
sensors

Article

Microwave Staring Correlated Imaging Based on
Unsteady Aerostat Platform

Zheng Jiang, Yuanyue Guo *, Jie Deng, Weidong Chen and Dongjin Wang

Key Laboratory of Electromagnetic Space Information, Chinese Academy of Sciences, University of Science and
Technology of China, Hefei 230026, China; jiangz10@mail.ustc.edu.cn (Z.J.); dengjie@mail.ustc.edu.cn (J.D.);
wdchen@ustc.edu.cn (W.C.); wangdj@ustc.edu.cn (D.W.)
* Correspondence: yuanyueg@ustc.edu.cn; Tel.: +86-138-6613-5598

Received: 3 May 2019; Accepted: 21 June 2019; Published: 24 June 2019
����������
�������

Abstract: Microwave staring correlated imaging (MSCI), with the technical capability of high-
resolution imaging on relatively stationary targets, is a promising approach for remote sensing.
For the purpose of continuous observation of a fixed key area, a tethered floating aerostat is often
used as the carrying platform for MSCI radar system; however, its non-cooperative random motion of
the platform caused by winds and its unbalance will result in blurred imaging, and even in imaging
failure. This paper presents a method that takes into account the instabilities of the platform, combined
with an adaptive variable suspension (AVS) and a position and orientation system (POS), which can
automatically control the antenna beam orientation to the target area and measure dynamically the
position and attitude of the stochastic radiation radar array, respectively. By analyzing the motion
feature of aerostat platform, the motion model of the radar array is established, then its real-time
position vector and attitude angles of each antenna can be represented; meanwhile the selection
matrix of beam coverage is introduced to indicate the dynamic illumination of the radar antenna
beam in the overall imaging area. Due to the low-speed discrete POS data, a curve-fitting algorithm
can be used to estimate its accurate position vector and attitude of each antenna at each high-speed
sampling time during the imaging period. Finally, the MSCI model based on the unsteady aerostat
platform is set up. In the simulations, the proposed scheme is validated such that under the influence
of different unstable platform movements, a better imaging performance can be achieved compared
with the conventional MSCI method.

Keywords: microwave staring correlated imaging; unsteady aerostat platform; motion parameter
fitting; position error

1. Introduction

Microwave remote sensing has the ability to work in all day and all weather conditions [1],
thus it has been used in many civilian and military fields, such as disaster monitoring and military
reconnaissance [2]. The conventional high-resolution microwave remote sensing commonly applies
Synthetic Aperture Radar (SAR) which is based on Range-Doppler (RD) principle [3]. However relative
motion between radar and target is necessary for SAR and the revisit period is long. In forward-looking
or staring imaging geometry, SAR cannot work effectively and encounters great challenges to obtain
high-resolution imaging.

Microwave staring correlated imaging is a novel high-resolution staring imaging technique without
the relative motion limit of target [4–6]. The essence of MSCI is to construct temporal-spatial stochastic
radiation field (TSSRF) in the imaging region, which is typically realized by a multi-transmitters
configuration emitting independent stochastic waveforms [7,8]. By correlation process (CP) between
the target scattering echo and the TSSRF, targets within the antenna beam can be resolved. Due to its
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superior imaging performance without target relative motion, MSCI has attracted increasing attention
and made progress in many aspects such as random radiation source optimization [9–11], imaging
algorithm [12–14] and outfield imaging experiment [15].

At present, research on MSCI depends on the premise of an ideal stable imaging platform, i.e.,
the system platform of the MSCI radar is assumed to be stationary. However, it is not guaranteed in
practical applications. To observe a fixed area, the MSCI radar needs to be raised to a certain height.
A tethered aerostat is suitable to serve as the platform of MSCI radar with advantages of long-stay
time in the air, wide coverage area and low cost [16,17], but it cannot keep absolutely stationary in the
air because of the non-cooperative motion caused by wind and unbalance. The platform instability
will result in imaging system errors and the imaging performance will be seriously degraded when
the random motion of platform becomes intense.

