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Abstract: Features were developed which accounted for the changing orientation of the inertial
measurement unit (IMU) relative to the body, and demonstrably improved the performance of
models for human activity recognition (HAR). The method is proficient at separating periods of
standing and sedentary activity (i.e., sitting and/or lying) using only one IMU, even if it is arbitrarily
oriented or subsequently re-oriented relative to the body; since the body is upright during walking,
learning the IMU orientation during walking provides a reference orientation against which sitting
and/or lying can be inferred. Thus, the two activities can be identified (irrespective of the cohort)
by analyzing the magnitude of the angle of shortest rotation which would be required to bring the
upright direction into coincidence with the average orientation from the most recent 2.5 s of IMU data.
Models for HAR were trained using data obtained from a cohort of 37 older adults (83.9 ± 3.4 years)
or 20 younger adults (21.9 ± 1.7 years). Test data were generated from the training data by virtually
re-orienting the IMU so that it is representative of carrying the phone in five different orientations
(relative to the thigh). The overall performance of the model for HAR was consistent whether the
model was trained with the data from the younger cohort, and tested with the data from the older
cohort after it had been virtually re-oriented (Cohen’s Kappa 95% confidence interval [0.782, 0.793];
total class sensitivity 95% confidence interval [84.9%, 85.6%]), or the reciprocal scenario in which the
model was trained with the data from the older cohort, and tested with the data from the younger
cohort after it had been virtually re-oriented (Cohen’s Kappa 95% confidence interval [0.765, 0.784];
total class sensitivity 95% confidence interval [82.3%, 83.7%]).

Keywords: quaternion; smartphone; feature engineering; human activity recognition; sensor fusion

1. Introduction

Wearable movement sensors, i.e., sensors that incorporate inertial measurement units (IMUs) and
barometric altimeters, have been championed as tools that will positively impact health care [1]. These
technologies have demonstrated their utility in the remote monitoring of patient rehabilitation [2],
as well as the clinical analysis of gait [3], from which parameters can be extracted to predict falls in the
elderly [4,5]. They have come to prominence in the management of Parkinson’s disease [6], objectively
quantifying patient tremor [7], and tracking the impact of the disease on their gait [8]. Moreover,
wearables have been adopted for the longitudinal monitoring of physical activity, which can be used
to identify those at risk of developing type-2 diabetes [9] and obesity [10].
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1.1. Multiple Sensors or a Single Sensor?

The number of sensors that an individual needs to wear for adequate human activity recognition
(HAR) is dependent on three factors: (i) the number of activities to be recognized, (ii) the location
of the sensor(s) on the body, and (iii) the nature of the sensors (i.e., some arbitrary combination of
accelerometers, gyroscopes, barometric pressure sensors, magnetometers, etc.). If the activities to be
recognized involve the movement of each of the body’s limbs (e.g., lunges, push ups, hand stands, etc.),
multiple sensors may need to be worn on the body at specific locations to obtain measurements that
allow the movement to be accurately identified. Wearing a single sensor on the body is sufficient if the
model for HAR is only identifying gross body movements (e.g., standing, sitting, walking, running),
placing the sensor near the body’s center of mass is ideal (i.e., the thigh) [11].

In either case, wearing sensors at different locations on the body will increase the performance
of a model for HAR [12], but at the expense of user compliance and burden [13], particularly if the
sensor(s) must be placed somewhere uncomfortable or unsightly [14]. Consequently, wearable sensor
systems for population-based studies are predominantly of the single-sensor variety [15,16], ideally
integrating seamlessly into the daily lives of users (e.g., embedded within a watch, necklace, sock
or belt) [17].

1.2. Smartphone-Based Human Activity Recognition

The dramatic recent increase in smartphone ownership [18,19] coupled with society’s dependence
on smartphones [20,21] has changed the paradigm. If individuals carry their device with them,
the measurements from the smartphone’s IMU and barometric altimeter can be analyzed to identify
the users’ gross body movements throughout the day. As a result, smartphones can be used as tools
for the purposes of physical rehabilitation, weight loss, etc., in which the ability to recognize human
activity is essential [22]. Finally, the greater penetration of smartphones amongst those of a lower
socioeconomic status [23] would enable population-based interventions to be conducted at a reduced
cost and with a wider reach. There are different models for HAR which can be adopted [24].

1.2.1. Fixed-to-the-Body

In this scenario, the IMUs embedded within smartphones are used in place of dedicated IMU
devices to: (i) detect falls [25], (ii) monitor activities of daily living [26], (iii) monitor the performance
of soccer and field hockey athletes [27], and (iv) swimmers [28]. These models assume that the
smartphone will be worn at one location on the body and that the device’s orientation relative to the
body segment on which it is worn is known a priori and does not change during the monitoring period
because it is held in place with a strap or similar apparatus.

1.2.2. Body-Position-Dependent

Conversely, models can be designed under the assumption that the smartphone is not strapped to
the body and will be placed in either the user’s pants/chest pocket [29], or hand or bag [30]. These
models do not require the user’s smartphone habits to change (as with those in Section 1.2.1) to
accommodate the device being fixed to the body, however, this makes it challenging to infer the user’s
postural orientation due to the variability with which the sensor can be oriented in the pocket with
respect to the body (i.e., the initial orientation of the device relative to the body segment on which it is
worn cannot be controlled, and the orientation of the device can vary over time since it is not firmly
fixed to the body).

1.2.3. Body-Position-Dependent

The final variant relaxes all constraints with respect to the smartphone’s position and orientation
on the body. Models are robust to device transitions from hand to pants/chest pocket [31], or bag,
at any moment [32,33]. A trade-off for this robustness (compared to those discussed in Section 1.2.1
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or 1.2.2) is that it can be difficult to determine body posture due to variability in both the device’s
location and its relative orientation to the body.

1.3. Extracting Information for Activity Recognition

There are two broad supervised learning approaches which have emerged to process sensor
measurements for HAR: (i) feature engineering and classification, or (ii) deep learning.

1.3.1. Accounting for Variability in Device Orientation and Position

A number of pre-processing techniques have been proposed to reduce the variability in sensor
measurements due to the inconsistency of the location and/or orientation with which the device
is placed on the body. Khan et al. demonstrated that linear discriminant analysis (LDA) can be
used to improve a classification algorithm’s ability to distinguish between transitions from sitting
to standing (and vice versa), and standing to lying (and vice versa) [34]. They also illustrated
how kernel discriminant analysis (KDA) can estimate both the interclass and intraclass variance of
features used to separate periods of walking, running, walking upstairs, and walking downstairs [35].
Henpraserttae et al. applied eigenvalue decomposition to tri-axial accelerometer measurements to
infer the device’s orientation with respect to the body by assuming that most of the acceleration due to
body movement is in the forward direction, and that the vertical axis can be inferred from the low-pass
filtered acceleration [36].

Yurtman and Barshan proposed another transformation based on singular value decomposition
(SVD). They first pre-processed the data from a tri-axial accelerometer, tri-axial gyroscope, and tri-axial
magnetometer so that it had unit variance, before SVD was applied to the entire time sequence to make
the sensor measurements agnostic to the device’s orientation [37]. Yurman et al. followed their seminal
work with another method which combined the measurements from the accelerometer, gyroscope,
and magnetometer, to estimate the sensor’s orientation within the global frame of reference when it
is firmly fixed to the body. The differential quaternions they generated, which estimated the relative
change in the device’s orientation between time intervals, enabled the raw sensor measurements to be
expressed in a reference frame invariant to the sensor’s orientation [38].

1.3.2. Feature Engineering and Classification

Feature engineering involves the application of domain knowledge to design hand-crafted
features [39,40] which describe the changing characteristics of the data with respect to time. These
features and labels (i.e., the human activities to be recognized which are temporally aligned with the
feature values) are input to a classification algorithm (e.g., decision tree, support vector machine, Naïve
Bayes, artificial neural networks, etc.) which tries to derive the best mathematical model that separates
the labeled observations, based on the statistic distributions of those features.

1.3.3. Deep Learning/Deep Neural Networks

Alternatively, domain knowledge can be replaced with a standalone artificial intelligence solution
that abstracts the entire feature extraction and classification process. Deep learning approaches
are a natural extension to artificial neural networks, comprised of numerous neurons and layers,
which attempt to learn both the Best Features and model for HAR by using the training labels to
determine the value of the neurons’ weights at each layer in the network [41]. The performance of
these approaches are dependent on the network’s architecture and the quality and quantity of the
training data. While convolutional neural networks [42], short-time Fourier transforms combined with
temporal convolution layers [43], long/short term memory (LSTM) networks [44], or a combination of
convolution, recurrent, and LSTM network layers [45], have all been shown to perform exceptionally
well, they incur a considerable energy cost when running on a smartphone due to the demands of
real-time processing [46].
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1.4. Contribution

This paper addresses the limitations associated with methods for inferring postural orientation
that are dependent on the sensor’s precise anatomical placement [47,48] by presenting a novel method
(i.e., a hand-crafted feature) for identifying sedentary periods of activity that is robust to variability in
the sensor’s orientation. The sensor’s orientation during walking periods is learned on-line and used
as a reference for the upright body orientation (represented by the quaternion qupright). Comparing
the sensor’s recent average orientation (over a sliding window) to qupright enables standing and
sedentary periods to be distinguished, regardless of the IMU’s orientation. It is important to distinguish
between standing and sedentary activities due to their differing energy expenditure profiles [49,50].
Furthermore, there are definitive relationships between total sedentary time per day and: type-2
diabetes [51,52]; cardiovascular mortality; all-cause mortality [53,54]; and even cancer [55].

