
  

Sensors 2019, 19, 2823; doi:10.3390/s19122823 www.mdpi.com/journal/sensors 

Article 

Trajectory Optimization in a Cooperative Aerial 
Reconnaissance Model 
Petr Stodola 1,*, Jan Drozd 2, Jan Nohel 1, Jan Hodický 3 and Dalibor Procházka 4 

1 Department of Intelligence Support, University of Defence, 662 10 Brno, Czech Republic; 
jan.nohel@unob.cz 

2 Department of Tactics, University of Defence, 662 10 Brno, Czech Republic; jan.drozd@unob.cz 
3 Department of Aircraft Technology, University of Defence, 662 10 Brno, Czech Republic; 

jan.hodicky@unob.cz 
4 Centre for Security and Military Strategic Studies, University of Defence, 662 10 Brno, Czech Republic; 

dalibor.prochazka@unob.cz 
* Correspondence: petr.stodola@unob.cz 

Received: 30 April 2019; Accepted: 21 June 2019; Published: 24 June 2019 

Abstract: In recent years, the use of modern technology in military operations has become standard 
practice. Unmanned systems play an important role in operations such as reconnaissance and 
surveillance. This article examines a model for planning aerial reconnaissance using a fleet of 
mutually cooperating unmanned aerial vehicles to increase the effectiveness of the task. The model 
deploys a number of waypoints such that, when every waypoint is visited by any vehicle in the 
fleet, the area of interest is fully explored. The deployment of waypoints must meet the conditions 
arising from the technical parameters of the sensory systems used and tactical requirements of the 
task at hand. This paper proposes an improvement of the model by optimizing the number and 
position of waypoints deployed in the area of interest, the effect of which is to improve the 
trajectories of individual unmanned systems, and thus increase the efficiency of the operation. To 
achieve this optimization, a modified simulated annealing algorithm is proposed. The improvement 
of the model is verified by several experiments. Two sets of benchmark problems were designed: 
(a) benchmark problems for verifying the proposed algorithm for optimizing waypoints, and (b) 
benchmark problems based on typical reconnaissance scenarios in the real environment to prove 
the increased effectiveness of the reconnaissance operation. Moreover, an experiment in the 
SteelBeast simulation system was also conducted. 

Keywords: cooperative aerial reconnaissance; unmanned aerial vehicles; simulated annealing; 
optimization of waypoints; trajectory optimization; experiments; simulation 

 

1. Introduction 

The use of unmanned aerial vehicles (UAVs) for monitoring, surveillance, and/or reconnaissance 
operations both in the military and civilian domains has been a rising trend in recent years. Although 
this trend is relatively new, some of its features are already clear: the technology behind these systems 
is becoming increasingly mature; the effectiveness of these operations can be rapidly increased by 
using multiple UAVs that cooperate with one another; and route planning for individual systems is 
critical in these applications, as it determines the quality of operational performance. 

In the military, reconnaissance and surveillance operations serve to increase situation awareness 
on the battlefield. For planning and executing these operations, Command, Control, Communication, 
Computer, Intelligence, Surveillance, and Reconnaissance (C4ISR) systems are used. Moreover, these 
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systems often contain decision support features that support a commander in their decision-making 
processes. 

1.1. Motivation 

At the University of Defence, Czech Republic, the Tactical Decision Support System (TDSS) is 
being developed. The objective of this system is to support tactical level commanders of the Czech 
Army in their decision-making process [1]. A number of models of military tactics are included in the 
TDSS. If one of the models is compatible with the task of the commander, they can use this system 
for planning; TDSS provides possible variants and options to fulfil the task, including the second-
order effects. Thus, the task can be conducted effectively in the optimal or near-optimal manner 
(according to the selected criterion). More information about this topic can be found in the literature 
[1–8]. 

TDSS contains several models used for planning reconnaissance or surveillance tasks via both 
ground and aerial unmanned systems; for example, cooperative aerial reconnaissance, cooperative 
ground reconnaissance, cooperative aerial surveillance, and surveillance via a number of unmanned 
ground sensors (UGS). 

Reconnaissance of the area of interest is one of the most frequent tasks of a tactical level 
commander. Effective reconnaissance can be critical; planning fast and complete aerial 
reconnaissance using a fleet of UAVs can significantly contribute to the success of the operation at 
hand. The original aerial reconnaissance model implemented in TDSS has been extended by findings 
and results from this article, thus increasing its efficiency. 

1.2. Contribution and Organization of the Article 

Cooperative Aerial Reconnaissance (CAR) is the model proposed by the authors in the past. This 
original model transforms a reconnaissance operation into a problem of planning the trajectories of 
available UAVs in a graph created from waypoints deployed in the area of interest to be explored. 
Section 3 revises the basic approach and principles of the CAR model published within the previous 
research of the authors. Also, the original algorithm used for the waypoints’ deployment appears in 
this section in order to compare the old approach with the new one. 

The contribution of this article is in the substantial improvement of the CAR model. The main 
idea behind this improvement consists of reducing the number of waypoints that need to be 
deployed, with the quality worsening or the requirements of the whole operation being undermining 
without this reduction. This is done by finding the minimal number of waypoints necessary and 
optimizing their positions. Section 4 is the key part of this article; it introduces the novel approach, 
formulates the optimization problem, and presents the proposed algorithms for (a) optimizing the 
number of waypoints and (b) optimizing the positions of waypoints. Section 5 sets out the 
experiments conducted in order to verify the proposed algorithms. 