The imaging system errors in MSCI have been investigated by many studies, since it generally
exists in practice. For example, to compensate the gain–phase error in MSCI, Zhou et al. propose a
sparse auto-calibration method, which is a cyclic iteration processing combined target reconstruction
with gain–phase error estimation [18]. In reference [19], the MSCI with phase error is formulated as a
Bayesian hierarchical prior modeling, and self-calibration variational message passing (SC-VMP)
algorithm is proposed, which estimates the scattering coefficient and phase error iteratively by
VMP and Newton’s method to improve the performance of MSCI with phase error. To estimate
the gain–phase error and the synchronization error under high SNR, Tian et al. add a reference receiver
to the MSCI system to receive the direct wave signal and the gain–phase error and the synchronization
error are estimated by the direct wave signals [20]. In reference [21], a method of strip-mode MSCI
with self-calibration of gain–phase errors is proposed to solve the problem of MSCI with gain–phase
errors in a large scene. Reference [22] considers the off-grid problem in MSCI and an algorithm based
on variational sparse Bayesian learning (VSBL) is developed to solve the MSCI with off-grid problem.
Reference [23] focuses on sparsity-driven MSCI with array position error (APE) and propose two
sparse auto-calibration imaging algorithms in sparse Bayesian learning framework to compensate the
APE. Li et al. analyzes the target-motion-induced error and provides an applicable approach for MSCI
in the presence of target-motion-induced error [24]. Hitherto, research on MSCI system error generally
concentrated on gain–phase error, off-grid error, APE, and target-motion-induced error. There is no
study on the imaging system error caused by instability of the platform which is an important issue in
practice applications.

Aiming at the above problems, this paper proposes a MSCI method based on unsteady aerostat
platform. In the proposed method, the antenna array with multiple transmitters and one receiver is
mounted on the aerostat platform combined with an adaptive variable suspension (AVS), and the
position and orientation system (POS) located at the center of the array, controlling its antenna beam
orientation to the target area and measuring dynamically its position and attitude during imaging
process. The effects of antenna motion and dynamic beam coverage caused by instability of the
platform are considered in imaging model to reduce the imaging model error. For antenna motion,
the real-time position vectors of antenna are used in imaging model in place of static position vector.
The calculation of real-time position vector of antenna depends on the translational speed and the
rotational angular velocity of the array in each signal pulse, then based on the low-speed discrete
POS data, a least square curve-fitting method is employed to estimate the accurate translational speed
and rotational angular velocity of the array at every sampling time. For dynamic beam coverage, the
selection matrix of beam coverage calculated by the position and the attitude of the array is introduced
to indicate the illuminated area at each pulse.

The rest of this paper is organized as follows. Section 2 presents the MSCI method based on
unsteady aerostat platform. In Section 3, estimation of translational speed and rotational angular
velocity of antenna array is given. In Section 4, serval simulations are demonstrated to show the
effectiveness of the proposed method. Section 5 concludes this paper.
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2. MSCI Method Based on Unsteady Aerostat Platform

2.1. Imaging Scene

MSCI can be realized by using a multi-transmitter configuration to transmit time-independent
and group-orthogonal waveforms. To realize observation of targets on ground, MSCI radar can be
raised to the air by a tethered aerostat. As shown in Figure 1, the antenna array with N transmitters and
one receiver at its array center is carried by AVS which is able to control the antenna beam orientation,
and POS is placed at the center of the array to dynamically measure its position and the attitude during
the imaging process.

Figure 1. Imaging geometry of MSCI based on unsteady aerostat platform.

To illustrate the geometry of the imaging scene, as the earth-surface inertial reference frame, the
coordinate system OtXtYtZt is established, with its origin Ot located in the projection point of the array
center on the ground on OtXtYt plane at the beginning imaging time, its Xt axis pointing to the east
along local latitude line, its Yt axis pointing to the north along local meridian and its Zt axis pointing
upward along the local geographic vertical line.

The independent signal of random frequency hopping transmitted synchronously by all
transmitters and the signal transmitted by the n-th transmitter is denoted as

sn(t) =
L

∑
l=1

rect[
t− (l − 1)Tp

T
] exp{j2π fnl [t− (l − 1)Tp]}, (1)