2. Materials

Wearable sensor data from our previous work [56], in which a cohort of twenty younger adults
(15 male and five female) of ages 21.9 ± 1.7 years (Human Research Ethics Advisory, reference number
08/2012/48) and 37 older adults (25 male and 12 female) of age 83.9 ± 3.4 years (Human Research
Ethics Committee, reference number HC12316) performed nine human activities whilst a smartphone
was placed in their pants pocket, was used to evaluate the method proposed herein. The younger
adults were able-bodied university students recruited from the University of New South Wales,
Sydney, Australia. The older adults were recruited from a cohort of participants enrolled in an existing
study on memory and aging at Neuroscience Research Australia (NeuRA), Sydney, Australia. These
participants were community-dwelling and retirement village residents living in inner and eastern
Sydney; aged 65+ years; English-speaking; with a mini-mental state examination (MMSE) score of 24
or above; no acute psychiatric condition with psychosis or unstable medical condition; not currently
participating in a fall prevention trial.

Sensor data from the IMU and barometric altimeter were originally sampled at f IMU = 100 Hz
and fbar = 16 Hz, respectively. The measurements from the IMU and altimeter were also re-sampled
at 40 Hz and 20 Hz, respectively, to demonstrate the method’s ability to be adapted for a reduced
sampling rate, thereby reducing the prospective power consumption of the algorithm. This is important
because the usability of wearable sensors increases if they can operate continuously throughout the
waking day [24,57].

Periods of human activity, originally labeled as elevator up/down, were relabeled as standing
to focus on the clinical relevance of the activity rather than the wider context of the person being in
an elevator; this naturally increased the classification performance by reducing the range of activities
being classified. Additionally, sitting and lying were collectively re-labeled as sedentary. Consequently,
the nine activities described in [56] were reduced to six: sedentary, standing, walking, walking upstairs
(WU), walking downstairs (WD) and postural transitions (PT).

3. Methods

Note in the sections that follow, (i) quaternion multiplication (⊗) and conjugation (∗) are defined
in [58]; (ii) vectors are bold-faced (i.e., b); (iii) quaternions are bold-faced, italicized and normalized
unless explicitly stated (i.e., q = q/||q||); (iv) vectors expressed in the sensor frame, or estimated in the
global frame of reference, will be denoted with the superscripts sb, and gb, respectively; (v) a function
will be denoted as f (. . . ) with arguments inside the brackets.

3.1. Generating Data Representative of Different Orientations

Each quaternion in Figures 1a–f was used to transform the accelerometer and gyroscope data (racc

and rgyr, respectively) collected in our previous work [56], into new accelerometer and gyroscope data
(vacc and vgyr, respectively) that would have been obtained if the smartphone were re-oriented in the
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pants pocket (Equation (1)). Note: (i) {racc, rgyr, vacc, vgyr} ∈ R3; (ii) data from the barometric altimeter
were not transformed as these scalar measurements are orientation invariant.[

0 vx vy vz

]
= q⊗

[
0 rx ry rz

]
⊗ q∗. (1)
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𝒒1 = 1 0 0 0  

𝐞𝟏 

𝐞𝟐 

𝐞𝟑 

𝐞𝟐 

𝐞𝟑 

𝐞𝟏 

𝐞𝟏 

𝐞𝟑 

𝑥 𝑥 

𝑥 

𝑦 

𝑦 𝑦 

𝐞𝟏 

𝐞𝟐 

𝐞𝟑 

𝑦 

𝑧 𝑧 

𝐞𝟑 

𝐞𝟏 

𝐞𝟐 

𝑦 

𝑧 

𝑧 

𝐞𝟏 

𝐞𝟑 

𝐞𝟐 

𝑥 

𝑥 𝑥 𝑦 

𝑧 𝑧 

𝐞𝟐 

Figure 1. Six common ways that the inertial measurement units (IMU) might be placed in the pants
pocket (assuming a seated position). The cylinder in each panel represents the orientation of the
participant’s right thigh whilst seated (with the knee to the right-hand side of each image). The dashed
lines labeled x, y, and z denote the original device reference frame, 1q, whilst the orthogonal basis
defined by the vectors, e1, e2, and e3 illustrate the device orientation generated. In panels (a–d) the
IMU is located on the anterior surface of the thigh (i.e., a pocket on the front of the pants), whilst in
panels (e,f) the IMU is located on the lateral surface of the thigh (i.e., a pocket on the outer side of
the pants).

3.2. Estimating the Orientation of the IMU

The data generated in Section 3.1 were fused using the adaptive error-state Kalman filter
(AESKF) for orientation estimation, developed in our previous work [59], to estimate the device’s
orientation. The tuning parameters of the AESKF algorithm are listed in Table 1. Note, whilst there are
many algorithms that can be used to estimate the IMU’s orientation, the AESKF was chosen for its
computational efficiency relative to other algorithms [59].

Table 1. Tuning parameters of the computationally-efficient adaptive error-state kalman filter.

Sampling Rate † σG ca cm
‡ Nshort

‡ Nlong
? ξa

‡ Nm
?? ξxy

fs = 100 Hz 0.01 0.1 0.99 7 49 1 7 5
fs = 40 Hz 0.01 0.1 0.99 3 19 1 3 5

† rad/s; ‡ samples; ? m s−2; ?? normalized units/s.

3.2.1. Removing the Heading from the Estimated Orientation

The estimated orientation, qAESKF,k, had an arbitrary heading that did not contain any information
about the orientation of the IMU on the individual’s body, since the person can face in any direction
and perform the same activity. Consequently, this was removed by aligning the orientation, qAESKF,k,
with the north-facing component of the standard basis, ex = [ 1 0 0 ]. First, the x basis vector of
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the quaternion, qAESKF,k, was identified and projected to the xy-plane (Equation (2)). Once xxy,k is
determined, the quaternion, qnorth,k, that rotates the device orientation, qAESKF,k, northward can be
calculated (Equations (4)–(6)). The resultant quaternion, qk, had a fixed heading, i.e., the yaw angle,
ψ = 0 (see Figure 2b), which ensured that the shortest rotation between two quaternions (Section 4.2.2),
did not contain any information about changes in the device’s heading which normally occur due to
turning the body.

xxy,k =
[
q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 + q0q3) 0

]
k

(2)

θk = cos−1
(
(xxy,k ·ex)/

∥∥∥xxy,k

∥∥∥) (3)

nk = xxy,k × ex (4)

qnorth,k = [ cos( θ
2 ) n·sin( θ

2 ) ]k (5)

qk = qnorth,k ⊗ qAESKF,k (6)

(a) (b) 
𝑥 𝑥 

𝑦 

Roll:  
Pitch: 
Yaw: 

12 
20 
50 

Roll:  
Pitch: 
Yaw: 

12 
20 

0 

𝑧 𝑧 

𝑦 

𝐞𝟏 

𝐞𝟐 

𝐞𝟑 

𝐞𝟏 

𝐞𝟐 

𝐞𝟑 

𝐞𝟏,𝐱𝐲 
𝐞𝟏,𝐱𝐲 

Figure 2. Effect of removing the yaw from an arbitrary orientation (the orthogonal basis defined by
the vectors e1 (in blue), e2 (in red), e3 (in green) by aligning it with the x-axis of the standard basis
x, y, z: (a) orientation, with an arbitrary yaw angle; (b) the same orientation with the yaw component
removed (see Equations (2)–(5)). Note: the light blue vector is e1,xy, the e1 basis vector of the orientation
projected to the xy plane; the pitch and roll angles are preserved.

3.2.2. Smoothing the Estimated Orientation

The effects of the IMU shifting/re-orienting within the individual’s pants pocket as they
move through the world were minimized by time-averaging the quaternion, qk, using a
computationally-efficient one-pass method [60], to create a moving average (window size N) of
the device orientation (Equation (7)) from the last 2.5 s worth of data, q̄k.

q̄k = fq,avg(qk−N+1, · · · , qk), (7)

see Appendix A Equation (A1).

4. Feature Extraction

The features in Table 2 were aggregated (using a sliding window with 50% overlap) using sensor
data from the most recent 2.5 s. Features (1)–(4) were obtained by processing the sensor measurements
with finite impulse response (FIR) linear phase filters, as described in our previous work [56]. Whilst
novel features (5)–(8) are described in Sections 4.1–4.3.
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Table 2. Features extracted from the accelerometer, gyroscope, and barometric altimeter.

No. Feature Description

(1) ω̄2
bpf,k = 1

N ∑k
j=i(ω

2
bpf,x + ω2

bpf,y + ω2
bpf,z)j

average squared band-pass-
filtered angular velocity

(2) Θ̄tilt,k = 1
N ∑k

j=i cos−1
(

alpf,y/
√
(a2

lpf,x+a2
lpf,y+a2

lpf,z)

)†

j
average inclination angle

(3) ā2
lpfdif,k =

1
N ∑k

j=i(a2
lpfdif,x + a2

lpfdif,y + a2
lpfdif,z)j

average squared band-
pass-filtered acceleration

(4) ∆Pk = 1
N ∑k

j=i ∂pj average differential pressure

(5) gω̄2
xy,k = 1

N ∑k
j=i(

gω2
x +

gω2
y)j

average squared pitch/roll
angular velocity

(6) ϑ̄tilt,k = 1
N ∑k

j=i ϑtilt,j
average of the shortest rotation between
the upright and average orientations

(7) ∆ϑ̄tilt,k =
∣∣∣ϑ̄tilt,k − ϑ̄tilt,k−N

∣∣∣ change in the shortest rotation between
the upward and average orientations

(8) v̄z,k = 1
N ∑k

j=i żj
average velocity in the vertical
direction of the estimated GFR

Note: i = k−N+1; N–the number of samples in a 2.5 s analysis window (b2.5× fIMUc);
The variables: ωbpf, alpfdif, alpf, and ∂p correspond to the filtered signals described in [56];
† The tilt angle [48].