2. Literature Review 

Issues around aerial reconnaissance have been discussed in many scientific publications. Paucar 
et al. [9] deal with the use of UAVs for surveillance and reconnaissance operations in military areas 
and analyse the benefits of their model in the Ecuadorian Armed Forces. Chen et al. [10] consider a 
reconnaissance task assignment problem for multiple UAVs with different sensor capacities; the 
authors propose a modified multi-objective symbiotic organisms search (MOSOS) algorithm to solve 
the problem. Wang et al. [11] model UAV reconnaissance mission planning as an uncertain multi-
objective orienteering problem; to solve this problem, the authors propose a discreet multi-objective 
bat algorithm with a local search strategy. 

Many publications exist that examine route planning for UAVs in various applications. Vivaldini 
et al. [12] propose a framework for efficient visual data acquisition using UAVs; this combines 
perception, environment representation, and route planning in the task of disease classification. Liu 
et al. [13] present a UAV route planning problem for aerial photography under interval uncertainties. 
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The authors of [14] consider the offline route planning of UAVs for a coverage search mission in a 
river region. The military topic of battlefield situation awareness is covered in the work of [15]; here, 
the authors propose a hybrid algorithm combining A* and ant colony optimization algorithms for 
real-time path planning. 

Similarly, many publications deal with methods for UAV route optimization. A great overview 
of methods for trajectory optimization is given in the work of [16]; the methods considered in this 
paper include linear programming, dynamic programming, genetic algorithms, and neural networks. 
Different strategies for patrolling tasks conducted by multiple agents on a network defined as a graph 
are presented in the work of [17]. Turker et al. [18], meanwhile, use simulated annealing for route 
planning of multi-UAV systems on a graph. 

The authors of [19] present a persistent intelligence, surveillance, and reconnaissance routing 
problem, which includes collecting data from a set of specified task locations and delivering those 
data to a control station. Zhen et al. [20] consider a vehicle routing problem in which UAVs monitor 
a set of areas with different accuracy requirements. The problem of how to deploy multiple UAVs 
most efficiently was considered in the work of [21], in an application where UAVs act as wireless 
base stations that provide coverage for ground users. 

Popular methods often used in applications of reconnaissance, surveillance, or search for an 
object are based on coverage path planning. An extensive survey of such methods is provided by 
Cabreira et al. [22]; their article aims at analyzing the existing literature related to the different 
approaches, including both simple geometric flight patterns and more complex grid-based solutions 
considering full and partial information about the area of interest. The problem of searching for a 
single lost target by a single autonomous airborne sensor system using the Bayesian approach was 
examined in the work of [23]; a stationary or a drifting object at sea was considered as a target. The 
similar problem of locating a mobile, non-adversarial target in an indoor environment using multiple 
robotic platforms was investigated by Hollinger et al. [24]; they refer to the problem as multi-robot 
efficient search path planning (MESPP). 

Many publications focusing on monitoring and surveillance using UAVs assume that the 
ground area to be monitored is perfectly flat. This assumption is not realistic; uneven terrain or high 
objects (buildings, obstacles) may occlude same parts in the area to be explored. The analysis of this 
issue is examined by Geng et al. [25] on a problem of continuous surveillance by a group of UAVs in 
an urban area. The similar problem is considered by Jakob et al. [26]; they present their own approach 
to plan the aerial surveillance in urban areas via a fleet of fixed-wing UAVs. They propose and 
compare three planning methods that take into account sensor occlusions caused by high buildings 
and other obstacles in the target area. Savkin and Huang [27] present their approach to estimate the 
minimal number of UAVs needed to monitor very uneven target terrain. 

Although UAV technology is a very topical issue and thus there are many scientific publications 
considering various problems from different perspectives, the authors of this article are not aware of 
any research that deals with the trajectory optimization of UAVs by means of waypoint deployment. 

3. Cooperative Aerial Reconnaissance 

The CAR model is designed for exploring an area of interest by a fleet of unmanned aerial 
systems (UASs). The objective of the model is to plan the routes of individual UASs so that the area 
of interest is explored in an optimal or near-optimal manner. The optimization criterion depends on 
the commander and their task at hand; in most cases, the requirement is to explore the area as fast as 
possible. The CAR model assumes that the target area is perfectly flat. 

The model was mathematically formulated in the work of [28] in detail. The principle is to cover 
the area of interest evenly, using a number of waypoints so that no space is unexplored when each 
waypoint is visited during a reconnaissance operation by any UAS available in the fleet. Each 
waypoint needs to be visited just once. The CAR model plans the trajectories of all UASs according 
to the selected optimization criterion. 

3.1. Example Situation 
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Figure 1 shows an example situation. There are 2 UASs (labelled A and B) available in the fleet 
deployed in the area of operations. The area of interest to be explored is covered by 27 waypoints (see 
the green dots in Figure 1a). In Figure 1b, the trajectories (blue lines) of individual UASs are shown, 
which represent the solution found by the CAR model; as can be seen, the waypoints are evenly 
distributed between available UASs. 

  
(a) (b) 

Figure 1. Example situation: (a) area of interest covered by waypoints; (b) trajectories for individual 
unmanned aerial systems (UASs). 

The phase of the CAR model that plans the trajectories for UASs is similar to the well-known 
multi-depot vehicle routing problem (MDVRP). The difference consists in formulating the 
optimization criterion. Whereas the objective in the MDVRP is to minimize the sum of lengths of all 
routes, the objective in the CAR model is alterable according to the requirements of the commander; 
in most cases, it is to minimize the time needed to complete the longest route by the corresponding 
UAS. 

The original CAR model was improved in the work of [29], where the trajectories were smoothed 
in order to achieve the following: (a) shorten their length and thus hasten the reconnaissance 
operation, and (b) be able to use fixed-wing UASs that cannot change direction so abruptly. The result 
of this improvement, applied to the previous example situation, is shown in Figure 2 in red. 