where fnl is the frequency of the l-th pulse emitted by the n-th transmitter and randomly selected
within the system bandwidth. rect(t) is rectangular function. L is the total number of pulses. TP
denotes pulse repetition interval and T is pulse width.
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During the imaging process, POS will dynamically record the position and the attitude of the
antenna array. The attitude of the array Euler angles includes yaw angle, pitch angle, and roll angle.
To give definition of these angles, the aerostat coordinate system ObXbYbZb is established on the array
with its origin Ob located at its array center, its Xb axis pointing to the right along the horizontal
axis of the array, its Yb axis pointing forward along the longitudinal axis of the array and its Zb axis
perpendicular to the radar array plane. The yaw angle θ is defined as the angle between the projection
of Yb on the OtXtYt plane and the Yt axis, with the Yb axis right side being positive. The pitch angle ϕ

is defined as the angle between the Yb axis and the OtXtYt plane, with Yb axis up side being positive.
The roll angle φ is defined as the angle between the Zb axis and the vertical plane containing the Yb
axis, with Zb axis right side being positive. The graphical diagram for the altitude angles is shown in
Figure 2. Y′b is the projection of Yb on the OtXtYt plane and Z′b is the projection of Zb on the OtZtYb
plane.

Figure 2. Graphical diagram for the altitude angles.

2.2. Real-Time Position Vector of Antenna

To eliminate the influence of antenna motion, the real-time position vector rn (tl) and rs (tl) are
introduced to the MSCI model based on unsteady aerostat platform, where rn (tl) and rs (tl) denote
the real-time position vector of the n-th transmitter and the receiver at tl in the l-th pulse in OtXtYtZt

respectively.
The complicated motion of the antenna array is decomposed into three-dimensional translations

and three rotational components. The three-dimensional translations are along Xt, Yt and Zt

respectively. The rotational components are rotation of yaw angle, pitch angle, and roll angle,
respectively. As the pulse repetition interval TP is short, the translational speed and the rotational
angular velocity will not change drastically during such a short period, so the assumption on the array
motion is made that the antenna array motion is uniform translation and uniform rotation during each
pulse repetition interval TP. Hence the translational speed of the antenna array during the l-th pulse is
denoted as vl =

[
vl,x, vl,y, vl,z

]
, where vl,x, vl,y, vl,z are the speeds of the three-dimensional translations

along Xt axis, Yt axis and Zt axis respectively. The rotational angular velocity of the antenna array
during the l-th pulse is denoted as ωl =

[
ωl,θ , ωl,ϕ, ωl,φ

]
, where ωl,θ , ωl,ϕ, ωl,φ are rotational angular

velocity of the yaw angle, the pitch angle, and the roll angle respectively.
If the motion of antenna array during each pulse is known, the real-time position vector of the

antenna can be determined. Tpos denotes the repetition period of POS recording data. As Figure 3
shows, the pulse repetition interval TP is far shorter than Tpos of POS, so there are many transmitting
pulses between adjacent POS data. Assuming that the recorded time ti,pos of the i-th POS data is in
the l′-th pulse and the recorded time ti+1,pos of the next POS data is in the l′′-th pulse, the real-time
position vector of n-th transmitter rn (tl) at tl in the l-th (l′ ≤ l ≤ l′′) pulse can be expressed as
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rn (tl) = rn (ti,pos
)
+ ∆rv

(
tl − ti,pos

)
+ ∆rn

ω

(
tl − ti,pos

)
, (2)

where ∆rv
(
tl − ti,pos

)
and ∆rn

ω

(
tl − ti,pos

)
are the displacement vectors of the n-th transmitter caused

by translation and rotation during tl − ti,pos, respectively. rn (ti,pos
)

is the position vector of the n-th
transmitter at ti,pos and can be calculated by the following formula

rn (ti,pos
)
= rs (ti,pos

)
+ C

(
θti,pos , ϕti,pos , φti,pos

)
rn

b , (3)

where rn
b is the position vector of the n-th transmitter in ObXbYbZb. rs (ti,pos

)
is the position vector of

the receiver measured by the POS at ti,pos in OtXtYtZt. C
(

θti,pos , ϕti,pos , φti,pos

)
is the Direction Cosine

Matrix (DCM) that transforms the coordinate from ObXbYbZb to OtXtYtZt. The DCM can be expressed
as

C
(

θti,pos , ϕti,pos , φti,pos

)
=


cos

(
θti,pos

)
sin
(

θti,pos

)
0

− sin
(

θti,pos

)
cos

(
θti,pos

)
0

0 0 1

×


1 0 0

0 cos
(

ϕti,pos

)
− sin

(
ϕti,pos

)
0 sin

(
ϕti,pos

)
cos

(
ϕti,pos

)
×


cos

(
φti,pos

)
0 sin

(
φti,pos

)
0 1 0

− sin
(

φti,pos

)
0 cos

(
φti,pos

)


. (4)

Figure 3. Pulse and POS data timing diagram.

