and
discussing future works+.



Sensors 2019, 19, 2848 3 of 16

2. Incremental Principal Component Analysis

Subspace learning model methods have been proposed in order to model the background in
video sequences, as described in [27–32]. More specifically, such processes compute the mean image
from a set of N frames available, then subtract the mean from all frames, and finally compute their
eigenvalues and eigenvectors. As authors proposed in [27], the first most significant eigenvectors are
used for computing the difference between the actual frame and the background frame previously
modeled. These methods are based on a technique known as Batch PCA or Off-line PCA, which are
not suitable for working with video sequences. However, novel approaches of incremental subspace
learning have proven their effectiveness, allowing eigenbasis to be updated as soon as new frames are
available, making them suitable for prolonged applications in real-time [33]. Nevertheless, as reported
in [34], the vast majority of these methods do not take into consideration the update of the mean image
as new video frames continue arriving.

The main idea of Incremental subspace learning is derived from Singular Value Decomposition
(SVD). SVD provides the eigenvectors and eigenvalues sorted in descending order, so that the first
eigenvectors provide the maximum variability of the data under analysis. The main contribution of
this work is the idea that the first projected eigenvector contains the change of every new incoming
frame, with respect to previous frames—in other words, the present motion in the frame. In [35], Levy
and Lindenbaum proposed the Sequential Karhunen–Loeve (SKL) algorithm for efficiently updating
the eigenbasis. However, SKL does not take into account the mean update as new training data arrive.
In order to overcome this limitation, Lim and Ross presented a new Incremental PCA (IPCA) algorithm
in [34] that properly updates the eigenbasis as well as the mean.

Now, supposing that A = {I1, ..., In} is the block of previous frames, B = {In+1, ..., In+m} is the
block containing the new incoming frames, and C = [A B] is their concatenation, n and m can be
defined as the number of frames of each block A and B, respectively. Then, as formulated in [34],
Algorithm 1 is implemented. First, computing the eigenvectors U and the eigenvalues Σ from the SVD
of A− ĪA, where ĪA is the average of the block from previous frames. Step No. 2 of Algorithm 1 shows
the matrix B̂ = B− ĪB where B is the block with incoming frames, and ĪB is the mean considering the
previous and new frames. Step No. 3 of Algorithm 1 represents in B̃ the components of B orthogonal
to U, we can also represent A in terms of its eigenvalues and eigenvectors as A = UΣVT and we can
then express the concatenation of A and B as follows [34]:

[A B̃] =

[
Σ UT B
0 B̃T B

] [
VT 0
0 I

]
. (1)

Finally, making a substitution of B̂ and B̃ we can represent R, and integrate the forgetting factor
parameter f , which determines the influence of past observation by values in range [0 1]—a value
close to 0 indicates no influence of previous frames; whereas a value close to 1 preserves the influence
of all previous frames. Details about the formulation of this algorithm can be found in [34,35].



Sensors 2019, 19, 2848 4 of 16

Algorithm 1 Incremental PCA with mean update

1: Compute the mean vectors ĪB = 1
m ∑n+m

i=n+1 Ii, and ĪC = n
n+m ĪA + m

n+m ĪB.

2: Form the matrix B̂ =
[
(In+1 − IB) ... (In+m − IB)

√
nm

n+m (IB − IA)
]
.

3: Compute B̃ = orth(B̂−UUT B̂) and R =


f Σ UT B̂

0 B̃(B̂−UUT B̂)

.

4: Compute the SVD of R: R = ŨΣ̃ṼT .

5: Finally, U′ = [U B̃]Ũ and Σ′ = Σ̃.

6: Repeat for each new block of frames. Now with A = U′.

3. Proposed Methodology

In this section, we present the three main phases of our methodology for counting vehicles:
The implementation of Incremental PCA for motion detection in video sequences; the post-processing
steps needed for the image enhancement obtained from the first projected eigenvector, and finally our
algorithm for performing the actual vehicle counting. These phases are summarized in Figure 1 and
described in detail in the following subsections.