4.1. Squared Magnitude of Pitch/Roll Angular Velocity

In our previous work [56], the three orthogonal gyroscope measurements were each band-pass
filtered (between 1 and 20 Hz) to isolate the frequency components predominantly due to walking [61].
The squared magnitude of these three band-pass filtered signals at each time sample, ω2

bpf,k, was used
to distinguish between active/inactive periods of activity. Alternatively, the measurements can be
expressed in the estimated global frame of reference (GFR) using the device orientation, qk. The squared
magnitude of the pitch/roll rotation, gω2

xy,k, can be isolated using Equations (8) and (9) since rotations
about the vertical axis are primarily due to turning.[

0 gωx
gωy

gωz

]
k
= qk ⊗

[
0 sωx

sωy
sωz

]
k
⊗ (qk)

∗ (8)

gω2
xy,k =

gω2
x,k +

gω2
y,k (9)

4.2. Detecting Sedentary Periods

The tilt angle, Θtilt,k, was previously used [56] to identify the postural orientation of the body
relative to the global frame of reference (GFR) [47,48]. In this previous formulation, the magnitude of
Θtilt,k is dependent on one of the axes of the IMU (the y-axis in Figure 3a) remaining in coincidence with
the long axis of the thigh. This constraint is apparent when the IMU is oriented such that another axis
is aligned with the long axis of the thigh (Figure 3b), but is also a problem if the orientation of the IMU
shifts in the pocket. A new approach is proposed in Section 4.2.2 which compares the average recent
orientation with the average orientation during walking periods (i.e., the sensor’s orientation during
walking periods is continuously learned and used to define the ‘upright’ orientation, against which all
other orientations are compared).
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(b) 
𝑥 

𝑧 𝑧 

𝑦 𝑦 (a) 
𝑥 

Θ tilt,𝑘 ≈ 0 

𝜗 tilt,𝑘 ≈ 0 
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𝜋
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𝜋
2 
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2
 

Θ tilt,𝑘 ≈
𝜋
2 

𝜗 tilt,𝑘 ≈ 0 

Figure 3. Two alternative methods for measuring the tilt. The limitations of the traditional tilt angle
variable (i.e., the angle between the red basis vector and the z-axis of the global frame of reference
(GFR)) are clear, making it impossible to separate standing (stick figure in gold) and sedentary periods
(stick figure in grey). When the red basis vector: (a) runs along the length of the individual’s leg,
the magnitude of the tilt angle changes by ≈ π

2 radians (i.e., 90°) between standing and sedentary
periods, making it easy to discriminate these postures; (b) red basis vector runs along the mediolateral
axis of the individuals’s leg, so the magnitude of the tilt angle of the red vector remains relatively
unchanged between standing and sedentary periods, resulting in confusion between the two postures.

4.2.1. Estimate the Upright Orientation using the Orientation during Walking Periods

Walking periods were identified using the method proposed by Jiménez et al. [62] which
analyzed the squared magnitude of the raw tri-axial gyroscope signal, sω2

k (see Equation (10)),
and the magnitude of the unbiased sample variance, ς2

acc,k (see Equation (12)), of the squared
magnitude of the raw tri-axial accelerometer signal, sa2

k (see Equation (11)). When both signals
are greater than pre-determined thresholds, the individual carrying the IMU was presumed to be
walking (see Equation (13)). Note, j = k− N + 1 in Equation (12), and ς2

acc,k was calculated using a
computationally-efficient method [60] with a sliding window of 0.25 s; i.e., N = b0.25 × fIMUc.

sω2
k = s

[
ω2

x + ω2
y + ω2

z

]
k

(10)

sa2
k = s

[
a2

x + a2
y + a2

z

]
k

(11)

ς2
acc,k =

1
N−1

[(
∑k

i=j(
sa2

i )
2
)
− 1

N

(
∑k

i=j
sa2

i

)2
]

(12)

bwalk,k =

{
1, (ω2

k > 5 rad/s) ∩ (ς2
acc,k > 10 m2/s4)

0, otherwise
(13)

The scalar and vector components of each orientation, qk, which correspond to these walking
periods are stored and used to calculate the ‘upright’ orientation, qupright,k (see Equation (14) and
Appendix A). Note: ? denotes the set of N indices corresponding to the most recent 2.5 s of data for
which bwalk,k = 1, and need not be a contiguous set of sample indices.

qupright,k = fq,avg(q(k−N+1)? , · · · , qk?), (14)

see Appendix A Equation (A1).
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The approach presented herein improves upon the method proposed by Elvira et al. because:
(i) an orientation algorithm is utilized [63] whose estimated inclination angle is immune to magnetic
interference [64,65]; (ii) an adaptive error-state Kalman filter (AESKF) is used which enables the
estimated orientation to be quickly corrected during ‘quasi-static’ periods [59]; (iii) the estimated
heading (i.e., the yaw component, ψ°) is removed from the orientation estimated (the importance of
which is demonstrated in Section 3.2.1); (iv) most importantly this method is believed to be the first to
demonstrate the utility of the shortest rotation between two quaternions as a feature for HAR.

4.2.2. Calculate the Shortest Rotation between the Upright Orientation and the Average
Recent Orientation

Once the average recent orientation, q̄k, and the upright orientation, qupright,k, are known,
the magnitude of the shortest rotation between them (see Equation (15)) can be calculated
(see derivation in Appendix B) and used to distinguish standing and sedentary (seated/lying) periods,
regardless of the IMU’s orientation relative to the thigh.

ϑtilt,k = fangle(qupright,k, q̄k), (15)

see Appendix B Equation (A2).

4.3. Estimating Velocity in the Vertical Direction of the GFR

The inertial acceleration in the sensor frame was obtained by measuring the magnitude of the
Earth’s gravitational acceleration, ||ya,0||, (i.e., the accelerometer measurement during a quasi-static
period, where the accelerometer is not moving) and expressing this measurement in the sensor
frame of reference as szk using the accelerometer-corrected attitude, qk (see Equations (16) and (17)).
The acceleration due to gravity, as measured in the sensor frame of reference, sgref,k, can then be
subtracted from the raw accelerometer measurement, sya,k (Equation (18)), to obtain the inertial
acceleration in the sensor frame, sda,k.

This acceleration can be expressed in the estimated GFR, gda,k =
[

gda,x
gda,y

gda,z

]
k
, using

Equation (19). At this point, the sensor’s velocity in the vertical direction of the GFR can be estimated
by fusing the vertical component of the acceleration, gda,z,k, with the barometric pressure sensor
measurements, pk, using a complementary filter [66] or Kalman filter [67]. Assuming the external
acceleration, z̈k = gda,z,k, remains constant over the sampling interval, T = 1

fIMU
, and the bandwidth of z̈k

is less than fIMU
2 , the time-propagation of the altitude, z and velocity, ż, can be modeled [68] according

to Equation (20):

szk =
[
2(q1q3 − q0)q2) 2(q2q3 + q0q1) 2(q0)

2 − 1 + 2(q3)
2
]

k
(16)

sğref,k = ||sya,0|| · szk (17)

sda,k =
sya,k − sğref,k (18)[

0 gda,x
gda,y

gda,z

]
k
= q ⊗

[
0 sda,x

sda,y
sda,z

]
k
⊗ q∗ (19)[

z

ż

]
k

=

[
1 T

0 1

]
k

[
z

ż

]
k−1

+

[
T2

2

T

]
k

z̈k

xk = Ak xk−1 + Gk uk + wk

(20)

4.3.1. Process Model

Imperfections in Equation (20), i.e., acceleration not being constant during the sampling interval,
and noise in the acceleration input to the system, uk, prevent the system’s true state, x, from being
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observed. Consequently, the system’s state can only be estimated as x̆k, by combining the process
model with measurements obtained directly from the system. The ‘prediction step’ (i.e., Equations (22)
and (23)) produces an a priori estimate of the system’s state, x̆−k , and covariance, P−k . Note: (i) Qk is
the process noise covariance matrix, (ii) am

2 ≤ σacc ≤ am, where am is the magnitude of the maximum
acceleration the system will experience [68].

x̆−k = Akx̆+k−1 + Gkuk (21)

P−k = AkP+
k−1AT

k + Qk (22)

Qk = GkGT
k σ2

acc =

[
1
4 T4 1

2 T3

1
2 T3 T2

]
σ2

acc (23)

4.3.2. Observation Model

The observation model (Equation (24)) transforms the state estimate, x̆k, to the domain of the
barometric pressure sensor pk (i.e., it converts altitude (in m) to air pressure (hPa) [69]), and enables the
measurement residual, ỹk, to be calculated (Equation (26)). The measurement residual has a covariance
Sk that combines the covariance of the a priori state estimate, P−k , and variance in the measurement from
the barometric pressure sensor, Rk = σ2

bar (Equation (27)); i.e., the variance in the barometric pressure
when the device remains stationary. The gain in the filter, Kk, can be determined by consolidating the
covariances of the a priori state estimate and measurement residual (Equation (28)), thereby enabling
the a posteriori state estimate, x̆+k , and covariance, P+

k , to be determined as described in Equations (29)
and (30). Note: (i) Hk is the Jacobian of h(xk), that is, derivatives with respect to the elements of the
state vector xk, evaluated at the estimate xk = x̆k; (ii) I2 a 2× 2 identity matrix.

h(xk) = p0

(
1− zk

44330.77

)5.26
(24)

Hk =
[

∂h
∂z �

�∂h
∂ż

]∣∣∣∣∣
h(x=xk)

(25)

ỹk = pk − h(x̆−k ) (26)

Sk = HkP−k HT
k + Rk (27)

Kk = P−k HT
k S−1

k (28)

x̆+k = x̆−k + Kkỹk (29)

P+
k = (I2 −KkHk)P

−
k (30)

It is hoped that the Kalman-filtered velocity estimate, żk, was able to distinguish between walking
periods, upstairs (żk >> 0), downstairs (żk << 0), and on a level surface (żk ≈ 0). This would
extend the utility of the Kalman-filtered velocity estimate, beyond applications in fall detection [70],
for example.