As the receiver is at the center of the antenna array, its position vector at tl is only affected by the
translation of the antenna array during the period of tl − ti,pos and can expressed as

rs (tl) = rs (ti,pos
)
+ ∆rv

(
tl − ti,pos

)
. (5)

∆rv
(
tl − ti,pos

)
and ∆rn

ω

(
tl − ti,pos

)
can be calculated by the translational speed and the rotational

angular velocity of the antenna array:

∆rv
(
tl − ti,pos

)
=
[
min

{
tl , l′Tp

}
− ti,pos

]
vl′ +

l

∑
k=l′+1

[
min

{
tl , kTp

}
− (k− 1) TP

]
vk, (6)

∆rn
ω

(
tl − ti,pos

)
= C

(
∆θtl , ∆ϕtl , ∆φtl

)
rn

b − rn
b . (7)
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The function min{x, y} returns the minimum of x and y. ∆θtl , ∆ϕtl and ∆φtl are the changes of
the altitude angles during tl − ti,pos and can be calculated by the following formula

αtl =
[
min

{
tl , l′Tp

}
− ti,pos

]
ωl′ ,α +

l

∑
k=l′+1

[
min

{
tl , kTp

}
− (k− 1) TP

]
ωk,α, (8)

where αtl ∈
(
∆θtl , ∆ϕtl , ∆φtl

)
.

2.3. Influence of Platform Motion on Beam Coverage

The aerostat platform instability not only causes the antenna motion, but also changes the beam
coverage in the overall imaging region S. All echo data contains the information of all beam covered
areas, therefore as the union of all beam coverages, the overall imaging region S is considered in
imaging. The selection matrix of beam coverage is introduced to indicate the dynamically illuminated
area of each pulse within the overall imaging region.

The beam coverage of the l-th pulse is denoted as Sl , and the coordinate
(
xc

l , yc
l
)

is the beam
coverage center on the OtXtYt plane of the l-th pulse:

xc
l = xs

l − (tanφlcosϕl/cosθl − sinϕltanθl)zs
l , (9)

yc
l = ys

l + (tanφlsinϕl/cosθl + cosϕltanθl)zs
l , (10)

where
(

xs
l , ys

l , zs
l
)
, (θl , ϕl , φl) are its center position coordinate and its attitude angles of the antenna

array at the start time of the l-th pulse.
The overall imaging region S is the union of all beam covered areas during imaging, i.e.,

S = S1
⋃

S2
⋃

...
⋃

SL. The size of the beam covered area of a single pulse is denoted as wx × wy,
where wx, wy are the side length. The size of the overall imaging region is

Wx ×Wy = (xc
max − xc

min + wx)×
(
yc

max − yc
min + wy

)
, (11)

where Wx,Wy are the side length of S. xc
max and xc

min are the maximum value and the minimum value of
xc

l , l = 1, 2, · · · , L. yc
max and yc

min are the maximum value and the minimum value of yc
l , l = 1, 2, · · · , L.

The overall imaging region will be discretized into M = P×Q discrete grids, where P is the row
number of azimuth resolution cells, and Q is the column number of range resolution cells. In OtXtYtZt,
the position vectors of the m-th grid is denoted as rm, m = 1, 2, · · · , M.

Selection matrix of beam coverage is as below

D =


D1 (1) D1 (2) · · · D1 (M)

D2 (1) D2 (2) · · · D2 (M)
...

...
...