 
Figure 2. Improvement in the trajectories. 

3.2. Requirements for the Deployment of Waypoints 
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The area of interest has to be covered by a number of waypoints so that, after reconnaissance, 
there is no space in the area left unexplored. This depends on the technical parameters of the sensory 
systems of UASs, as well as the tactical requirements of the commander. The former concerns the 
vertical and horizontal field of view and resolution of the camera, while the latter relates to the 
minimum and maximum permitted height of flight above ground level of UASs in the fleet. 

The situation is presented in Figure 3. A UAS flies at the height 𝐻஺ீ௅ above ground level, which 
is the minimum height allowed. At this height, the camera of the UAS scans the green area (rectangle), 
the size of which is determined by the angular vertical and horizontal field of view (𝐴௏ிை௏, 𝐴ுிை௏). 
The resolution and other technical parameters of the camera must be adequate to be able to scan the 
area at the required level of detail from the maximum allowed height of flight. 

 
Figure 3. Parameters for deployment of waypoints. 

The width and length of the scanned rectangle, 𝐷ௐ  and 𝐷௅ , respectively, are calculated 
according to Formula (1). 𝐷ௐ = 2 ∙ 𝐻஺ீ௅ ∙ tan ൬𝐴ுிை௏2 ൰, 

𝐷௅ = 2 ∙ 𝐻஺ீ௅ ∙ tan ൬𝐴௏ிை௏2 ൰, (1) 

where 𝐷ௐ , 𝐷௅  are the width and length, respectively, of the scanned area; 𝐻஺ீ௅  is the minimum 
flight height above the ground level; and 𝐴ுிை௏, 𝐴௏ிை௏ are the angular horizontal and vertical fields 
of view, respectively. 

To ensure that no space is left unexplored after the reconnaissance operation, the maximum 
permitted distance 𝐷௠௔௫  from whichever point lying inside the area of interest to its nearest 
waypoint must be calculated according to Formula (2). When calculating 𝐷௠௔௫, the smaller value of 
the width and length 𝐷ௐ and 𝐷௅ is used. This is because the trajectories of the UASs (i.e., their pitch 
when located at individual waypoints) are not known at the time when the waypoints are deployed; 
therefore, the smaller (i.e., worse) value must be used. 𝐷௠௔௫ = min (𝐷ௐ, 𝐷௅)2 , (2) 

where 𝐷௠௔௫ is the maximum permitted distance from whichever point inside the area of interest to 
the nearest waypoint, and 𝐷ௐ, 𝐷௅ are the width and length, respectively, of the scanned area. 

3.3. Waypoint Deployment in the Original CAR Model 
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A simple algorithm was used in the original CAR model to deploy the waypoints. This algorithm 
is presented in Figure 4. The waypoints are inserted along individual edges of the polygon, forming 
the area of interest. 

 
Figure 4. Original waypoint deployment algorithm. 

The algorithm is fast and straightforward. However, it does not guarantee that the maximum 
distance requirement is ensured from all points in the area of interest. The result can be influenced 
by playing with distance 𝑑௪  (see point 2 in Figure 4) and repeating the whole algorithm. It was 
empirically found that the 𝐷௠௔௫ requirement is met in most cases when 𝑑௪ = 0.8 ∙ 𝐷௠௔௫. 

4. Trajectory Optimization 

This section deals with improving the CAR model by optimizing the number and positions of 
waypoints in the area of interest. 

4.1. Optimization Problem 

The optimization problem consists of finding the minimum possible number of waypoints 𝑛, 
provided that condition (3) is not violated. 𝑑௠௔௫ ≤ 𝐷௠௔௫, (3) 

where 𝑑௠௔௫  is the longest existing distance from a point in the area of interest to the nearest 
waypoint, and 𝐷௠௔௫ is the maximum permitted distance introduced in Section 3.2 (see Formula (2)). 

The algorithm calculating the minimum number of waypoints 𝑛 is shown in Figure 5. It is based 
on the principle of the half-interval search. Firstly, the limits 𝑛௠௜௡ and 𝑛௠௔௫  are determined; the 
lower limit 𝑛௠௜௡ is set to 1 and the higher limit 𝑛௠௔௫ is calculated according to Formula (4), which 
ensures that condition (3) is met with certainty. Then, the limits gradually approach one another until 
they meet, which means that the minimum possible number of waypoints is found. 𝑛௠௔௫ = ቜ 𝑤√3 ∙ 𝐷௠௔௫ቝ ∙ ቜ 𝑙√3 ∙ 𝐷௠௔௫ቝ, (4) 

where 𝑛௠௔௫  is the higher limit of the number of waypoints; 𝑤  and 𝑙  are width and length, 
respectively, of the area of interest; and 𝐷௠௔௫ is the maximum permitted distance (see Formula (2)). 

Original Waypoint Deployment 

  1. set 𝑊 = ∅ 
  2. set 𝑑௪ = 0.8 ∙ 𝐷௠௔௫ 
  3. for each edge 𝐸௜ of the polygon forming the area of interest 
  4.   set 𝑑௫ = √0.75 ∙ 𝑑௪ 
  5.   calculate a set of points 𝑋 at distance 𝑑௫ from the edge 𝐸௜ 
       and with distance 𝑑௪ between nearest neighbours in this set 
  6.   for each point 𝑋௝ ∈ 𝑋 
  7.     if 𝑋௝ is inside the area of interest and distance to the nearest  
         waypoint in 𝑊 is not smaller than 𝑑௪ 
  8.       insert 𝑋௝ into 𝑊 

  9.     set 𝑑௫ = 𝑑௫ ൅ √3 ∙ 𝑑௪ 
  10.    go to point 5 when at least 1 waypoint has been inserted into 𝑊 

  11. return 𝑊 
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Figure 5. Algorithm for optimization of the number of waypoints. 