5. Hierarchical Description of Human Activity

Rather than use one supervised machine learning algorithm to perform HAR, a hierarchical
model of human activity (HMHA) [71,72] was devised and translated into a feature-based model
(see Figure 4). A decision tree based on the classification and regression tree (CART) algorithm
developed by Brieman [73] was trained for each node of the model and pruned so that there is
only one leaf node for each activity class (see an example in Figure 5b). This approach minimized



Sensors 2019, 19, 2845 11 of 28

over-fitting [74], ensured that the model was easily interpreted, and makes the process of HAR tractable
in the event of misclassification [75]. In addition, the weights of each class were balanced when the
decision tree was trained to ensure that the thresholds selected accounted for any class imbalances [76].
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Figure 4. Illustration of how the activity classes can be separated using (a) a hierarchical description
of human activity. A schematic for achieving the separation using the following features: (b) only
original (i.e., features (1)–(4)), (c) only new (i.e., features (5)–(8)), and (d) best features from all eight old
and New Features (i.e., features (3)–(6)) in Table 2. Each blue rectangle represents a classification and
regression tree (CART) [73] implemented in MATLAB 2013b with ‘ClassificationTree.fit’. The CART
algorithm used ‘uniform’ prior class probabilities to ensure that the thresholds selected accounted for
any class imbalances.

Decision Tree Algorithm (a) (b)  
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Figure 5. (a) Normalized frequency histogram for the ∆Pk feature and three activity classes (walk
downstairs (in red), walking (in blue), and walk upstairs (in light blue), visualized as stacked bars);
(b) An example of the decision tree, used at each node of the HMHA; i.e., the blue rectangles in Figure 4.
x1 and x2, are derived from Figure 5a according to the classification and regression tree [73].

6. Models and Performance Metrics

6.1. Performance at a High Sampling Rate

A number of models were developed in which a model for recognizing human activity was
trained using all of the sensor data collected from the younger and/or older cohorts using either: (i) the
Original Features, i.e., features (1)–(4) in Table 2; (ii) the New Features (i.e., features (5)–(8) in Table 2),
and; (iii) four pairs of features (i.e., features 1 and 5; features 2 and 6; features 3 and 7; features 4 and 8
from Table 2) were provided to four separate instances of the CART algorithm to select the four Best
Features to separate the human activities into distinct classes according to the structure of the HMHA
described in Figure 4a; these pairings represent features which are similar in terms of the information
they captures, e.g., features 1 and 5 capture angular velocity information in subtly different ways.

The robustness of each model for HAR was evaluated by virtually re-orienting the device
(as described in Section 3.1) to obtain data from the younger and/or older cohorts that are
representative of five different device orientations (see Figure 1b–f). Each model’s performance
was evaluated by training the model with either of the younger and/or older cohorts data and testing
the model with either of the younger and/or older cohorts data after it had been virtually re-oriented,
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using 10-fold cross-validation. Ninety-five percent confidence intervals (95%CIs) were calculated
for the: Cohen’s kappa (κ) and total classification sensitivity (%), as well as the sensitivity (%) and
specificity (%) of each activity class. This process is repeated for the ‘Best Features’ (determined in the
above search procedure).

6.2. Translating Performance to Different Sampling Rates

Finally, the HMHA are evaluated by training the model with data from the younger and/or older
cohort at either (i) the original sampling rate (i.e.,the IMU sampled at 100 Hz, and the barometric
altimeter data sampled at 16 Hz), or (ii) a reduced sampling rate (i.e., the IMU resampled at 40 Hz,
and the barometric altimeter data resampled at 20 Hz), and testing the model with the virtually
rotated data from the younger and/or older cohort at the reciprocal sampling rate to determine if the
performance and thresholds of the model are consistent. The metrics reported in Section 6.1 were also
used to evaluate the model’s performance.

7. Results and Discussion

7.1. Comparing Features Using Shannon Entropy

When the Shannon entropy [77] of the training datasets (i.e., Figure 6a,c) or testing datasets (i.e.,
Figure 6b,d) were compared for the features gω̄2

xy,k and ω̄2
bpf,k, two things become evident. Firstly, both

features appear to be orientation invariant because the Shannon entropy is constant whether or not it is
calculated from the training data or test data (i.e., here the test data was the virtually re-oriented training
data). Secondly, the Shannon entropy was reduced by 0.085 bits when the quaternion-derived feature
was used in place of the original feature proposed in our previous work, showing an improvement in
the separation of the class distributions [56].
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Figure 6. The normalized histograms of the active (i.e., the walking, walking upstairs, walking
downstairs, and postural transition classes pooled together) and inactive (i.e., the standing and
sedentary classes pooled together) classes for the features ω̄2

bpf,k and gω̄2
xy,k. Panels (a,c) are generated

from the training data (i.e., the pooled data from the younger and older cohorts, respectively). Panels
(b,d) are generated from the test data (i.e., the pooled data from the younger and older cohort after
they have been virtually re-oriented using the quaternions in Figure 1b–f). The bar charts in all
panels are ‘stacked’. Note that the Shannon entropy for the quaternion-derived feature is both smaller
and consistent, irrespective of the data it is calculated from, which suggests that it will be better at
distinguishing the activity classes and is orientation invariant.
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The features Θ̄tilt,k and ϑ̄tilt,k can be used to further separate the inactive class into standing and
sedentary (i.e., sitting or lying) classes. When the Shannon entropy was calculated for both tilt angle
features using the training data (see Figure 7a,c, respectively) the Shannon entropy [77] dropped
by 0.142 bits when ϑ̄tilt,k was used in place of Θ̄tilt,k. A more pronounced difference of 0.669 bits
was observed between Θ̄tilt,k and ϑ̄tilt,k when the Shannon entropy was calculated using the test data
(see Figure 7b,d, respectively). Whilst the Shannon entropy of ϑ̄tilt,k increases by 0.291 bits when the
test data are used in place of the training data, the shape of the normalized frequency distribution is
more consistent for all device re-orientations when compared with Θ̄tilt,k which increased by 0.818 bits
for the re-oriented (test) data. This suggests that the quaternion-derived feature, ϑ̄tilt,k is more robust
to how a smartphone is initially placed in the pocket.
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Figure 7. The normalized histograms of the sedentary and standing classes (illustrated in Figure 4) for
the features Θ̄tilt,k and ϑ̄tilt,k. Panels (a,c) are the histograms obtained when the training data are used
(i.e., the pooled data from the younger and older cohorts, respectively). Panels (b,d) are the histograms
obtained when the test data are used (i.e., the pooled data from the younger and older cohort after
it had been virtually re-oriented using each of the quaternions in Figure 1b–f). The bar charts in all
panels are ‘stacked’. Note that the entropy for the quaternion-derived feature is consistently smaller,
which suggests that it will be better at distinguishing between activity classes.

Whilst the new feature, ϑ̄tilt,k, appears to improve the recognition rate of both standing and
sedentary periods of activity, using the change in the shortest rotation between the upward and average
orientations, ∆ϑ̄tilt,k to distinguish between postural transitions and periods of walking (i.e., walking
upstairs, walking downstairs, or walking on a level surface) does not. This is evident by the increase in
Shannon entropy (when ϑ̄tilt,k is compared to ∆ϑ̄tilt,k) whether or not the feature values are generated
from the training or testing data, i.e., from 0.463 bits to 0.866 bits, or from 0.463 bits to 1.049 bits,
respectively (see Figure 8). Additionally, since the Shannon entropy of ā2

lpfdif,k remains constant at
0.463 bits irrespective of the dataset used, it confirms that the feature previously described [56] is
orientation invariant, as expected.

Conversely, both the average differential pressure, ∆Pk, and the velocity in the vertical direction
of the estimated GFR, v̄z,k, are orientation invariant as evident by the Shannon entropy which
remains constant whether or not the training or testing data are used, for both the original feature
(Figure 9a,b) and the quaternion-derived feature (Figure 9c,d). The Shannon entropy of ∆Pk (1.795 bits)
is substantially smaller than v̄z,k (4.070 bits) which suggests that the estimated velocity in the
vertical direction (obtained by fusing vertical acceleration and barometric pressure using an extended
Kalman filter) of the estimated GFR is not as useful in distinguishing between walking on flat or
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inclined surfaces when compared to using the rate of change of pressure measured by the barometric
altimeter alone.
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Figure 8. The normalized histograms of the walking (including walking up or down) and postural
transition classes (illustrated in Figure 4) for the features ā2

lpfdif,k and ∆ϑ̄tilt,k. Panels (a,c) are the
histograms obtained when the training data are used (i.e., the data from the younger and older cohorts,
respectively). Panels (b,d) are the histograms obtained when the test data are used (i.e., the data
from the younger and older cohort after it had been re-oriented with each of the quaternions in
Figure 1b–f). The bar charts in all panels are ‘stacked’. Note that the Shannon entropy for the original
feature is consistently lower than the quaternion-derived feature which suggests that it will be better at
distinguishing the activity classes.
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Figure 9. The normalized histograms of the walk, walking upstairs, and walking downstairs classes
for the features ∆Pk and v̄z,k. Panels (a,c) are the histograms obtained when the training data are
used (i.e., the data from the younger and older cohorts, respectively). Panels (b,d) are the histograms
obtained when the test data are used (i.e., the data from the younger and older cohort after it had been
re-oriented with each of the quaternions in Figure 1b–f). The bar charts in all panels are ‘stacked’. Note
how the Shannon entropy of each feature remains constant whether it is computed from the training or
test data (which, remember, is the training data re-oriented), confirming that both features are invariant
to the initial orientation, as expected.
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Although speculative, it is likely that large amplitude accelerations measured by the IMU in the
pants pocket during walking is masking the subtle pattern changes in vertical acceleration associated
with ascending/descending stairs. It is plausible that if the accelerometer had been placed in a chest
pocket, an improved estimate of vertical acceleration may have been obtained by the Kalman filter.