The block diagram of the proposed methodology consists of the input data, i.e., the Video
sequence, the individual frames from the video sequence depicted in Figure 1a passes through the
RGB to grayscale block in order to convert each frame from an RGB to a grayscale image Figure 1b
Then, the grayscale frames are the input for the Incremental PCA block once the first eigenvector is
used to project the actual grayscale image, the resulting image is shown in Figure 1c, this projected
image uses the function heatmap to remark the variance in the pixels which represent motion, this
projected image passes through the Thresholding block, in this block are thresholds based on statistic
parameters (mean and standard deviation), it will set the pixels to “one” if these pixels belong to
the foreground or movement; and set to “zero” if the pixels belong to the background—the results
of the Thresholding block is the image in Figure 1d, but this image contain small groups of pixels
which do not represent significant movement, and could be considered noise in the motion detection.
To solve this issue, the Filtering block is implemented to eliminate those groups of pixels below a
minimum size, relative to the size of the frame, the results are presented in Figure 1e. Moreover, this
continuous process uses two main frames from the video sequence, the actual frame and the previous
frame. Another important issue in motion detection is the foreground aperture problem, splitting large
objects due to the similarity of the object’s internal pixels, so to overcome the object separation as a
consequence of the miss detected motion in the internal pixel of the object, Frame fusion block was
implemented, and OR operator wass applied in actual and previous frames (Figure 1f), the overlap
images form a single object, avoiding the typical split in large motion objects, the result is shown in
Figure 1g. Now some lines in the object are very thin, in order to maintain those lines, the Frame
Dilation block is implemented, the results are shown in Figure 1h. In order to avoid double counting of
the same object, the internal holes of the movement object must be filled, this task is done in a Binary
hole filling block, and the results are depicted in Figure 1i. Finally, a detection line must be set up
in each lane on the road. For each lane, an initial terminal point is stabilized, the objects considered
as movement pass through the detection line in the corresponding lane, then a buffer is initiated to
store the number of foreground pixels detected. When the object is no more in the detection line,
the buffer used to detect considers the absence of the object as a falling edge, and the Average value
block performs a computation of the foreground pixels detected—considering the area of detection
line and also the number of frames when the object was detected, then a Detection block based on



Sensors 2019, 19, 2848 5 of 16

threshold allows the detection and a classification of the object based in the inferred size by the values
in detection line.

Figure 1. Proposed methodology block diagram, (a) video sequence, (b) gray scale image, (c) heat map
of projected image, (d) binary image, as a result of thresholding process, (e) and (f) actual and previous
frames binarized and filtered, (g) result of fusion from previous and actual frames, (h) dilated image,
(i) result of filling hole process, (j) buffers representation for detection lines in different lanes.

3.1. Motion Detection Using Incremental PCA

As stated in Section 2, we implemented the Incremental PCA algorithm to find the first eigenvector
that contains the maximum data variability between two blocks of images. For our specific purpose,
blocks A and B are made up from one single frame converted to a column vector of size d× 1, where
d is the product of the width and height of the frame, that is, d = Iwidth × Iheight. Note that the frame
width and height must be constant all along the video sequence. As initial parameters, A is set to
be a zero matrix of size d × 1; and B is set to be the first input frame of the video sequence in its
vector form. Subsequently, the algorithm continues iterating for each new incoming frame. Figure 2
illustrates this iterative process and Figure 3 shows an example of a reconstructed image Iproj from
the absolute value of the resulting eigenvector U′. Note that the projected image is shown using a
heatmap color representation.

Figure 2. Incremental Principal Component Analysis (IPCA) process.



Sensors 2019, 19, 2848 6 of 16

Figure 3. Motion detection using Incremental PCA. (a) Original frame. (b) Frame in grayscale.
(c) Reconstructed motion frame.

Another important parameter is the forgetting factor f . As shown in step 3 of Algorithm 1, this
coefficient reduces the contribution of previous observations (frames) as new observations are available
incrementally, multiplying Σ by f ∈ [0 1]. Thus, determining this coefficient is a crucial step in the
Incremental PCA algorithm, since it is desirable to maintain more information about recent frames
rather than the earlier ones. f can be manually adjusted depending on the application and the speed
of the objects in motion present at the scene.

According to our previous experiments in parallel works, a higher f works better for objects
moving slower (e.g., pedestrians, animals, slow vehicles in streets), since the objects in motion are
retained in the scene for longer intervals of time. In this application, f = 0.1 has been established
in order to retain just the minimum amount of movement of the vehicles that move at high speed,
preventing the “ghosting” effect. Figure 4 shows the effect of the forgetting factor f for different
values. It can be noticed that the higher the value of f , the better small moving objects in the scene
are preserved. However, big moving objects leave a “ghost” behind them, which is not suitable for
our application.

Figure 4. Forgetting factor effect. Upper row, f on small moving objects. Lower row, f on big moving objects.