...
DL (1) DL (2) · · · DL (M)

 . (12)

The element Dl (m) indicates whether the m-th grid is illuminated by the l-th pulse beam:

Dl (m) =

{
1 i f (rm ∈ Sl)

0 i f (rm /∈ Sl)
(13)

2.4. Imaging Equation

Since the whole imaging region S has been divided into M = P×Q discrete grids. The scattering
coefficient of the m-th grid is σ(rm). At the beginning of the l-th pulse, each transmitter simultaneously
transmits independent and stochastic signal. All signals are superimposed in S to generate TSSRF.
The radiation field at rm can be expressed as
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Einc(tl , rm) =
N

∑
n=1

Dl (m)
Fn
(
R̂n
)

sn(tl −
∣∣rm − rn (tl,0)

∣∣/c )
4π
∣∣rm − rn (tl,0)

∣∣ , (14)

where R̂n = [rm − rn (tl,0)]/
∣∣rm − rn (tl,0)

∣∣ . Fn
(
R̂n
)

denotes the radiation pattern of the n-th transmitter
antenna. tl,0 = (l− 1)T denotes the initial time of the l-th pulse.

The radiation field interacts with the targets and the received echo can be expressed as

Esca(tl) =
M

∑
m=1

σ(rm)
Einc(tl −

|rs(tl)−rm |
c , rm)

4π |rs (tl)− rm|
Fs
(
R̂s
)
+ n (tl) , (15)

where R̂s = [rm − rs (tl)]/|rm − rs (tl)| . Fs
(
R̂s
)

denotes the radiation pattern of the receiver antenna.
n (tl) denotes the additive noise.

Considering the round-trip propagation of the electromagnetic field in the free space, the modified
radiation field is defined as

Erad(tl , rm) =
N

∑
n=1

{
Fs
(
R̂s
)

Fn
(
R̂n
)

sn [tl − (|rm − rn (tl,0) |+ |rs (tl)− rm|)/c ]

(4π)2|rm − rn (tl,0) ||rs (tl)− rm|
Dl (m)

}
. (16)

Let tl,k, l = 1, 2, · · · , L be the sampling time in the l-th pulse, thus the imaging equation in the
matrix vector form can be written as

Esca = Erad · σ + n, (17)

where Esca = [Esca(t1,k), Esca(t2,k), · · · , Esca(tL,k)]
T is the echo vector, σ = [σ (r1) , σ (r2) , · · · , σ (rM)]T

is the scattering coefficient vector, n = [n (t1,k) , n (t2,k) , · · · n (tL,k)]
T is the noise vector, Erad is the

modified radiation field matrix with
[
Erad

]
lm

= Erad (tl,k, rm).
The scattering coefficient vector σ can be reconstructed by the correlated processing between Esca

and Erad, which can be described as
σ̂ = ζ

[
Erad, Esca

]
, (18)

where ζ denote the correlated operator.
Common correlated imaging algorithms include Pseudo-Inverse algorithm, Tikhonov regularization,

TV regularization, and sparse reconstruction algorithms, such as Orthogonal Matching Pursuit, sparse
Bayesian learning, etc. This paper adopts Tikhonov regularization algorithm because it is robust to noise
and does not require a priori of the target. Tikhonov regularization can be formulated as the following
optimization problem

σ̂ = arg min
σ

{∥∥∥Esca − Erad · σ
∥∥∥+ λ ‖σ‖2

2

}
, (19)

where λ is the regularization parameter.

3. Estimation of Translational Speed and Rotational Angular Velocity

POS system sets inertial navigation technology and satellite navigation technology in one body,
and adopts the real-time and post-process information fusion respectively to get high precision
positioning and orientation information. For MSCI, the imaging time is very short, so the error
accumulation of the INS is negligible, and the INS is more accurate in a short time. Hence the
measured position and angular data for estimation of translational speed and rotational angular
velocity are very accurate.

The calculation of the real-time position vector of each antenna at high-speed sampling time
requires the translational speed and the rotational angular velocity of the antenna array. The low-speed
discrete POS data will be used to estimate the translational speed and the rotational angular velocity.
Since the data rate of POS is usually less than the pulse repetition frequency as Figure 3 shows, there
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are many pulses between two adjacent POS data. To obtain the translational speed and the rotational
angular velocity of the antenna array during each pulse, third-order polynomial curve fitting to the
position and attitude is employed and the least squares method is used to obtain the coefficients of the
fitting polynomial. The fitting polynomial of the position or the attitude can be expressed as

µ (t) =
3

∑
k=0

aµ,ktk, (20)

where aµ,k is the coefficient of the polynomial, and µ (t) is the fitting curve.
The initial time of the l-th pulse is denoted as tl,0, and the end time of the l-th pulse is denoted

as tl+1,0 = tl,0 + Tp. By substituting tl,0 and tl+1,0 into the fitting curve µ (t), we can get the position
or the attitude parameters at the beginning and the end of each pulse. Based on the assumption that
the antenna array is uniformly translated and rotated during each pulse, the translational speed and
rotational angular velocity in each pulse can be solved by