7.2. Comparing the Overall Performance of Models for HAR

When the HMHA is trained and tested with data from the cohort of younger adults (at the original
sampling rate: fIMU = 100 Hz; fBAR = 16 Hz), or trained with the older cohort, and tested on the data
from the younger cohort after it has been re-oriented, the performance improvement of the models
(i.e., the 95% confidence interval of the Cohen’s kappa, κCI95 , and total class sensitivity, $CI95) are
negligible. For two out of the three remaining scenarios, there are substantial improvements in the
model’s performance when the quaternion-derived features developed herein (i.e., gω̄2

xy,k and ϑ̄tilt,k)
are incorporated into the process of human activity recognition. This can be observed in Table 3 when
the model is trained with data from the older cohort and tested with the data from the older cohort
after it has been re-oriented (i.e., κCI95 increases from [0.685, 0.697] to [0.721, 0.733]; $CI95 increases from
[77.6%, 78.5%] to [79.9%, 80.7%]), as well as when the model is trained with data from both cohorts
and tested with the data from both cohorts after it has been re-oriented (i.e., κCI95 increases from
[0.702, 0.713] to [0.732, 0.742]; $CI95 increases from [78.4%, 79.2%] to [80.3%, 81.1%]).

Table 3. Ninety-five percent confidence intervals for the Cohen’s Kappa and total class sensitivity
when hierarchical models for human activity recognition were developed with different features.

Cohen’s Kappa (κCI95 )
Train Test Original Features New Features Best Features Best Features †

Y Y ? [0.820, 0.837] [0.606, 0.629] [0.827, 0.844] [0.824, 0.841]
O O ? [0.685, 0.697] [0.478, 0.491] [0.721, 0.733] [0.730, 0.741]
Y O ? [0.675, 0.688] [0.468, 0.481] [0.782, 0.793] [0.779, 0.790]
O Y ? [0.760, 0.780] [0.590, 0.613] [0.765, 0.784] [0.761, 0.781]

Y&O (Y&O)? [0.702, 0.713] [0.544, 0.556] [0.732, 0.742] [0.778, 0.787]

Total Class Sensitivity ($CI95%)
Train Test Original Features New Features Best Features Best Features †

Y Y ? [86.7, 88.0] [69.0, 70.8] [87.2, 88.5] [87.0, 88.3]
O O ? [77.6, 78.5] [57.3, 58.4] [79.9, 80.7] [80.6, 81.5]
Y O ? [77.7, 78.6] [56.3, 57.3] [84.9, 85.6] [84.8, 85.5]
O Y ? [82.0, 83.5] [67.5, 69.3] [82.3, 83.7] [82.0, 83.5]

Y&O (Y&O)? [78.4, 79.2] [63.9, 64.8] [80.3, 81.1] [84.1, 84.8]
? Test data were obtained by re-orienting the data from the younger (Y) and/or older (O) cohort
(see Section 3.1); † IMU data were re-sampled at 40 Hz, barometer data were re-sampled at 20 Hz.

It is particularly noteworthy that the performance of the model trained with the ‘Best Features’
using the data collected from the younger cohort and tested with the ‘best beatures’ using
the data collected from the older adults after it has been re-oriented (i.e., κCI95 = [0.782, 0.793];
$CI95 = [84.9%, 85.6%]) is comparable to the performance of the model trained with the data collected
from the older cohort and tested with the data from the younger cohort (i.e., κCI95 = [0.765, 0.784];
$CI95 = [82.3%, 83.7%]). This contradicts the finding of our previous work [56] in which the performance
of a model for HAR trained on younger cohorts degraded substantially when tested on older cohorts
(due to the use of the tilt angle feature, Θ̄tilt,k, which was not orientation invariant (see Table 3,
the column labeled ‘Original Features’)), compared to the opposite scenario in which the model is
trained with the older cohort’s data and tested with the data from the younger cohort, which gives the
better performance.
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The improvements in total classification sensitivity and Cohen’s kappa gained by incorporating
the quaternion-derived features (see Table 3 column labeled ‘Best Features’) persist when the data
from the IMU are re-sampled at a reduced rate (see the column labeled ‘Best Features †’ in Table 3).
This demonstrates the robustness of both the features and the HMHA to a decrease in the sample
rate, which is an important design consideration given the limited battery life of wearable sensors
(i.e., smartphones, smartwatches, etc.). Interestingly, there are marginal improvements in Cohen’s
kappa (i.e., from κ = [0.732, 0.742] when fIMU = 100 Hz to κ = [0.778, 0.787] when fIMU = 40 Hz) and total
class sensitivity (i.e., from $CI95 = [80.3%, 81.1%] when fIMU = 100 Hz to $CI95 = [84.1%, 84.8%] when
fIMU = 40 Hz) when the model is trained with the data from the younger and older cohorts and tested
with the data from the younger and older cohorts after it has been re-oriented. Upon analyzing the class
sensitivity of these two hierarchical models of human activity, it is evident that this is primarily due to
an increase in the sensitivity of detecting the walking class, from ∼72% to ∼82% (see Figure 10xv,xx).
This improvement can be attributed to the use of the quaternion derived feature, gω̄2

xy,k which measures
the amount of pitch/roll rotation in the estimated GFR, a more consistent frame of reference than the
local sensor frame.
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Figure 10. The column titled: ‘Original Features’ (i.e., panels (i–v)) correspond to hierarchical
models of human activity that were trained and tested with the features developed in our previous
work [56] using the hierarchical model of human activity (HMHA) illustrated in Figure 4b; ‘New
Features’ (i.e., panels (vi–x)) correspond to hierarchical models of human activity that were trained
and tested with the features developed herein using the HMHA illustrated in Figure 4c; ‘Best Features’
(i.e., panels (xi–xv)) correspond to hierarchical models of human activity that were trained and tested
with a combination of the original and New Features using the HMHA illustrated in Figure 4d; ‘Best
Features†’ (i.e., panels (xvi–xx)) equivalent to ‘Best Features’ with the IMU data re-sampled to 40 Hz,
the barometer data to 20 Hz.

7.3. Identifying Which Features Drive Model Performance

When Figures 10i,xi are compared (i.e., a HMHA trained with the Original Features extracted from
the younger cohort and a HMHA trained with the Best Features extracted from the younger cohort),
the differences in the model’s performance become apparent. Most notably, the sensitivity for the
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postural transition class increased from 70.05% to 86.64%. This improved performance is a by-product
of modest increases in the model’s ability to identify standing (i.e., the standing class sensitivity
increased from 88.29% to 89.98%) and sedentary periods of activity (i.e., the class sensitivity increased
from 93.67% to 94.42%). These pieces of evidence support the argument that the quaternion-derived
feature, gω̄2

xy,k, is better at distinguishing periods of activity (i.e., walking, or postural transitions)
from periods of inactivity (i.e., standing or sedentary), a trend which is consistent across each of the
five training and testing scenarios proposed in Section 6. However, it is likely that gω̄2

xy,k would not
be as effective in this task if the smartphone is placed in the user’s chest pocket, which pitches and
rolls less when compared to the thigh (i.e., it rotates less about the x and y axis of the estimated GFR)
during walking.

The underlying causes for the improvement in the HMHA become clear after analyzing the
sensitivity of the activity classes listed in Figure 10. When the columns corresponding to the HMHAs
built using the Original Features and New Features (e.g., when Figure 10i is compared to Figure 10vi,
Figure 10ii to Figure 10vii, and so on) were compared, it is evident that the model’s sensitivity to
periods of walking upstairs decreased dramatically (e.g., in the case of (i) and (v), from 84.21% to
58.16%) when the differential pressure, ∆Pk, was replaced with the moving average velocity in the
vertical direction of the estimated GFR, v̄z,k. This persisted whether the data from the younger or older
cohort was used (i.e., when the columns entitled ‘Original Features’ and ‘New Features’ of Figure 10
are compared, the model’s sensitivity to periods of walking either upstairs or downstairs is reduced).
∆Pk is superior to v̄z,k in estimating vertical velocity and hence walking on stairs.

On the other hand, when Θ̄tilt,k was substituted with ϑ̄tilt,k, the sensitivity of the model to standing
classes increases (from 60–70% to >80%) when the HMHA was trained with: (a) the older cohort’s
data and tested with the older cohort’s data after it had been re-oriented (the second row in Figure 10);
(b) the younger cohort’s data and tested with the older cohort’s data after it had been re-oriented
(the fourth row in Figure 10); (c) the data from both cohorts and tested with the data from both cohorts
after it had been re-oriented. This improvement underscores the utility of learning the orientation of
the device when the body is definitely upright (i.e., when walking), demonstrating how this method
can intuitively account for the variability in sensor measurements which may arise due to inconsistent
device orientation when the IMU is placed on the body.

In addition, the rate of misclassification of sedentary and stationary periods of activity as postural
transitions decreases markedly. This phenomena is consistent across the five scenarios evaluated (recall
Section 6). When the columns labeled ‘Original Features’ and ‘Best Features’ are compared row by
row, periods of standing that were originally classified as postural transitions are all but eliminated
(e.g., compare Figure 10i and Figure 10xi), whilst the misclassification rate of sedentary activity as
postural transitions decreased from ∼16% to ∼9% (compare Figure 10i and Figure 10xi); ∼32% to ∼5%
(compare Figure 10ii and Figure 10xii); ∼9% to ∼5% (compare Figure 10iii and Figure 10xiii); ∼33% to
∼10% (compare Figure 10iv and Figure 10xiv); ∼29% to ∼7% (compare Figure 10v and Figure 10xv).