The motion detection framework, based on Incremental PCA, is able to address movement of
rigid objects, such as vehicles Figure 5c–f, motor bikes, trains, etc., and also articulated movement like
in pedestrian walk Figure 5a,b and Figure 5g,h. It is also able to handle different scenarios such as
natural illumination or other outdoor settings, like in roads Figure 5a–f; and artificial illumination or
insides, like in train stations Figure 5g–h.



Sensors 2019, 19, 2848 7 of 16

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 5. Motion detection using Incremental PCA over different scenarios from Changedetection
project: (a) original RGB pedestrian frame; (b) heatmap projected of (a); (c) original RGB
twoPositionPTZCam frame; (d) heatmap projected of (c); (e) original RGB streetlight frame;
(f) heatmap projected of (e); (g) original RGB PETS2006 frame; (h) heatmap projected of (g).

3.2. Post-Processing

Once the projected image Iproj is obtained, a binarization process is performed using a threshold
value T to obtain a new image Ibin that only contains objects in motion. Ibin is defined by:

Ibin(x, y) =

{
1 Iproj(x, y) ≥ T

0 otherwise
, (2)

where T = 2σ̄. We propose the use of this threshold value because, according to the literature, it
contains 95% of all the information in a normal distribution of data. In this case, each frame Iproj
behaves similarly to a normal distribution with mean 0 (0 value pixels indicate no motion has been
detected). Approximately 5% of the remaining data in each frame is the “motion” we are interested
in. σ̄ is the mean of the accumulated standard deviation of all previous Iproj and is mathematically
expressed as:

σ̄ =
1
N

N

∑
i=1

std(Iproji ), (3)

where N is the number of frames that have been processed incrementally from the beginning, and
std() is the standard deviation of the projected image Iproj at each instant i. std() is expressed by the
following formula:

σX =

√√√√ 1
N′ − 1

N′

∑
i=1

(Xi − X̄)2, (4)

note that the input argument of std(), X, must be in a vectorized form. Therefore, Iproj has to be
previously converted to a d× 1 size vector. In addition, note that X̄ is the mean value of vector X and
N′ = d.

Allowing σ̄ to be the dynamic component of the threshold T, we make sure that only the motion
present in Iproj is preserved, removing most of the noise caused by the camera jitter, sudden illumination
changes in the scene, and the noise induced by the camera itself. σ is averaged with its previous values
in each new iteration for preventing abrupt changes of T, which may lead to highly noisy binarized
images. This is mainly because the output eigenvector of the Incremental PCA algorithm does not
contain a defined range of output values for each iteration. To illustrate this, Figure 6 shows the
behavior of σ̄ and σ over time for a given video sequence.



Sensors 2019, 19, 2848 8 of 16

Figure 6. σ and σ̄ values over time.

We proposed the use of σ̄ due to the fact that in our testing video sequences, the vast majority of
the scene is occupied by static pixels. This guarantees that most of the histogram distribution of Iproj
will be centered at its mean value close to 0, indicating no motion.

After the binarization process is completed, we remove small objects in Ibin by applying a binary
denoising function. This function is described in Algorithm 2 as follows:

Algorithm 2 Binary denoising function

1: Determine all the individual objects in Ibin.

2: Compute the area of each object in pixels.

3: Remove all objects with area less than a threshold value Tbin (set their respective pixels to 0).

we have chosen Tbin = 20 for all our experiments.
Once the binary denoising function has been applied, we perform the OR logical operation

between the current binarized frame Ibink
and the previous one Ibink−1

. The purpose of this operation is
to obtain a more “complete” version of the objects in motion present at the current frame. This logical
operation is expressed by:

IOR(x, y) = Ibink
∨ Ibink−1

, (5)

where IOR(x, y) is the resulting binary image. This image improves the outcome of the following
processing step, as we will show next.

Finally, we perform a dilatation process to IOR using a small 2× 2 structural element, then we
fill all holes present to obtain Ifill. A hole is basically a “dark” region surrounded by “bright” regions.
In a binary image, this is translated as—dark regions (0’s) that cannot be reached through any of the
edges unless we cross some bright region (1’s). This can be achieved using Algorithm 3. Consider that
0 pixel values are considered to be the background of the image.

Figure 7 summarizes the flow of all post-processing steps, showing their individual outcomes.



Sensors 2019, 19, 2848 9 of 16

Algorithm 3 Binary hole filling

1: Apply Flood-Fill algorithm using the background edge pixels as its seed.

2: Repeat step 1 until no edge background pixels exist.

3: Create a mask containing only the flood-filled pixels.

4: Set every non-masked pixel in IOR to 1 to obtain Ifill.