ωl =



θ (tl+1,0)− θ (tl,0)

T
ϕ (tl+1,0)− ϕ (tl,0)

T
φ (tl+1,0)− φ (tl,0)

T

 , (21)

vl =
rs (tl+1,0)− rs (tl,0)

T
. (22)

4. Simulation

In this section, simulations are demonstrated to verify the proposed method based on unsteady
aerostat platform. The scenario for the simulation is shown in Figure 1. An X-band MSCI radar
system with carrier frequency of 10 GHz is considered. The randomly radiating radar array with
25 transmitters and 1 receiver is raised to 350 m height by a tethered aerostat. The main system
simulation parameters are given in Table 1, and the target model is shown in Figure 4. In simulations,
the measurement errors of position and altitude angles are assumed to be independent and subject
to Gauss distribution with zero mean and 1 mm standard deviation for position and 0.05◦ standard
deviation for altitude angles.

Table 1. Simulation parameter.

Simulation parameter Value

Aperture of antenna array 1.5 m × 1.5 m
Number of transmitting antenna 25

Height of array center 350 m
Slanting angle θ0 = 45◦

The overall observation area 120 m × 120 m
Beam coverage area by single pulse 105 m × 105 m

Number of grid 40 × 40
Grid spacing 3 m
Signal form Random frequency hopping

Pulse repetition interval 5 µm
Pulse width 600 ns
Bandwidth 500 MHz

Carrier frequency 10 GHz
Total imaging time 10 ms
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Figure 4. Target image.

To illustrate the effectiveness of the proposed method, the trajectories in Figure 5 are used as the
three-dimensional translations and the rotational components of the antenna array caused by unsteady
platform.

(a) (b) (c)

(d) (e) (f)

Figure 5. The motion trajectory of each component. (a) the translational component along the Xt; (b)
the translational component along the Yt; (c) the translational component along the Zt; (d) the rotation
of yaw; (e) the rotation of pitch; (f) the rotation of roll.

4.1. Verification of the Proposed Model

In this subsection, simulations are taken to compare the imaging performance of different imaging
models. The proposed imaging model based on unsteady aerostat platform (UPIM) will be compared
with the imaging model for stationary platform (SPIM) and imaging model which only uses the
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discrete POS data (DPDIM). SPIM ignores the motion of antenna array and assumes that the position
vector of antenna and the beam coverage do not change during the imaging process. When calculating
the radiation field, SPIM uses the first recorded POS data as the position and the attitude angles of the
array, i.e., rn (tl)=rn (t1,pos

)
(l = 1, 2, · · · , L). DPDIM does not fit the discrete POS data and uses the

closest POS data for each pulse. The normalized mean square error (NMSE) is used to quantity the
reconstruction performance, with the definition as: NMSE = ‖x̂− x‖2/‖x‖ 2, where x̂ and x denote
the reconstructed and true value of target.

The imaging results are depicted in Figure 6. As shown in Figure 6a, Comparably, the image
reconstructed by UPIM is focused with quite a few spurious scatters, whose better imaging performance
benefits from the fact that the UPIM has the minimal motion estimation error. In Figure 6b, apart
from strong scatters, the image reconstructed by DPDIM has many spurious scatters. In Figure 6c, the
reconstructed image by SPIM is defocused and blurry, and the target is hard to recognize.

(a) (b) (c)

Figure 6. The imaging results of UPIM, DPDIM, and SPIM. (a) the reconstructed image by UPIM, the
NMSE is 0.28; (b) the reconstructed image by DPDIM, the NMSE is 0.94; (c) the reconstructed image by
SPIM, the NMSE is 1.21.

The point spread functions (PSF) of UPIM, DPIM, and SPIM are illustrated in Figure 7 and the
X-axis and Y-axis profiles of the PSF are shown in Figure 8. It can be seen from Figure 7, the number
and the level of the side lobes is minimum for UPIM while the other two methods both have more side
lobes and higher level of side lobes. Figure 8 shows that these methods have almost the same width of
the main lobe in X-axis profile and the Y-axis profile. The above simulation results demonstrate that
UPIM indeed reduces the number and the level of side lobes caused by platform instability, but it does
not improve the imaging resolution of MSCI.