4.2. Optimization of the Positions of Waypoints 

The key part of the algorithm in Figure 5 is point 5, which is a stand-alone optimization problem. 
For every particular deployment of a given number of waypoints, the value of 𝑑௠௔௫  can be 
calculated. The optimization criterion of this problem is expressed by Formula (5). The objective is to 
deploy the waypoints so that the value of 𝑑௠௔௫ is minimal. This consists of finding the positions of 𝑛 waypoints in a plane, that is, there are 2𝑛 independent variables. minimize(𝑑௠௔௫), (5) 

where 𝑑௠௔௫ is the longest existing distance between a point in the area of interest and the nearest 
waypoint. 

The mathematical formulation of the problem is as follows: let 𝑃 = ሼ𝑃ଵ, 𝑃ଶ, … ሽ be the set of all 
points that are inside the polygon forming the area of interest; there are an infinite number of points 
in this set. Let 𝑊 = ሼ𝑊ଵ, 𝑊ଶ, … , 𝑊௡ሽ be the set of 𝑛 waypoints; and let 𝐷 = ሼ𝑑ଵ, 𝑑ଶ, … ሽ be the set of 
real numbers that represent distances between each point 𝑃௜ ∈ 𝑃 and the nearest waypoint 𝑊(௜) ∈𝑊, according to Formula (6). 𝑑௜ = ห𝑃௜ − 𝑊(௜)ห     for all 𝑃௜ ∈ 𝑃, (6) 

where 𝑑௜  is the distance between points 𝑃௜  and 𝑊(௜) , 𝑃௜ ∈ 𝑃  is a point lying inside the area of 
interest, and 𝑊(௜) ∈ 𝑊 is the nearest waypoint to point 𝑃௜. 

The distance 𝑑௠௔௫ ∈ 𝐷 is the largest value in set 𝐷; see Formula (7). 𝑑௠௔௫ = max 𝐷 = max (𝑑ଵ, 𝑑ଶ, … ) (7) 

4.2.1 Calculation of the Longest Distance 

This section deals with the principles of calculating the distance 𝑑௠௔௫ formulated above. The 
value of 𝑑௠௔௫ is a function of waypoints 𝑊 = ሼ𝑊ଵ, 𝑊ଶ, … , 𝑊௡ሽ, where 𝑛 ൒ 1 and the polygon of the 
area of interest 𝐴 = ሼ𝐴ଵ, 𝐴ଶ, … , 𝐴௠ሽ. This polygon is represented by the number of 𝑚 points, where 𝑚 ൒ 3, thus it is a function of 𝑚 ൅ 𝑛 points in a plane (which are 2𝑛 ൅ 2𝑚 variables); see Formula 
(8). 𝑑௠௔௫ = 𝑓(𝑊, 𝐴) = 𝑓൫𝑊ଵ௫, 𝑊ଵ௬, … , 𝑊௡௫, 𝑊௡௬, 𝐴ଵ௫,𝐴ଵ௬, … , 𝐴௠௫, 𝐴௠௬൯ (8) 

The value of 𝑑௠௔௫  is defined as the longest existing distance between a point 𝑃௜ ∈ 𝑃 inside 
polygon 𝐴 and its nearest waypoint 𝑊(௜) ∈ 𝑊. As there is an infinite number of points in set 𝑃, the 
longest distance cannot be determined by calculating all distances 𝑑௜ ∈ 𝐷. 

Optimization of the Number of Waypoints 

  1. set 𝑛௠௜௡ = 1 
  2. calculate 𝑛௠௔௫ 
  3. do 

  4.   set 𝑛 = ⌊(𝑛௠௜௡ ൅ 𝑛௠௔௫)/2⌋ 
  5.   optimize positions of 𝑛 waypoints and calculate 𝑑௠௔௫ 
  6.   if 𝑑௠௔௫ ൐ 𝐷௠௔௫ 
  7.     set 𝑛௠௜௡ = 𝑛 ൅ 1  
  8.   else 

  9.     set 𝑛௠௔௫ = 𝑛 
  10. while 𝑛௠௜௡ ് 𝑛௠௔௫ 
  11. return 𝑛 and positions of waypoints 
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Instead, a subset 𝐶 ⊂ 𝑃 containing a finite number of points has to be identified. These points 𝐶 = ሼ𝐶ଵ, 𝐶ଶ, … , 𝐶௞ሽ are candidates for becoming points from which the value of 𝑑௠௔௫ is calculated 
using Formula (9). 𝑑௠௔௫ = max൫ห𝐶ଵ − 𝑊(ଵ)ห, ห𝐶ଶ − 𝑊(ଶ)ห, … , ห𝐶௞ − 𝑊(௞)ห൯ (9) 
Points in subset 𝐶 are identified as follows: 

(a) Points that are common to three or more regions of a Voronoi diagram created on waypoints 𝑊 
and, at the same time, which lie inside polygon 𝐴. 

(b) Points that are common to two regions of a Voronoi diagram created on waypoints 𝑊 and the 
border of polygon 𝐴. 

(c) Border points 𝐴௜ ∈ 𝐴 of the polygon. 

The principle is graphically shown in Figure 6 in an example with 10 waypoints. The green lines 
represent the polygon of the area of interest, the small yellow dots are waypoints, and the red lines 
border the regions of the Voronoi diagram. The blue, orange, and green circles show the points of 
subset 𝐶 ; the colours are used to distinguish between the three cases mentioned above. In this 
example, the farthest point 𝐹 from the waypoints is marked in red. 