7.4. Comparing Model Performance at Different Sampling Rates

Due to the limited battery life of smartphones, it is becoming increasingly important that
algorithms for human activity recognition are able to operate at a reduced sampling rate without
suffering a degradation in classification accuracy. Consequently, the robustness of the model’s
developed with the ‘Best Features’ were evaluated by training the model with the data collected
from the younger and/or older cohort at 100 Hz, and testing the model’s performance with data
from the younger and/or older cohort at 40 Hz after it had been virtually re-oriented (and vice versa).
From Table 4 it is evident that both the Cohen’s kappa, and total class sensitivity of the HMHA
proposed in Figure 4d remain consistent (i.e., the 95% confidence intervals overlap for almost all of the
training and testing combinations evaluated) whether or not the HMHA is trained with the data at
100 Hz (i.e., the higher sampling rate) and tested with the re-oriented data at 40 Hz (i.e., the reduced
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sampling rate), or the reciprocal scenario in which the HMHA is trained with the data at 40 Hz and
tested with the re-oriented data at 100 Hz.

Table 4. Ninety-five percent confidence intervals for the Cohen’s Kappa and total class sensitivity
(%) when a hierarchical model of human activity (HMHA) was developed with the Best Features at
different sampling rates.

Cohen’s Kappa (κCI95 ) Total Class Sensitivity ($CI95 %)

Train 100 Hz 100 Hz 40 Hz † 100 Hz 100 Hz 40 Hz †

Test ? 100 Hz 40 Hz † 100 Hz 100 Hz 40 Hz † 100 Hz

Y Y ? [0.827, 0.844] [0.819, 0.837] [0.823, 0.841] [87.2, 88.5] [86.6, 87.9] [87.0, 88.3]
O O ? [0.721, 0.733] [0.720, 0.732] [0.728, 0.740] [79.9, 80.7] [79.8, 80.6] [80.5, 81.3]
Y O ? [0.782, 0.793] [0.786, 0.796] [0.777, 0.788] [84.9, 85.6] [85.2, 85.9] [84.6, 85.4]
O Y ? [0.765, 0.784] [0.752, 0.772] [0.769, 0.789] [82.3, 83.7] [81.3, 82.8] [82.6, 84.1]

Y&O (Y&O) ? [0.732, 0.742] [0.726, 0.736] [0.776, 0.786] [80.3, 81.1] [79.9, 80.6] [84.0, 84.7]
? Test data were obtained by re-orienting the data from the younger (Y) and/or older (O) cohort
(see Section 3.1); † IMU data were re-sampled at 40 Hz, barometer data were re-sampled at 20 Hz.

The sole exception to this trend is the scenario in which the data re-sampled at 40 Hz from both
the younger and older cohorts are used to train the HMHA, whilst the data sampled at 100 Hz from the
younger and older cohorts after it has been re-oriented are used to test the HMHA. In this particular
scenario, the ninety-five percent confidence interval of the Cohen’s kappa, κ, increased by ∼0.04 from
κCI95 = [0.732, 0.742] to κCI95 = [0.776, 0.786]. Similarly, the ninety-five percent confidence interval
of the total class sensitivity increased by ∼3% from $CI95 = [80.3%, 81.1%] to $CI95 = [84.0%, 84.7%]

(see the bottom row of Table 4).
After analyzing Figure 11 it is evident that the model’s sensitivity to each activity remains

relatively consistent as long as only one of the cohort’s data is used to train the model, and the other
cohort’s data is used to test the model, irrespective of the sampling rate (i.e., when Figure 11iii,viii,xiii
are compared; Figure 11iv,ix,xiv are compared, and so on). When both cohort’s data are used (i.e., when
Figure 11v,x,xv are compared), the sensitivity of the model to the sedentary, standing, and postural
transition classes is remarkably consistent whilst the sensitivity of the model to the three different
walking, classes varies (whether or not the HMHA is trained with the data re-sampled at 40 Hz or
the data sampled at 100 Hz). From Table 5 it is easy to see that this robustness in performance can
be attributed to the relatively constant threshold values of gω̄2

xy,k, and ϑ̄tilt,k which change by <0.1

(rad2·s−2 and radians, respectively), suggesting that these features are robust to both the variation in
sampling rate and the cohort from which the threshold is extracted (i.e., the threshold changes little
whether trained on the younger and/or older cohort’s data).

Interestingly, the recognition rate of the postural transition class also remains fairly consistent (i.e.,
between ∼89–91%), irrespective of the data which are used to train and test the HMHA. This suggests
that ā2

lpfdif,k is also robust to variations in the sampling rate of the IMU and the cohort from which the
threshold are determined (see Table 5).

In the case of the walking, walking upstairs, and walking downstairs classes, the differences
were negligible when the HMHA was trained with the data sampled at 100 Hz and tested with the
same data after it had been re-oriented; or trained with the data at 100 Hz and tested with the data
re-sampled at 40 Hz after it had been re-oriented. However, when the model was trained with the
data re-sampled at 40 Hz and tested with the data at 100 Hz there were slight changes in the class
sensitivity when compared to either of the two previously mentioned scenarios.
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(i) (ii) (iii) (iv) (v) 

(xi) (xii) (xiii) (xiv) (xv) 

(vi) (vii) (viii) (ix) (x) 

Figure 11. Class Sensitivity for a Hierarchical Model of Human Activity Recognition using the Best
Features: (i–v) trained with the IMU data at 100 Hz and tested with the IMU data at 100 Hz after it has
been re-oriented; (vi–x) trained with the IMU data at 100 Hz and tested with the IMU data at 40 Hz
after it has been re-oriented; (xi–xv) trained with the IMU data at 40 Hz and tested with the IMU data
at 100 Hz after it has been re-oriented.

In particular, the model’s sensitivity to the walking class increased from ∼71–72% to ∼82%
(trained with data at 40 Hz, tested with data at 100 Hz) due to marked reductions in periods of
walking upstairs and walking downstairs being incorrectly identified as walking on a level surface
(i.e., from 7.95% to 4.5% and 15.32% to 7.82%, respectively). Similarly, the sensitivity of the walking
upstairs class decreased from ∼76% to ∼68% (see Appendix C, the row labeled ‘Train Y&O Test
(Y&O)∗’ in Table A2) due to the increased misclassification of periods of walking upstairs as periods
of walking on a level surface (i.e., from 4–5% to ∼10%; see Figure 11 and compare panels (x) and
(xv)). This suggests that the smaller threshold of ∆Pk = 0.092 hPa·s−1 (see Table 5) is better (when
compared to ∆Pk = 0.119 hPa·s−1) at distinguishing between periods of walking on a level surface
versus walking upstairs.

This trend was mirrored in the reduction of the hierarchical model’s sensitivity to the walking
downstairs class; i.e., decreasing from ∼91–92% to ∼87% (see Appendix C, the row labeled ‘Train Y&O
Test (Y&O)∗’ in Table A2) due to the increased misclassification of periods of walking downstairs as
periods of walking on a level surface (i.e., from 3–4% to ∼8%; see Figure 11 and compare panels (x)
and (xv)). Again, this suggests that the threshold of ∆Pk = −0.062 hPa·s−1 (see Table 5) is better than
the threshold of ∆Pk = −0.094 hPa·s−1 (a change of ∼51% in the threshold value) at distinguishing
between periods of walking on a level surface versus walking downstairs.
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Table 5. Comparison of thresholds when HMHA recognition were developed with the Best Features at
different sampling rates.

Training Data Feature
Threshold

Rule *
100 Hz 40 Hz

Y gω̄2
xy,k

(rad2·s−2)

0.232 0.195
Inactive† if gω̄2

xy,k ≤ threshold, else Active‡O 0.249 0.237
Y& O 0.230 0.202

Y
ϑ̄tilt,k

(radians)

0.668 0.689
Standing if ϑ̄tilt,k ≤ threshold, else Sedentary (i.e.,
sitting or lying)

O 0.616 0.617
Y& O 0.640 0.617

Y ā2
lpfdif,k

(m2·s−4)

75.6 93.4
Any Walking§ if ā2

lpfdif,k ≤ threshold, else Postural
Transition

O 36.4 32.8
Y& O 46.7 46.4

Y ∆Pk

(hPa·s−1)

−0.107 −0.101 Walking Downstairs if ∆Pk ≤ threshold,
else WalkingO −0.067 −0.068

Y& O −0.062 −0.094

Y ∆Pk

(hPa·s−1)

0.128 0.142
Walking if ∆Pk ≤ threshold, else Walking UpstairsO 0.092 0.105

Y& O 0.092 0.119

Inactive† — any of the standing or sedentary (sitting/lying) classes; active‡ — any of the walking,
walking upstairs, walking downstairs, or postural transition classes; any walking§ — either of the
walking, walking upstairs, or walking downstairs classes. * Each rule corresponds to a node of
the HMHA illustrated in Figure 4d.

7.5. Comparison to the State-of-the-Art

In order to draw a fair comparison with other published work that is representative of
state-of-the-art methods, the scope of these comparisons is limited to reports which only utilized
the smartphone’s internal sensing components to classify human activity. With this in mind,
the state-of-the-art deep learning methods (recall Section 1.3.3) proposed by Ordoñez et al. [45] and
Li et al. [78] are excluded because they utilize measurements from multiple IMUs that are placed
at different anatomical locations on the body, whilst the works of Ravi et al. [43] and Ronao and
Cho et al. [42] are included. Similarly, the ‘feature engineering and classification’-based approaches
(recall Section 1.3.2) developed by Bao and Intille et al. [79] are omitted, whilst the works of
Anguita et al. [80] and Shoaib et al. [29] are included.

Anguita et al. developed a hardware-friendly multi-class support vector machine which processed
the accelerometer and gyroscope data (at 50 Hz) from a waist-worn smartphone (i.e., attached to a
belt worn about their waist) to identify activities of daily living in a cohort of thirty participants aged
between nineteen and 48 years. From these six channels, they extracted 561 spatial or spectral features
(every 1.25 seconds using 50% overlapping windows) to identify six activities with a sensitivity
between 72% and 96%: walking (95.6%), walking upstairs (72.1%), walking downstairs (79.7%),
standing (92.2%), sitting (96.4%), and lying (100%) [80].