(a) (b) (c)

Figure 7. The point spread function of UPIM, DPIM, and SPIM. (a) UPIM; (b) DPIM; (c) SPIM.
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(a) (b)

Figure 8. The profile of the point spread function of UPIM, DPIM, and SPIM. (a) the X-axis profile of
the point spread function; (b) the Y-axis profile of the point spread function.

For the three imaging models mentioned above, Figure 9 shows the fitting effect on the
translational motion trajectory of the aerostat platform along the Xt. It can be seen that the proposed
UPIM model has the best fitting effect that the estimated translational trajectory is almost the same
with the real one with the most minimum motion estimation error, which obviously benefits a better
imaging performance in UPIM.

(a) (b) (c)

Figure 9. The estimated and the real trajectory of the translation along the Xt. (a) UPIM; (b) DPDIM;
(c) SPIM.

To verify the effectiveness of the proposed method with the translation amplitude increasing, the
relationship between the imaging quality and the translation amplitude for three imaging models is
presented in Figure 10. The amplitude of three-dimensional translations gradually increased by the
step of 0.5 times the original amplitude shown in Figure 5, while the rotation amplitudes keep constant.
The coordinate of the horizontal axis in Figure 10 represents the multiple of the original translation
amplitude. As seen from Figure 10, the imaging performance of UPIM is still better than the other
imaging models when the amplitude of translation increases.
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Figure 10. NMSE of the imaging results by UPIM, DPDIM, and SPIM at different amplitudes of
translation.

The imaging quality under different rotation amplitudes is depicted in Figure 11. The amplitude
of all rotational components is gradually increased by step of 0.5 times the original rotational amplitude,
while the translation amplitudes keep constant. Figure 11 shows that the proposed method has better
performance under all rotation amplitudes.

Figure 11. NMSE of the imaging results by UPIM, DPDIM, and SPIM at different amplitudes of
rotation.

4.2. Effect of Different Translational Components on Imaging Performance

This section is to study the effect of independent translational component on imaging performance.
In simulations, all independent translational components use the same motion trajectory as shown in
Figure 5a. Figure 12 shows the imaging results reconstructed by UPIM when only one translational
component exists.
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(a) (b) (c)

Figure 12. The imaging results of UPIM when only one translation component exists. (a) Only
translational component along the Xt exists, the NMSE is 0.21; (b) Only translational component along
the Yt exists, the NMSE is 0.58; (c) Only translational component along the Zt exists, the NMSE is 0.59.

The imaging quality for each translational component under different translation amplitudes is
presented in Figure 13. As shown in Figures 12 and 13, the translation along the Xt has the minimal
influence on imaging performance, while both translation along the Yt and Zt has almost the same
influence on imaging performance. Therefore, for improving the image performance, the position of
the antenna array along the Yt and the Zt should be estimated more accurate.

Figure 13. NMSE of the imaging results when only one translational component exists at different
amplitudes.

Next, we investigate the reason for the different imaging results in three-dimensional translations.
Although the proposed method compensates in part of the non-cooperative motion, due to the limited
number of POS data, the estimated translation errors cannot be totally eliminated. Figure 14 shows the
estimation error in three-dimensional translations. The accurate calculation of the radiation field is
directly related to the round-trip propagation delay of the electromagnetic wave between antenna and
target. The propagation time delay error caused by estimation error of array position will lead to the
calculated radiation field error. Because the translational estimation errors in three dimensions have
different effect on the propagation time delay, the influence of different translational components on
imaging is not the same.
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(a) (b) (c)

Figure 14. The estimation error of antenna position in three-dimensional translations. (a) Only along
the Xt; (b) Only along the Yt; (c) Only along the Zt.

Assuming at t time, the coordinate of the i-th antenna is (xa, ya, za) and the coordinate of
any point m in the imaging region is (x, y, z). After ∆t, the coordinate of the antenna become
(xa + ∆xa, ya + ∆ya, za + ∆za).