 
Figure 6. Principle of calculating the longest distance. 

The computational complexity of the proposed principle is mainly influenced by the 
construction of the Voronoi diagram. This can be done using Fortune’s algorithm with complexity 𝑂(𝑛 ⋅ log 𝑛), where 𝑛 is the number of waypoints [30]. The result of this algorithm is a list of edges 
forming Voronoi regions. 

Once the Voronoi diagram has been constructed, the computational complexity of calculating 𝑑௠௔௫ for the three cases mentioned above is as follows: 
(a) 𝑂(𝑛 ⋅ 𝑚). The points of subset 𝐶 are the vertices of the edges of the Voronoi diagram that lie 

inside the polygon. The number of these vertices is linearly dependent on the number of 
waypoints 𝑛. The test to see whether they are inside the polygon can be done with complexity 𝑂(𝑚), where 𝑚 is the number of border points of the polygon. One advantageous feature of 
Fortune’s algorithm is that each edge is connected with the two waypoints lying in the 
corresponding regions. These waypoints are the nearest for both vertices and the distance to 
them can be calculated immediately. 

(b) 𝑂(𝑛 ⋅ 𝑚). The points of subset 𝐶 are created as intersections of the edges of the Voronoi diagram 
and edges of the polygon. The number of edges of the former is linearly dependent on the 
number of waypoints 𝑛. The number of edges of the latter is identical to the number of points 𝑚  of the polygon. Again, as in the previous case, the pair of nearest waypoints for each 
intersection is known because it is connected with the corresponding edge of the Voronoi 
diagram. 
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(c) 𝑂(𝑛 ⋅ 𝑚). The points of subset 𝐶 are created from 𝑚 points of the polygon. For each of these 
points, the nearest waypoint has to be found with complexity 𝑂(𝑛). 
 
As can be seen, the computational complexity for each of the three cases—(a), (b), and (c)—is the 

same: 𝑂(𝑛 ⋅ 𝑚). Thus, the total computational complexity of calculating the value of 𝑑௠௔௫  for 𝑛 
waypoints and the polygon with 𝑚 points is given in Formula (10). 𝑂(𝑛 ⋅ log 𝑛 ൅ 𝑛 ⋅ 𝑚) (10) 

4.2.2 Optimization Method 

For a solution to this problem, an adapted simulation annealing algorithm is used. This 
algorithm is a generic probabilistic method and has proven to be very successful when used by the 
authors in similar position optimization problems; see the works of [31,32]. 

This algorithm is presented in Figure 7 using pseudocode. A solution 𝑥 represents a particular 
deployment of 𝑛 waypoints, that is, it is a vector of 2𝑛 independent variables, where each pair 
corresponds to a position of one waypoint in a plane: 𝑥 = (𝑥ଵ, 𝑥ଶ, … , 𝑥ଶ௡). 

 
Figure 7. Simulated annealing for the problem of optimizing waypoint positions. 

The key phase of the algorithm is the creation (transformation) of a new solution 𝑥ᇱ =(𝑥ଵᇱ , 𝑥ଶᇱ , … , 𝑥ଶ௡ᇱ ) from the current solution 𝑥 in point 6. This is done by adding random value(s) with 
normal distribution to one or more variables of vector 𝑥, according to Formula (11). 

𝑥௜ᇱ = ൝ 𝑥௜ ൅ RandN(𝜇, 𝜎ଶ)𝑥௜
for selected variables 𝑥௜ ∈ 𝑥otherwise , 

𝜇 = 0, 𝜎 = (𝑇 − 𝑇௠௜௡) ∙ 𝑅௠௔௫𝑇௠௔௫ − 𝑇௠௜௡ , 
(11) 

where RandN is a random number generator with a normal distribution 𝑁(𝜇, 𝜎ଶ), 𝑇 is the current 
temperature in interval 〈𝑇௠௜௡, 𝑇௠௔௫〉, and 𝑅௠௔௫ is the maximum range in which variable 𝑥௜ should 
change—this value is connected with the size (width or length) of the area of interest 𝑅௠௔௫ = 𝑠𝑖𝑧𝑒/3. 

The decision on selecting which variables to change in Formula (11) depends on the variant of 
the algorithm. Usually, one of these variants is used: 
• Select all variables from 𝑥. 
• Select variables from 𝑥 with probability 𝑝. 

Optimization of the Positions of Waypoints 

1. generate a random solution 𝑥 
2. set 𝑇 = 𝑇௠௔௫ 
3. while 𝑇 ൐ 𝑇௠௜௡ 
4.  set 𝑘 = 𝑟 = 0 
5.  while 𝑘 ൏ 𝑘௠௔௫ and 𝑟 ൏ 𝑟௠௔௫ 
6.    create solution 𝑥ᇱ from 𝑥 
7.    calculate the Metropolis criterion 𝑝(𝑥 → 𝑥ᇱ) 
8.     with probability 𝑝(𝑥 → 𝑥ᇱ) 
9.       replace solution 𝑥 → 𝑥ᇱ 
10.      set 𝑟 = 𝑟 ൅ 1 
11.   save the best solution if found 

12.   set 𝑘 = 𝑘 ൅ 1 
13. decrease 𝑇 = 𝑇 ∙ 𝛼 
14. return the best solution found 
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• Select just one variable randomly from 𝑥. This variant is used for this optimization problem as 
it was empirically proven to be the variant with the most successful results. 
 
When the new solution 𝑥ᇱ  is created, this solution replaces the original solution 𝑥  with 

probability 𝑝(𝑥 → 𝑥ᇱ) , calculated according to the Metropolis criterion in Formula (12). The 
Metropolis criterion states that if the new solution is better than the original, the probability of its 
replacement is 1; otherwise, this probability depends on the difference in their qualities and the 
current temperature. 