Shoaib et al. evaluated the utility of a smartphone’s internal sensors for the purposes of human
activity recognition. They studied ten male participants, aged between 25 and 30 years, whilst a
smartphone was firmly fixed to their body with a strap at one of five positions on their body (right
and left front jeans pocket, on a belt near the right hip, right wrist, right upper arm). A smartphone
application recorded the accelerometer, gyroscope, and magnetometer data at 50 Hz whilst each
participant performed six activities of daily living (walking, jogging, sitting, standing, biking, walking
upstairs, and walking downstairs) [29]. When features were extracted every two seconds (with 50%
overlapping windows), the gyroscope-based features proved most effective in identifying periods of
walking upstairs and walking downstairs (particularly when the sensor was placed in the jeans pocket
or on the belt), whilst features from the magnetometer should only be used if they are independent of
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heading. Moreover, they advocate against ‘blindly combining different sensors’, suggesting a more
manual approach to system and feature design.

Deep learning approaches attempt to tease out more subtle differences, imperceptible by human
observation, in wearable sensor data which can be used for the purposes of HAR. Ronao and Cho,
recruited 30 participants (age range not disclosed) to evaluate the performance of a model for HAR,
based on deep convolutional neural networks (convnet). The smartphone was placed in a pocket of
the participants’ clothing (location on body not disclosed), whilst data from the accelerometer and
gyroscope were recorded at 50 Hz [42]. When the data were segmented in 2.5 second intervals with
50% overlap, the convnet could identify six activities: walking (98.99%), walking upstairs (100.00%),
walking downstairs (100.00%), standing (93.23%), sitting (88.88%), lying (87.71%); with an overall
sensitivity of 94.79%. Before the accelerometer and gyroscope data could be processed, each channel
(of six) needed to be normalized by subtracting the mean of each signal, and dividing each channel
by the channel’s standard deviation. At this point, 2.5 second data segments are input to a five-layer
convnet comprised of three convolutional/pooling layers (with 96, 192, 192 neurons in each layer,
respectively), a fully connected layer comprised of 1000 neurons, and a softmax classification layer
with six neurons.

Ravi et al. combined features extracted from the spectrogram (i.e., the short-time Fourier
transform coefficients) of accelerometer and gyroscope signals (both of which sampled at either
50 Hz or 200 Hz, respectively) with a three layered network comprised of a temporal convolution
layer (15 filters, 80 nodes), fully-connected layer, and soft-max classification layer for the purposes of
HAR. Data was obtained from ten subjects (using five different smartphones) who were allowed to
place the phone anywhere on their body (or in their hand/bag) whilst they performed six activities of
daily living. The total class sensitivity of their model for HAR was 95.7% with class sensitivities
of ∼95% (running), ∼95% (walking), ∼96% (cycling), ∼96% (casual movement), ∼96% (public
transport), ∼98% (idle), and ∼74% (standing). Whilst the features derived from the six channel
spectrogram enabled highly-variable activities to be distinguished from repetitive activities, the absence
of time-domain-based features limited the model’s ability to infer the user’s postural orientation, which
was further limited by the fact that the phone could be placed at various parts of the body, in the hand,
or in a bag [43].

The model for HAR constructed by Gu et al. [81] implemented denoising autoencoders (two layers,
1000 neurons per layer) combined with a softmax classification layer to automate the HAR process.
Features were extracted from two-second intervals of data from the smartphone’s accelerometer,
gyroscope, magnetometer, and barometer (all of which were sampled at 64 Hz, except for the barometer
which was sampled at 32 Hz). Twelve participants (six male, six female) aged between twenty-five and
thirty-five years were recruited to train the model to recognize eight activities of daily living. When
the data from all four sensors were used by the denoising autoencoders (corrupting noise level = 0.5,
learning rate = 1 × 10−3, weight of sparsity penalty term = 1), the F-measure is 94.04% and the class
sensitivity for the eight activities are: stationary (∼98%), walking (∼92%), stationary but using the
phone (∼96%), running (∼97%), walking upstairs (∼94%), walking downstairs (∼93%), elevator up
(∼84%), elevator down (∼87%).

A general pitfall of all of the above deep learning approaches is that this approach does not
inherently allow the training of the neural network to be constrained by the domain knowledge
that the smartphone could be placed anywhere on the body and with any orientation. For deep
learning approaches, some safeguards against obtaining a classifier model which is not robust to such
variability in smartphone placement and orientation involves collecting large datasets which capture
this variability, or to perform preprocessing of the smartphone signals to generate features which are
tolerant to such variability; the latter somewhat goes against the spirit of the deep learning approach.
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8. Limitations

There are limitations with the study presented herein which need to be acknowledged. The model
for HAR developed is dependent on the wearable sensor (i.e., device containing an IMU and barometer,
such as a smartphone) remaining in the pants pocket throughout the day, which is not a realistic
expectation since the individual’s lower body garments may not always have a suitable pocket, or a
pocket large enough to place the wearable sensor. If the wearable sensor is strapped to the thigh,
the quaternion-derived feature, ϑ̄tilt,k, should always be able to separate standing and sedentary
periods. If the device is sporadically removed from the pants pocket whilst the person is moving, it is
conceivable that the walking detector (Equation (13)) could ‘learn’ an incorrect upright orientation,
qupright,k, thereby reducing the accuracy of the model for HAR until it relearns the correct upright
orientation from the next 2.5 s of true walking data; robustness to this scenario will be evaluated in
future work.

9. Conclusions and Future Work

This paper developed a model for HAR capable of recognizing six human activities (standing,
sedentary, walk, walk upstairs, walk downstairs, as well as postural transitions between the standing
and sedentary classes), regardless of the smartphone’s orientation in the pants pocket by using a
quaternion-based complementary filter [63] to estimate the device’s orientation, thereby enabling
sensor measurements to be expressed in a consistent frame of reference (the world/global frame). Four
New Features were developed, and two were shown to be useful in the classification of human activities,
namely gω̄2

xy,k, which utilized an estimate of the IMU’s orientation to determine the magnitude of the
pitch/roll angular velocity, and ϑ̄tilt,k, which measured the angle between the recent average orientation
and the estimated upright orientation; upright orientation was estimated as the average orientation of
the IMU when walking was detected. The success of these quaternion-derived features suggest that
existing methods for recognizing human activities would benefit from converting all measurements
to the global frame of reference where the feature values would be more consistent, especially if the
orientation of the IMU with respect to the body is not fixed.
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Appendix A. Average of Multiple Quaternions

Gramkow’s method was used to calculate the average of N quaternions [82]. Note: the quaternion
is normalized after each component of q̄ has been calculated (see Equation (A1)). If the scalar
component of a quaternion, q =

[
q0 q1 q2 q3

]
, in the window was negative (i.e., if q0 < 0)

each component of the quaternion was negated (thereby preserving the rotational information since q
and −q represent the same rotation [83]) so that each quaternion lies in the same half plane.

q̄ = fq,avg(q1, · · · , qN) =
[

q̄0
||q||

q̄1
||q||

q̄2
||q||

q̄3
||q||

]
q̄j =

1
N ∑N

k=1 qj,k (where j ∈ {0, 1, 2, 3}); ||q|| =
√

q̄2
0 + q̄2

1 + q̄2
2 + q̄2

3

(A1)
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Appendix B. Shortest Rotation Between Two Quaternions

The rotation that brings two quaternions, qA and qB, into coincidence is qAB = qA ⊗ (qB)
∗, i.e.,

qB ⊗ qAB = qA. The shortest angle between these quaternions, 0 ≤ ϑ ≤ π is given by qAB,0, the scalar
component of qAB, Equation (A2).

ϑ = fangle(qA, qB) =

{
2 cos−1( qAB,0), qAB,0 ≥ 0

2 cos−1(−qAB,0), qAB,0 < 0
(A2)

Appendix C. Ninety-five Percent Confidence Intervals for the Class Sensitivity and Class
Specificity of the Hierarchical Models of Human Activity

Table A1. Ninety-five percent confidence intervals for the sensitivity and specificity of each activity
class when HMHA were developed with different feature subsets ( fIMU = 100 Hz; fbar = 16 Hz).