The distance from the i-th antenna to the point m in imaging region is

Sim=
√
(x− xa)

2 + (y− ya)
2 + (z− za)

2. (23)

The partial differential of the propagation path along three coordinate dimensions is

∂Sim
∂xa

=
xa − x√

(x− xa)
2 + (y− ya)

2 + (z− za)
2

, (24)

∂Sim
∂ya

=
ya − y√

(x− xa)
2 + (y− ya)

2 + (z− za)
2

, (25)

∂Sim
∂za

=
za − z√

(x− xa)
2 + (y− ya)

2 + (z− za)
2

. (26)

In the simulation scenario, the height of the antenna array is 350 m and the antenna is squint
observation with the slanting angle 45◦. For any point in the imaging area, its coordinate satisfies
291.5 ≤ y ≤ 408.5,−58.5 ≤ x ≤ 58.5 and z = 0 . Because the size of antenna array is much smaller than
the size of imaging region, therefore for most points in the imaging region, it is satisfied that |x| � |xa|
and |y| � |ya|, and the value of partial differential function satisfy that |∂Sim/∂ya | > |∂Sim/∂xa |.
As za − z ≈ 350, the partial differential of Sim satisfies |∂Sim/∂za | > |∂Sim/∂xa |. Therefore the
same estimation error along the Xt axis will cause less propagation delay error than the other two
components, which explains the reason that under the same translational trajectory, the reconstructed
image with the translation only along the Xt has the best imaging result.

4.3. Effect of Different Rotation Components on Imaging Performance

This section is to study the effect of independent rotational component on imaging performance.
In the simulation, three rotational components have the same rotational trajectory as shown in Figure 5d.
Figure 15 shows the imaging results reconstructed by UPIM when only one rotational component exists.
As three rotational components gradually increased by the step of 0.5 times the original rotational
amplitude shown in Figure 5, the imaging quality for each rotational component under different
rotation amplitudes is presented in Figure 16.
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(a) (b) (c)

Figure 15. The imaging results of UPIM when only one rotation component exists. (a) Only yaw angle,
the NMSE is 0.27; (b) Only pitch angle, the NMSE is 0.28; (c) Only roll angle, the NMSE is 0.28.

Figure 16. NMSE of the imaging results when only one rotation component exists at different
amplitudes.

From Figures 15 and 16, it can be seen that three rotational components have almost the same
effect on imaging performance under different rotation amplitudes.

4.4. Effect of the Position and Angular-Measuring Accuracy on Imaging Performance

This section is to study the effect of the measuring accuracy of position and attitude parameters
on imaging. The imaging performance under different position accuracy and angular accuracy is
simulated. In simulations, the measurement error is assumed to be independent and subject to
Gauss distribution with zero mean and different variances. The smaller the variance, the higher the
measuring accuracy. Figure 17 shows the imaging quality under different position-measuring accuracy
and different angular-measuring accuracy, respectively. The results show that the imaging performance
is very sensitive to the measuring accuracy of position and attitude parameters which means that the
proposed method has a high demand of accurate measurement of position and attitude parameters.
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(a) (b)

Figure 17. The NMSE of imaging result under different measuring accuracy. (a) position-measuring
accuracy; (b) angular-measuring accuracy.

5. Conclusions

In this paper, a novel MSCI method based on unsteady aerostat platform is proposed, where
the MSCI radar array is carried by AVS to keep its antenna beam orientation to the target in the
non-cooperative motion of the platform caused by the wind etc., and the POS is used to dynamically
measure the position and the attitude of the antenna array. By decomposing of the platform motion to
its translation and rotation, the motion model of unsteady aerostat platform in air has been built, and for
each antenna, its real-time position vector can be calculated by its translational speed and its rotational
angular velocity in each pulse, replacing the static position vector in the traditional MSCI model. For
the dynamic beam coverage in the whole observation region, a selection matrix of beam coverage is
introduced to indicate the illuminated area at each pulse. By analyzing the modified stochastic radiation
field and its scattered echo, the MSCI model based on unsteady aerostat platform is established.
Furtherly, based on low-speed POS data, a polynomial curve-fitting algorithm is used to eliminate the
position error of the radar array. Simulation experiments demonstrate that under its different random
translations and rotations of unsteady aerostat platform, the position and attitude of the antenna
array at different time can be estimated well, and better imaging performance can be achieved by the
proposed scheme, which provides a feasible technical approach for the floating-observation-platform
to realize the microwave staring remote sensing observation in the near space.
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