𝑝(𝑥 → 𝑥ᇱ) = ൝ 1𝑒ିௗ೘ೌೣᇲ ିௗ೘ೌೣ்
for 𝑑௠௔௫ᇱ ≤ 𝑑௠௔௫otherwise , (12) 

where 𝑑௠௔௫ᇱ  is the longest distance for the new solution 𝑥ᇱ and 𝑑௠௔௫ is the longest distance for the 
original solution 𝑥. 

4.2.3 Improvement of the Optimization Method 

The optimization method introduced in Section 4.2.2 can be further improved for this particular 
problem. When evaluating the quality of a solution, that is, calculating the value of 𝑑௠௔௫ for the 
given variables of vector 𝑥, the position of the furthest point 𝐹 in the polygon of the area of interest 
in relation to the waypoints is determined as a by-product (see the red circle in Figure 6 as an 
example). 

Seeing as the aim in resolving the problem is to minimize the distance 𝑑௠௔௫ (see Formula (5)), 
it is likely that a better solution can be created by moving the waypoints (see Formula (11)) that are 
closer to point 𝐹 than the others, especially for the later phases of the optimization, when the current 
temperature is heading towards the minimal temperature 𝑇௠௜௡ and changes are smaller. 

The algorithm was modified to use this feature as follows: the probability of each variable being 
selected is calculated according to Formula (13); then, one variable is selected for transformation, not 
randomly, but based on these probabilities using the roulette wheel principle. 

𝑝(𝑥ଶ௜ିଵ) = 𝑝(𝑥ଶ௜) = ൫𝑑ௐ೔൯ିଵ2 ∙ ∑ ൫𝑑ௐ೔൯ିଵ௜    for each 𝑊௜ ∈ 𝑊, (13) 

where 𝑝൫𝑥௝൯  is the probability of variable 𝑥௝ ∈ 𝑥  being selected, 𝑗 = 1,2, … ,2𝑛 ; and 𝑑ௐ೔  is the 
distance between waypoint 𝑊௜ ∈ 𝑊 and point 𝐹. 

5. Experiments and Results 

This section presents experiments and results of the proposed algorithm on two sets of 
benchmark problems. 

5.1. Benchmark Problems for Verification 

The first set of benchmark problems was designed to verify the quality of the proposed 
probabilistic algorithm. Polygons forming the area of interest for individual problems are created by 
combining a number of adjacent hexagons; the problems vary from one another according to the 
number of hexagons combined. The number of waypoints corresponds to the number of hexagons. 

The reason for applying these benchmark problems is that it is easy to determine the optimal 
solution for each, which can then be compared with the solution found by the optimization method. 
The optimal solution is the solution where waypoints are located at the centres of hexagons. An 
example of a problem with 17 waypoints (optimally deployed) is shown in Figure 8. The green line 
demarcates the resulting polygon, while the red lines represent a Voronoi diagram. 
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Figure 8. Example of a benchmark problem (v03). 

Table 1 shows the basic parameters of the benchmark problems. Degree represents the number 
of hexagons in diagonals of the polygon (see Figure 8). 

Table 1. Set of benchmark problems for verification. 

Benchmark Problem Degree Number of Waypoints 
Number of Variables 
per Solution Vector 

v01 1 1 2 
v02 3 7 14 
v03 5 17 34 
v04 7 31 62 
v05 9 49 98 
v06 11 71 142 

The proposed optimization algorithms (original and modified versions—see Section 4.2.2 and 
4.2.3, respectively) were executed 500 times on each benchmark problem. The parameters of the 
algorithm (see Figure 6) were set as follows: 𝑇௠௔௫ = 100, 𝑇௠௜௡ = 10ି଺, 𝛼 = 0.95, 𝑘 = 2000, 𝑟 = 200. 
The experiments were executed on a computer with the following parameters: Intel Core i7-7700 CPU 
@ 3600 GHz, 32 GB RAM. 

Table 2 shows the results achieved by the original simulated annealing algorithm (SA-original) 
and its modified version (SA-modified). The table records the best solution found, mean and standard 
deviation for each benchmark problem, as well as the average runtime of a single execution of the 
algorithm. As can be seen, the modified version is comparable to the original version for simpler 
problems (v01, v02, v03); however, although the original algorithm is almost twice as fast for v05 and 
v06 problems, the improvement in solutions of the modified version is clear. The slower runtime of 
the modified version for more complex problems is caused by calculating the probabilities for 
selecting variables with computational complexity 𝑂(𝑛) in the solution transformation process (see 
point 6 in Figure 6), whereas the same process is done with complexity 𝑂(1) in the original version. 

Table 2. Results for benchmark problems for verification. 

Problem 
SA-Original SA-Modified 

Best Mean Stdev Runtime Best Mean Stdev Runtime 
v01 100.000 100.000 0.000 0.5 sec 100.000 100.000 0.000 0.5 s 
v02 100.000 100.004 0.025 5 sec 100.000 100.005 0.033 5 s 
v03 100.001 100.064 0.098 12 sec 100.001 100.010 0.022 14 s 
v04 100.005 100.884 0.854 25 sec 100.003 100.090 0.230 34 s 
v05 100.555 104.904 2.868 38 sec 100.018 100.668 1.594 74 s 
v06 102.417 111.278 3.497 53 sec 100.114 103.318 2.377 98 s 
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Table 3 compares the results. The optimal solution for each benchmark problem is 100 (distance 
from the centre of any hexagon to its circumscribed circle). The best solutions found by the original 
and modified algorithms are compared with the optimal solution in the form of percent error. The 
last column of Table 3 shows the improvement of the modified algorithm compared with the original 
version. The average percent error for the original and modified algorithms compared with the 
optimal solution over all six benchmark problems is 0.496% and 0.023%, respectively. The modified 
version outperforms the original algorithm by 0.473% on average; the results achieved are very close 
to the optimal solution even for a problem with 71 waypoints, that is, for 142 independent variables. 