Figure 7. Post-processing steps. (a) Iproj. (b) Ibin. (c) Ibin denoised. (d) IOR. (e) Ifill.

3.3. Vehicle Counting

One of the main approaches for vehicle counting is based on extracting information using ROIs
(Regions of Interests). In this work, we propose the use of a lineal ROI over each individual lane of the
avenue to count vehicles. The virtual detection line is highlighted in green and shown in Figure 8.

Figure 8. Virtual detection lines for each lane.

Figure 9 shows the logical representation of the detection line. Pixels with value 1 are the region
of the vehicle that passes through the line in the present frame; and pixels with value 0 correspond to
the background.

Figure 9. Virtual detection line representation.



Sensors 2019, 19, 2848 10 of 16

In order to reduce the number of false positives due to large vehicles detected as multiple vehicles,
we consider their presence passing through the detection line by establishing the following model:

Detection =

1 1
B+1

k
∑

i=k−B

l2
∑

y=l1
Ibini (x, y) ≥ Tcount

0 otherwise
, (6)

where, Detection is a logic variable that indicates if a vehicle exists or not in the detection line, Ibin(x, y)
is the image containing the vehicles in motion, l1 and l2 are the initial and final columns of the detection
line for a fixed row x of Ibin(x, y), B is the number of consecutive frames used to compute the mean
value of the area occupied by the vehicles, and Tcount is the threshold value used to discriminate
between noise and actual vehicles [15].

Each individual vehicle is counted only when a falling-edge frame is detected followed by a
previous detection of a rising-edge frame. This process is illustrated in Figure 10.

Figure 10. Vehicle counting by detecting falling edges.

4. Results

We evaluated the effectiveness of our proposed methodology by using four video sequences.
The first three sequences were recorded by ourselves during the daytime in different places in Mexico
City. The first two sequences show vehicles transiting towards the camera position and the third one
shows vehicles transiting in the opposite direction. The last video sequence, called Highway was taken
from Changedetection project, which is a website that summarizes an academic benchmark for testing
and ranking existing and new algorithms for change and motion detection, providing several datasets
and tools [36]. Previews of the four video sequences are shown in Figure 11.

Figure 11. Testing video sequences. (a) Video No. 1, (b) Video No. 2. (c) Video No. 3. (d) Video No. 4.



Sensors 2019, 19, 2848 11 of 16

We recorded our three video sequences using a Sony DCR-SR100 video camera. Video No. 1
was recorded using automatic light exposure. This video presents camera jitter, especially when large
vehicles transit below the pedestrian bridge where the camera was placed. This video also contains a
concrete mixer truck and a large public service vehicle. Due to the auto exposure configuration, artificial
illumination changes are induced when those large vehicles are present, this issue arises not only when
large vehicles are in the scene, but also alongside the foreground aperture problem. The camera jitter
and artificial illumination changes are settled by the IPCA motion detection framework, and the
foreground aperture problem is address by post-processing stages described in Section 3.2, particularly
in the frame fusion block in Figure 1. Videos No. 2 and No. 3 were recorded using the same video
camera, but configured with manual light exposure, so that no changes in illumination are induced by
big brilliant vehicles. In Video No. 2, the traffic flow is from the bottom frame to the top frame, the
set of this experiment is to evaluate the effectiveness of the vehicle counting process when the object
is decreasing its relative size, the results demonstrate that our framework can address this scenario.
Video No. 2 and Video No. 3 presents a small amount of camera jitter and a gradual environmental
illumination change caused by a cloud passing by, in both cases, the IPCA motion detection framework
is able to manage these issues. In video No. 3, the detection line in the most right lane is in the
shadow of some bushes, this induces changes due to natural movement in the leaves and branches,
but the combination of the implemented motion detection based on IPCA and the detection line
allow the proposed method to tackle the problems related to inference in motion detection caused
by the shadows of the bushes. In Video No. 4, the angle between the traffic flow and the camera
plane is slightly different than the other videos, this configuration can overlap the movement objects
in independent lanes, especially if the angles increase. In order to avoid this problem in counting
vehicles, the camera position should be set perpendicular between the camera plane and the traffic
flow. All four videos were previously converted to individual frames of size 320× 240 for convenience
of analyzing individual frames of the sequence. This size normalization implies Iwidth = 320 pixels,
Iheight = 240 pixels, and finally d = Iwidth × Iheight = 76,800 pixels.