Activity

Sensitivity (%) Specificity (%)

Original New Best Original New Best
Features Features Features Features Features Features

Tr
ai

n
Y

Te
st

Y
*

Sedentary [92.8, 94.5] [93.6, 95.2] [93.6, 95.2] [99.3, 99.6] [98.4, 98.9] [98.4, 98.9]
Standing [87.1, 89.5] [88.8, 91.1] [88.8, 91.1] [96.4, 97.2] [96.1, 96.9] [96.1, 96.9]
Walking [79.9, 82.7] [25.8, 28.9] [78.2, 81.0] [94.5, 95.5] [97.4, 98.1] [96.0, 96.9]
Walking Upstairs [80.5, 87.9] [53.2, 63.1] [80.5, 87.9] [97.7, 98.3] [93.2, 94.2] [98.0, 98.5]
Walking Downstairs [90.7, 95.9] [87.2, 93.3] [90.7, 95.9] [97.1, 97.7] [86.6, 87.9] [97.2, 97.9]
Postural Transitions [64.0, 76.1] [73.4, 84.2] [82.1, 91.2] [98.0, 98.6] [95.3, 96.1] [97.8, 98.3]

Tr
ai

n
O

Te
st

O
*

Sedentary [92.9, 93.9] [87.5, 88.8] [87.5, 88.8] [94.2, 94.8] [98.6, 98.9] [98.6, 98.9]
Standing [66.9, 69.2] [80.9, 82.7] [80.9, 82.7] [97.2, 97.5] [97.2, 97.5] [97.2, 97.5]
Walking [73.6, 75.0] [24.5, 25.8] [73.4, 74.8] [95.1, 95.7] [96.6, 97.1] [95.9, 96.5]
Walking Upstairs [54.4, 62.7] [66.0, 73.8] [54.2, 62.5] [96.4, 96.7] [81.4, 82.2] [96.4, 96.8]
Walking Downstairs [83.9, 89.8] [47.9, 56.7] [83.9, 89.8] [94.0, 94.5] [90.3, 90.9] [94.0, 94.5]
Postural Transitions [47.2, 53.2] [83.3, 87.5] [89.9, 93.3] [96.3, 96.7] [94.8, 95.2] [94.9, 95.3]

Tr
ai

n
Y

Te
st

O
*

Sedentary [73.9, 75.6] [86.6, 87.9] [86.6, 87.9] [97.5, 97.9] [98.7, 99.0] [98.7, 99.0]
Standing [59.5, 61.9] [79.8, 81.8] [79.8, 81.8] [93.6, 94.1] [97.1, 97.5] [97.1, 97.5]
Walking [87.7, 88.7] [23.4, 24.8] [85.7, 86.8] [88.6, 89.5] [96.5, 97.0] [93.3, 94.0]
Walking Upstairs [62.7, 70.7] [73.2, 80.3] [62.9, 70.9] [97.9, 98.2] [79.0, 79.8] [98.1, 98.4]
Walking Downstairs [83.9, 89.8] [44.5, 53.3] [81.5, 87.8] [96.7, 97.0] [91.3, 91.9] [96.9, 97.2]
Postural Transitions [74.4, 79.5] [78.8, 83.6] [86.5, 90.4] [96.9, 97.3] [96.0, 96.4] [96.6, 97.0]

Tr
ai

n
O

Te
st

Y
*

Sedentary [94.5, 96.0] [94.9, 96.3] [94.9, 96.3] [98.7, 99.2] [98.1, 98.7] [98.1, 98.7]
Standing [92.8, 94.7] [88.5, 90.8] [88.5, 90.8] [93.7, 94.7] [96.4, 97.2] [96.4, 97.2]
Walking [61.1, 64.5] [21.5, 24.4] [62.5, 65.8] [97.6, 98.3] [97.6, 98.3] [97.3, 98.0]
Walking Upstairs [75.7, 83.8] [46.6, 56.6] [75.7, 83.8] [96.9, 97.6] [94.7, 95.6] [96.7, 97.4]
Walking Downstairs [88.5, 94.3] [84.0, 90.9] [88.5, 94.3] [95.2, 96.0] [86.2, 87.4] [95.0, 95.8]
Postural Transitions [45.0, 58.3] [73.9, 84.7] [82.6, 91.6] [96.2, 97.0] [92.8, 93.8] [95.4, 96.2]

Tr
ai

n
Y

&
O

Te
st

(Y
&

O
)*

Sedentary [92.6, 93.4] [88.9, 90.0] [88.9, 90.0] [95.6, 96.1] [98.7, 98.9] [98.7, 98.9]
Standing [72.2, 74.0] [82.6, 84.1] [82.6, 84.1] [97.2, 97.5] [97.2, 97.6] [97.2, 97.6]
Walking [71.9, 73.2] [35.0, 36.4] [71.6, 72.9] [94.8, 95.4] [95.2, 95.7] [95.8, 96.3]
Walking Upstairs [69.3, 75.1] [48.3, 54.8] [69.3, 75.1] [96.3, 96.7] [87.4, 88.0] [96.4, 96.7]
Walking Downstairs [89.6, 93.3] [65.1, 71.4] [89.7, 93.4] [93.6, 94.0] [89.2, 89.8] [93.7, 94.1]
Postural Transitions [54.4, 59.9] [81.7, 85.8] [88.6, 91.9] [96.8, 97.1] [95.1, 95.5] [95.8, 96.1]

* The test data was obtained by virtually re-orienting the data from the younger (Y) and older (O)
cohort as described in Section 3.1.
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Table A2. Ninety-five percent confidence intervals for the sensitivity and specificity of each activity
when hierarchical models for human activity recognition were developed with the best features.

Activity Sensitivity (%) Specificity (%)

Train 100 Hz 100 Hz 40 Hz † 100 Hz 100 Hz 40 Hz †

Test 100 Hz 40 Hz † 100 Hz 100 Hz 40 Hz † 100 Hz

Tr
ai

n
Y

Te
st

Y
?

Sedentary [93.6, 95.2] [93.0, 94.7] [93.2, 94.9] [98.4, 98.9] [98.4, 98.9] [98.5, 99.0]
Standing [88.8, 91.1] [88.6, 90.9] [87.8, 90.2] [96.1, 96.9] [95.7, 96.5] [96.3, 97.1]
Walking [78.2, 81.0] [76.2, 79.1] [78.8, 81.6] [96.0, 96.9] [96.3, 97.2] [95.3, 96.2]
Walking Upstairs [80.5, 87.9] [84.6, 91.2] [79.4, 86.9] [98.0, 98.5] [97.7, 98.3] [98.2, 98.7]
Walking Downstairs [90.7, 95.9] [94.1, 98.1] [90.7, 95.9] [97.2, 97.9] [96.9, 97.5] [96.8, 97.5]
Postural Transition [82.1, 91.2] [83.2, 91.9] [81.1, 90.4] [97.8, 98.3] [97.9, 98.5] [98.1, 98.6]

Tr
ai

n
O

Te
st

O
?

Sedentary [87.5, 88.8] [87.7, 88.9] [87.2, 88.5] [98.6, 98.9] [98.5, 98.8] [98.6, 98.9]
Standing [80.9, 82.7] [81.0, 82.8] [79.9, 81.8] [97.2, 97.5] [97.1, 97.5] [97.3, 97.7]
Walking [73.4, 74.8] [73.1, 74.5] [75.6, 77.0] [95.9, 96.5] [95.9, 96.4] [95.7, 96.2]
Walking Upstairs [54.2, 62.5] [58.8, 67.0] [49.3, 57.7] [96.4, 96.8] [96.4, 96.8] [97.3, 97.6]
Walking Downstairs [83.9, 89.8] [85.8, 91.4] [82.8, 88.9] [94.0, 94.5] [93.7, 94.2] [94.2, 94.7]
Postural Transition [89.9, 93.3] [87.6, 91.3] [90.3, 93.6] [94.9, 95.3] [95.3, 95.7] [94.4, 94.9]

Tr
ai

n
Y

Te
st

O
?

Sedentary [86.6, 87.9] [86.4, 87.7] [85.5, 86.9] [98.7, 99.0] [98.7, 99.0] [98.9, 99.1]
Standing [79.8, 81.8] [80.1, 82.0] [77.1, 79.1] [97.1, 97.5] [97.1, 97.4] [97.5, 97.8]
Walking [85.7, 86.8] [86.2, 87.2] [86.9, 88.0] [93.3, 94.0] [93.3, 93.9] [91.9, 92.6]
Walking Upstairs [62.9, 70.9] [69.0, 76.5] [62.6, 70.5] [98.1, 98.4] [98.2, 98.5] [98.5, 98.7]
Walking Downstairs [81.5, 87.8] [83.6, 89.6] [84.1, 90.0] [96.9, 97.2] [96.9, 97.3] [96.5, 96.9]
Postural Transition [86.5, 90.4] [86.0, 90.0] [86.5, 90.4] [96.6, 97.0] [96.8, 97.2] [96.9, 97.3]

Tr
ai

n
O

Te
st

Y
?

Sedentary [94.9, 96.3] [94.5, 96.0] [94.8, 96.3] [98.1, 98.7] [98.0, 98.6] [98.1, 98.7]
Standing [88.5, 90.8] [88.1, 90.4] [88.4, 90.7] [96.4, 97.2] [96.0, 96.9] [96.4, 97.2]
Walking [62.5, 65.8] [59.4, 62.8] [64.3, 67.6] [97.3, 98.0] [97.5, 98.2] [97.2, 97.9]
Walking Upstairs [75.7, 83.8] [80.3, 87.6] [72.9, 81.3] [96.7, 97.4] [96.3, 97.0] [97.6, 98.2]
Walking Downstairs [88.5, 94.3] [90.2, 95.5] [86.5, 92.8] [95.0, 95.8] [94.5, 95.3] [95.2, 96.0]
Postural Transition [82.6, 91.6] [83.2, 91.9] [83.2, 91.9] [95.4, 96.2] [95.6, 96.3] [94.8, 95.6]

Tr
ai

n
Y

&
O

Te
st

(Y
&

O
)?

Sedentary [88.9, 90.0] [88.7, 89.8] [88.7, 89.8] [98.7, 98.9] [98.6, 98.9] [98.6, 98.9]
Standing [82.6, 84.1] [82.5, 84.0] [80.5, 82.1] [97.2, 97.6] [97.1, 97.4] [97.6, 97.9]
Walking [71.6, 72.9] [70.5, 71.8] [81.9, 83.0] [95.8, 96.3] [95.8, 96.3] [94.5, 95.1]
Walking Upstairs [69.3, 75.1] [73.4, 78.9] [65.3, 71.3] [96.4, 96.7] [96.4, 96.7] [97.9, 98.1]
Walking Downstairs [89.7, 93.4] [91.1, 94.6] [85.4, 89.8] [93.7, 94.1] [93.2, 93.7] [96.4, 96.7]
Postural Transition [88.6, 91.9] [88.0, 91.3] [89.6, 92.7] [95.8, 96.1] [96.0, 96.4] [95.6, 96.0]
? Test data were obtained by re-orienting the data from the younger (Y) and/or older (O) cohort
(see Section 3.1); † IMU data were re-sampled at 40 Hz, barometer data were re-sampled at 20 Hz.
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