Table 3. Comparison of results for benchmark problems for verification. 

Problem Optimal Solution 
SA-Original SA-Modified 

Algorithm Improvement 
Best Error Best Error 

v01 100 100.000 0.000% 100.000 0.000% 0.000% 
v02 100 100.000 0.000% 100.000 0.000% 0.000% 
v03 100 100.001 0.001% 100.001 0.001% 0.000% 
v04 100 100.005 0.005% 100.003 0.003% 0.002% 
v05 100 100.555 0.555% 100.018 0.018% 0.537% 
v06 100 102.417 2.417% 100.114 0.114% 2.300% 

5.2. Benchmark Problems of Typical Reconnaissance Scenarios 

The second set of benchmark problems enables a comparison between the new approach to 
waypoint deployment according to the algorithm in Figure 5 and the original approach in Figure 4. 
The most important criterion is the reduction in the number of waypoints, the effect of which is to 
shorten the overall time for a reconnaissance operation. 

Table 4 shows the parameters of the benchmark problems, created based on typical 
reconnaissance situations in the real environment. The table records the basic parameters of the 
polygon, along with the number of points forming the area of interest and the number of UAVs in 
the fleet available for the reconnaissance operation. The last column of Table 4 details the maximum 
permitted distance given by the technical parameters of the particular UAVs and tactical 
requirements according to Formula (2). 

Table 4. Set of benchmark problems for reconnaissance. UAVs—unmanned aerial vehicles. 

Problem 
Area of Interest 

Number of UAVs 𝑫𝒎𝒂𝒙 
Area Width Length Points 

r01 0.517 km2 1.21 km 0.78 km 15 2 120 m 
r02 0.679 km2 0.95 km 1.14 km 5 2 100 m 
r03 2.640 km2 2.20 km 1.20 km 4 1 150 m 
r04 2.085 km2 1.60 km 2.10 km 7 4 150 m 
r05 1.675 km2 2.15 km 1.25 km 9 4 100 m 
r06 2.757 km2 3.75 km 3.04 km 25 5 120 m 

Table 5 shows the optimization of the number of waypoints deployed for the benchmark 
problems using the algorithm presented Figure 5 compared with the number of waypoints 
determined using the original algorithm mentioned in Figure 4. The values of the longest distance 
(𝑑௠௔௫ ), that is, the solutions, do not exceed the maximum permitted limit (𝐷௠௔௫ ) in any of the 
benchmark problems. The last column of Table 5 records the number of waypoints saved by as a 
result of optimization. On average, the reduction in the number of waypoints is 38.9%. 

The computational times of the waypoints’ deployment optimization are also recorded in Table 
5. The entire process of planning the reconnaissance operation will be extended by the extra time this 
process takes, as the computational times of the original waypoints deployment are negligible. 
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Table 5. Optimization of the number of waypoints for reconnaissance benchmark problems. 

Problem 
Original Deployment Optimized Deployment 

Reduction in Waypoints 
Waypoints 𝒅𝒎𝒂𝒙 Waypoints 𝒅𝒎𝒂𝒙 Runtime 

r01 27 119.712 18 118.295 12 sec 9 (33.3%) 
r02 59 99.162 31 99.058 16 sec 28 (47.5%) 
r03 66 141.421 52 149.668 29 sec 14 (21.2 %) 
r04 82 149.771 42 148.767 25 sec 40 (48.8%) 
r05 124 99.556 75 99.552 50 sec 49 (39.5%) 
r06 166 119.832 94 119.632 103 sec 72 (43.4%) 
Table 6 compares reconnaissance operations based on the benchmark problems when planned 

using the original model and the new model in which the number of waypoints and their deployment 
has been optimized. The optimization criterion was the duration of the operation, that is, the time 
taken to conduct the whole operation. Table 6 also records the total distance covered by all UASs; 
however, distance was not the optimization criterion. The last column sets out the reduction in 
operational durations; the new model managed to shorten reconnaissance operations by 10.3% on 
average. Also, the total distance decreased on average by 11.2%, the effect of which is lower fuel 
consumption and the possibility to explore more extensive areas. 

Table 6. Reconnaissance operations planned using the original and new models. 

Problem 
Original Deployment Optimized Deployment 

Reduction in Waypoints 
Duration Distance Duration Distance 

r01 6:55 5.00 km 6:37 4.69 km 4.3 % 
r02 12:57 7.77 km 10:39 6.31 km 17.8% 
r03 22:42 13.62 km 21:32 12.93 km 5.1% 
r04 6:35 15.65 km 5:40 13.34 km 13.9% 
r05 6:20 15.17 km 5:39 13.48 km 10.8 % 
r06 10:26 31.28 km 9:25 27.84 km 9.7 % 

To illustrate these findings, Figure 9 shows the benchmark problem r04. Figure 9a describes the 
result of the original version (82 waypoints). Figure 9b, on the other hand, is the result of the new 
version (42 waypoints). In Figure 9c, the scenario is shown in the planning software TDSS [1,33], 
including the visualized terrain and environment. 

   
(a) (b) (c) 

Figure 9. Benchmark problem r04: (a) original model; (b) new model; (c) Tactical Decision Support 
System (TDSS). 