As for the actual counting component, Videos No. 1 and No. 3 count vehicles in three lanes of the
road, Video No. 2 does it in four lanes and Video No. 4 does it only in two lanes. Figure 12 shows an
example of the behavior of the counting process as the frames are processed sequentially in lane #3 of
video No. 3 with B = 10.

Tables 1–4 show the final performance of our system for each video sequence, presenting their
corresponding rate of detection, false positives, false negatives, and accuracy for each road lane (from
left to right).

Table 1. Counting results for Video No. 1.

Video No. 1 Detected Vehicles/
Total Vehicles

False
Positives

False
Negatives Accuracy

Lane #1 9/9 0 0 100%
Lane #2 10/10 0 0 100%
Lane #3 13/13 0 0 100%

Total 32/32 0 0 100%

Table 2. Counting results for Video No. 2.

Video No. 2 Detected Vehicles/
Total Vehicles

False
Positives

False
Negatives Accuracy

Lane #1 6/6 0 0 100%
Lane #2 7/7 0 0 100%
Lane #3 12/12 0 0 100%
Lane #4 6/7 0 1 85.71%

Total 31/32 0 1 96.87%



Sensors 2019, 19, 2848 12 of 16

Figure 12. Counting results for video sequence No. 2. From top to bottom: Lane #1, Lane #2, Lane #3, Lane #4.

Table 3. Counting results for Video No. 3.

Video No. 3 Detected Vehicles/
Total Vehicles

False
Positives

False
Negatives Accuracy

Lane #1 7/7 0 0 100%
Lane #2 15/13 2 0 84.61%
Lane #3 10/10 0 0 100%

Total 32/30 2 0 93.33%

Table 4. Counting results for Video No. 4.

Video No. 4 Detected Vehicles/
Total Vehicles

False
Positives

False
Negatives Accuracy

Lane #1 17/17 0 0 100%
Lane #2 9/10 0 1 90%

Total 26/27 0 1 96.29%

On average, the entire process runs at 26 frames per second (fps) on a standard 2.0 GHz dual core
PC. Similarly, from Tables 1–4 it can be shown that the system average accuracy was 96.6%.

5. Discussion

Intelligent transportation systems are currently becoming very important and will definitely play
a vital role in smart cities of tomorrow. Specifically, vehicle counting is of great importance for many
real world applications, such as urban traffic management. Several methodologies have been proposed
in order to improve the overall quality, performance, efficiency, and cost of this kind of systems.
Our proposed methodology only addresses the problem of counting vehicles under some of the most
common problems, such as small camera jitter and illumination changes due to the environment or the
camera auto exposure time. We acknowledge that there exists an immense number of problems and
challenges yet to be solved. However, related works have also addressed very specific challenges since
no general solution exists. In Table 5, we try to summarize as briefly as possible related works by their



Sensors 2019, 19, 2848 13 of 16

performance in terms of accuracy, fps, and type of hardware used. Similarly, in Table 6 we show some
comments about the related works.

Table 5. Comparative analysis between related works.

Method Accuracy fps Hardware

Liu, F., et al. [25] 99% 10 fps Not reported
L. Rosas-Arias, et al. [15] 100% Not reported 2.0 GHz Intel CPU
Mundhenk T.N., et al. [21] Not reported 1 fps Nvidia Titan X GPU
N. Seenouvong, et al. [16] 96% 30 fps 2.4 GHz Intel CPU
N. Miller, et al. [13] 93% Not reported Not reported
J. Quesada, et al. [12] 91% 26 fps 3.5 GHz Intel CPU
J. Zheng, et al. [14] 90% Not reported 3.2 GHz Intel CPU
Ahmad Arinaldi, et al. [22] 70% (at most) Not reported Not reported
Ours 96.6% 26 fps 2.0 GHz Intel CPU

Table 6. Comments about related works.

Method Comments

Liu, F., et al. [25] Reaches 99% of accuracy only under ideal situations.
L. Rosas-Arias, et al. [15] Reaches 100% of accuracy only under ideal situations.
Mundhenk T.N., et al. [21] High aerial coverage area. Vehicles are counted as individual hi-res images.
N. Seenouvong, et al. [16] Does not update the background model and is not robust to illumination changes.
N. Miller, et al. [13] The counting process uses a very complex configuration of ROIs.
J. Quesada, et al. [12] Utilizes an incremental approach for detecting motion in aerial images (top-view).
J. Zheng, et al. [14] Although it is not reported, authors claim their proposed method runs in real-time.
Ahmad Arinaldi, et al. [22] The system is evaluated under both standard and very challenging environments.
Ours Balanced methodology between accuracy, fps, hardware, and robustness.

6. Conclusions

In this paper, we presented a methodology based on incremental subspace learning for detecting
changes in consecutive frames of video sequences. The resulting vector of this incremental learning
process is reconstructed into an image. This image is then post-processed for detecting regions where
motion is present. Finally, a statistical algorithm based on the average value of the frames is used to
determine the presence of vehicles and also to count them. Our proposed methodology has proven
to be useful in real scenarios (as described in the Results section) where light conditions change over
time due to the environment and also due to the camera auto exposure. Moreover, it can also handle
small camera jitter during several continuous frames with no additional filtering. It is clear that our
specific application of Incremental PCA is somehow similar to the frame differentiation methodology
for motion detection. However, we make a clear distinction performing a statistical difference between
a frame made up from previous accumulated observations and the current one. Additionally, the fact
that the forgetting factor f can “discriminate” earlier observations (frames) to a lesser or greater extent
makes this methodology flexible for different applications as it provides an improved version of a
standard frame differentiation methodology. Experimental results have demonstrated that, in most
cases, our methodology is able to count vehicles effectively with up to 100% accuracy, while preserving
an optimal performance in fps, suitable for real-time implementation. In future works, descriptive
algorithms can be implemented for detecting vehicles given proposed regions of objects in motion
in order to perform a more robust and complete segmentation. Lastly, our future scope is to apply
Deep Learning models for performing vehicle classification and to mine data for security and video
surveillance purposes.

Author Contributions: J.P.-P., A.H.-S. and J.O.-M. collected the video database used in this work. K.T.-M., G.S.-P.,
L.R.-A. and H.P.-M. developed the proposed algorithm and carried out the analysis of the final results. L.R.-A.,
A.L.S.O. and L.J.G.V. developed the computer program used to executed the proposed algorithm. All authors
participated in the write-up and review of the paper.



Sensors 2019, 19, 2848 14 of 16

Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No. 700326. Website: http://ramses2020.eu.

Acknowledgments: The authors thank the National Science and Technology Council of Mexico (CONACyT), and
the Instituto Politécnico Nacional for the financial support for this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Banerjee, S.; Dhar, M.; Sen, S. A novel technique to detect the number of ground vehicles along with
respective speed of each vehicle from a given video. In Proceedings of the Emerging Trends in Electronic
Devices and Computational Techniques (EDCT), Kolkata, West Bengal, India, 8–9 March 2018; pp. 1–6.

2. Xu, Z.; Zhu, S.; Jin, D. Abnormal behavior detection in crowd scenes. In Proceedings of the Chinese Control
And Decision Conference (CCDC), Shenyang, China, 9–11 June 2018; pp. 214–219.

3. Shaikh, S.H.; Saeed, K.; Chaki, N. Moving object detection using background subtraction. In Moving Object
Detection Using Background Subtraction; Springer Nature Switzerland AG: Basel, Switzerland, 2014; pp. 15–23,
ISBN 978-3-319-07386-6.

4. Mendizabal, A.; Salgado, L. A region based approach to background modeling in a wavelet multi-resolution
framework. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Prague, Czech Republic, 22–27 May 2011; pp. 929–932.

5. Wang, B.; Zhu; W.; Tang, S.; Zhao, Y.; Zou, W. Background subtraction using dual-class backgrounds.
In Proceedings of the 14th International Conference on Control, Automation, Robotics and Vision (ICARCV),
Phuket, Thailand, 13–15 November 2016; pp. 1–6.

6. Deng, G.; Guo, K. Self-adaptive background modeling research based on change detection and area training.
In Proceedings of the IEEE Workshop on Electronics, Computer and Applications, Ottawa, ON, Canada,
8–9 May 2014; pp. 59–62.

7. Yadav, D.K. Efficient method for moving object detection in cluttered background using Gaussian Mixture
Model. In Proceedings of the International Conference on Advances in Computing, Communications and
Informatics (ICACCI), Delhi, India, 24–27 September 2014; pp. 943–948.

8. Utasi, A.; Czúni, L. Reducing the foreground aperture problem in mixture of Gaussians based motion
detection. In Proceedings of the 14th International Workshop on Systems, Signals and Image Processing
and 6th EURASIP Conference focused on Speech and Image Processing, Multimedia Communications and
Services, Maribor, Slovenia, 27–30 June 2007; pp. 157–160.

9. Bouwmans, T. Traditional and recent approaches in background modeling for foreground detection:
An overview. Comput. Sci. Rev. 2014, 11, 31–66. [CrossRef]

10. Wei, S.; Chen, Z.; Li, M.; Zhuo, L. An improved method of motion detection based on temporal
difference. In Proceedings of the International Workshop on Intelligent Systems and Applications, Pisa, Italy,
30 November–2 December 2009; pp. 1–4.

11. Balid, W.; Tafish, H.; Refai, H.H. Intelligent Vehicle Counting and Classification Sensor for Real-Time Traffic
Surveillance. IEEE Trans. Intell. Transp. Syst. 2018, 19, 1784–1794, doi:10.1109/TITS.2017.2741507. [CrossRef]

12. Quesada, J.; Rodriguez, P. Automatic vehicle counting method based on principal component pursuit
background modeling. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP),
Phoenix, AZ, USA, 25–28 September 2016; pp. 3822–3826. [CrossRef]

13. Miller, N.; Thomas, M.A.; Eichel, J.A.; Mishra, A. A Hidden Markov Model for Vehicle Detection and
Counting. In Proceedings of the 2015 12th Conference on Computer and Robot Vision, Halifax, NS, Canada,
3–5 June 2015; pp. 269–276. [CrossRef]

14. Zheng, J.; Wang, Y.; Zeng, W. CNN Based Vehicle Counting with Virtual Coil in Traffic Surveillance
Video. In Proceedings of the 2015 IEEE International Conference on Multimedia Big Data, Beijing, China,
20–22 April 2015; pp. 280–281. [CrossRef]

http://ramses2020.eu
http://dx.doi.org/10.1016/j.cosrev.2014.04.001
http://dx.doi.org/10.1109/TITS.2017.2741507
http://dx.doi.org/10.1109/ICIP.2016.7533075
http://dx.doi.org/10.1109/CRV.2015.42
http://dx.doi.org/10.1109/BigMM.2015.56


Sensors 2019, 19, 2848 15 of 16

15. Rosas-Arias, L.; Portillo-Portillo, J.; Sánchez-Pérez, G.; Toscano-Medina, K.; Perez-Meana, H.M. A Practical
Approach for Counting and Classifying Vehicles Using Rising/Falling Edge Thresholding in a Virtual
Detection Line. In Proceedings of the 2018 IEEE International Autumn Meeting on Power, Electronics and
Computing (ROPEC), Ixtapa, Mexico, 14–16 November 2018; pp. 1–6. [CrossRef]

16. Seenouvong, N.; Watchareeruetai, U.; Nuthong, C.; Khongsomboon, K.; Ohnishi, N. A computer vision
based vehicle detection and counting system. In Proceedings of the 2016 8th International Conference on
Knowledge and Smart Technology (KST), Chiangmai, Thailand, 3–6 February 2016; pp. 224–227. [CrossRef]

17. Anandhalli, M.; Baligar, V.P. A novel approach in real-time vehicle detection and tracking using Raspberry
Pi. Alex. Eng. J. 2018, 57, 1597–1607. [CrossRef]

18. Sravan, M.S.; Natarajan, S.; Krishna, E.S.; Kailath, B.J. Fast and accurate on-road vehicle detection based on
color intensity segregation. Procedia Comput. Sci. 2018, 133, 594–603. [CrossRef]

19. Selim, S.; Sarikan, A. Murat Ozbayoglu, Anomaly Detection in Vehicle Traffic with Image Processing and
Machine Learning. Procedia Comput. Sci. 2018, 140, 64–69.

20. Zhang, S.; Wu, G.; Costeira, J.; Moura, J. FCN-rLSTM: Deep Spatio-Temporal Neural Networks for Vehicle
Counting in City Cameras. In Proceedings of the IEEE International Conference on Computer Vision, Venice,
Italy, 22–29 October 2017; pp. 3687–3696. [CrossRef]

21. Mundhenk, T.N.; Konjevod, G.; Sakla, W.A.; Boakye, K. A Large Contextual Dataset for Classification,
Detection and Counting of Cars with Deep Learning. In Lecture Notes in Computer Science, Proceedings of
the European Conference on Computer Vision—ECCV 2016, Amsterdam, The Netherlands, 11–14 October 2016;
Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer: Cham, Switzerland, 2016; Volume 9907.

22. Arinaldi, A.; Pradana, J.A.; Gurusinga, A.A. Detection and classification of vehicles for traffic video analytics.
Procedia Comput. Sci. 2018, 144, 259–268. [CrossRef]

23. Li, S.; Lin, J.; Li, G.; Bai, T.; Wang, H.; Yu, P. Vehicle type detection based on deep learning in traffic scene.
Procedia Comput. Sci. 2018, 131, 564–572.

24. Nguyen, V.; Kim, H.; Jun, S.; Boo, K. A Study on Real-Time Detection Method of Lane and Vehicle for Lane
Change Assistant System Using Vision System on Highway. Eng. Sci. Technol. Int. J. 2018, 21, 822–833.
[CrossRef]

25. Liu, F.; Zeng, Z.; Jiang, R. A video-based real-time adaptive vehicle-counting system for urban roads.
PLoS ONE 2017, 12, e0186098. [CrossRef] [PubMed]

26. Portillo-Portillo, J.; Sánchez-Pérez, G.; Olivares-Mercado, J.; Pérez-Meana, H. Movement Detection of
Vehicles in Video Sequences Based on the Absolute Difference Between Frames and Edge Combination.
Información Tecnológica 2014, 25, 129–136. [CrossRef]

27. Bouwmans, T. Subspace learning for background modeling: A survey. Recent Pat. Comput. Sci. 2009, 2,
223–234. [CrossRef]

28. Guo, X.; Wang, X.; Yang, L.; Cao, X.; Ma, Y. Robust foreground detection using smoothness and arbitrariness
constraints. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland,
6–12 September 2014; pp. 535–550.

29. He, J.; Balzano, L.; Szlam, A. Incremental gradient on the Grassmannian for online foreground and
background separation in subsampled video. In Proceedings of the 2012 IEEE Conference on Computer
Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 1568–1575.

30. Yuan, Y.; Pang, Y.; Pan, J.; Li, X. Scene segmentation based on IPCA for visual surveillance. Neurocomputing
2009, 72, 2450–2454. [CrossRef]

31. Pang, Y.; Wang, S.; Yuan, Y. Learning regularized LDA by clustering. IEEE Trans. Neural Netw. Learn. Syst.
2014, 25, 2191–2201. [CrossRef] [PubMed]

32. Xu, J.; Ithapu, V.K.; Mukherjee, L.; Rehg, J.M.; Singh, V. GOSUS: Grassmannian online subspace updates
with structured-sparsity. In Proceedings of the IEEE International Conference on Computer Vision, Sydney,
Australia, 1–8 December 2013; pp. 3376–3383.

33. Pang, Y.; Ye, L.; Li, X.; Pan, J. Incremental Learning With Saliency Map for Moving Object Detection.
IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 640–651. [CrossRef]

34. Lim, J.; Ross, D.A.; Lin, R.S.; Yang, M.H. Incremental learning for visual tracking. In Advances in Neural
Information Processing Systems; MIT Press: Cambridge, MA, USA, 2005; pp. 793–800.

http://dx.doi.org/10.1109/ROPEC.2018.8661458
http://dx.doi.org/10.1109/KST.2016.7440510
http://dx.doi.org/10.1016/j.aej.2017.06.008
http://dx.doi.org/10.1016/j.procs.2018.07.090
http://dx.doi.org/10.1109/ICCV.2017.396
http://dx.doi.org/10.1016/j.procs.2018.10.527
http://dx.doi.org/10.1016/j.jestch.2018.06.006
http://dx.doi.org/10.1371/journal.pone.0186098
http://www.ncbi.nlm.nih.gov/pubmed/29135984
http://dx.doi.org/10.4067/S0718-07642014000500018
http://dx.doi.org/10.2174/2213275910902030223
http://dx.doi.org/10.1016/j.neucom.2008.11.013
http://dx.doi.org/10.1109/TNNLS.2014.2306844
http://www.ncbi.nlm.nih.gov/pubmed/25420242
http://dx.doi.org/10.1109/TCSVT.2016.2630731


Sensors 2019, 19, 2848 16 of 16

35. Levey, A.; Lindenbaum, M. Sequential Karhunen-Loeve basis extraction and its application to images.
IEEE Trans. Image Process. 2000, 9, 1371–1374. [CrossRef] [PubMed]

36. Goyette, N.; Jodoin, P.-M.; Porikli, F.; Konrad, J.; Ishwar, P. Changedetection.net: A new change detection
benchmark dataset. In Proceedings of the IEEE Workshop on Change Detection (CDW-2012), Providence, RI,
USA, 16–21 June 2012; pp. 1–8.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/83.855432
http://www.ncbi.nlm.nih.gov/pubmed/18262974
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Incremental Principal Component Analysis
	Proposed Methodology
	Motion Detection Using Incremental PCA
	Post-Processing
	Vehicle Counting

	Results
	Discussion
	Conclusions
	References