To prove the effectiveness of the proposed approach for the reconnaissance operations, the 
results were compared to the lawnmower pattern, which is a common approach when planning UAV 
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trajectories in problems such as reconnaissance or search for a target (Cabreira et al., 2019). The 
advantage of the lawnmower pattern is that the distance between adjacent flights of UAVs (in rows 
or columns) could be set to 2 ∙ 𝐷௠௔௫; this is because the trajectory pattern is known in advance (the 
UAVs do not change their heading in a single column or row). 

Table 7 compares the reconnaissance operations planned using the new model and the 
lawnmower pattern. The total distance covered by all UASs is also recorded, but again, as in the 
previous case, distance was not the optimization criterion. The difference in the last column of Table 
7 shows that the new model outperforms the lawnmower pattern. The difference varies for individual 
benchmark problems from 7% to almost 60%. This is connected with the quality with which it was 
possible to divide the area of interest into portions for individual UAVs. 

Table 7. Reconnaissance operations planned using the new model and the lawnmower pattern. 

Problem 
New Model Lawnmower Pattern 

Difference 
Duration Distance Duration Distance 

r01 6:37 4.69 km 7:05 4.85 km 7.1% 
r02 10:39 6.31 km 15:33 7:59 km 46.0% 
r03 21:32 12.93 km 22:45 13.65 km 5.7% 
r04 5:40 13.34 km 7:57 13.75 km 40.3% 
r05 5:39 13.48 km 6:20 13.57 km 12.1% 
r06 9:25 27.84 km 14:52 33.90 km 57.9% 

The strength of the new approach proposed in this article is in the balanced and even division 
of the area of interest into portions for individual UAVs. This even division is almost never possible 
in the case of the lawnmower pattern, as the whole rows or columns must be visited successively in 
a straight line. This is illustrated in Figure 10 on the benchmark problem r04, where four UAVs are 
available. The values 𝐶஺, 𝐶஻, 𝐶஼, 𝐶஽ show the time the corresponding UAV needs to finish its route. 
The solution is given by the maximum value (𝐶 = max (𝐶஺, 𝐶஻, 𝐶஼, 𝐶஽, )). As can be seen, individual 
routes are nicely balanced in the case of the new model, as opposed to the lawnmower pattern. 

 

(a) 

 

(b) 

Figure 10. Comparison of the new model with the lawnmower pattern for benchmark problem r04: 
(a) new model; (b) lawnmower pattern. 

The problem of the balanced division of the area of interest is even more apparent in the case of 
more complex and structured areas of interest and a larger number of UAVs used (e.g., the polygon 
bounding the area of interest of benchmark problem r06 has 25 points and 5 UAVs are available; the 
reconnaissance operation is then almost 60% longer when using the lawnmower pattern). 

CA = 7:57 

CC = 6:16 

CD = 4:17 

CB = 4:25 

CA = 5:32 

CB = 5:23 

CD = 5:40 

CC = 5:38 
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5.3. Simulation Experiment 

The experiment based on benchmark problem r01 (see Table 4) was conducted using the Steel 
Beast Pro simulation system (https://www.esimgames.com). The reason for the experiment was to 
use simulation in order to prove the validity of the proposed model under various conditions. As 
UAVs, Lockheed Martin Quad Indago drones were used. 

Figure 11 shows routes planned via the original (Figure 11a) and new version (Figure 11b). The 
model estimates that the operation would be completed, that is, at the moment when both drones 
had returned to their initial positions, in 6:55 min in the case of the original version (27 waypoints), 
and in 6:37 min in the case of the new version (18 waypoints). The length of the routes of UAV A is 
2.54 km (original version) and 2.26 km (new version), and for UAV B, it is 2.46 km (original version) 
and 2.43 km (new version); the total distance travelled by both UAVs is 5.00 km (original version) 
and 4.69 km (new version), respectively. 

 

 

(a) 

 

(b) 

Figure 11. Experiment for simulation (r01): (a) original model; (b) new model. 

Table 8 shows the results of the simulations. Overall, three separate experiments (e01, e02, e03) 
were conducted under various meteorological conditions. In each experiment, five simulations (s01, 
s02, s03, s04, s05) were carried out, and the average duration of the operation was calculated. In two 
cases, the simulation was not successful as a result of drone failure. The experiments show the 
influence of wind speed and precipitation on the flight duration. The wind extends the duration of 
the operation (compare e01 and e02); furthermore, the rain of medium intensity has a noticeable effect 
on the duration (e03 takes longer than e02 even if the wind speed is smaller). 

Table 8. Results of the simulation experiment. 

Experiment 
e01 
Sun 

No Wind 

e02 
Overcast 

Fresh Breeze (30 km/h) 

e03 
Medium Rain 

Moderate Breeze (20 km/h) 
Simulation Original New Original New Original New 

s01 7:25 7:11 9:15 8:25 10:04 9:22 
s02 7:11 6:54 8:05 8:14 9:48 8:47 
s03 6:54 6:12 8:55 8:54 Failure 9:38 
s04 7:14 6:55 8:45 9:01 9:34 8:26 
s05 6:47 7:02 Failure 8:27 9:47 9:11 

Average 7:06 6:50 8:45 8:36 9:48 9:04 

CB = 6:42 
LB = 2.46 km 

CA = 6:55 
LA = 2.54 km 

CB = 6:37 
LB = 2.43 km 

CA = 6:09 
LA = 2.26 km 
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Experiment e01 was carried out under ideal weather conditions (sunny, no wind), and thus can 
be compared to the results estimated by the model (r01)—see Table 9. The time estimated by the 
model was very close to the average duration of the simulations (difference of about 3%). Moreover, 
the simulation confirmed the improvement in shortening the duration of the operation when using 
the new model (about 4% in this case). 

Table 9. Comparison of estimated and simulation results. 

Experiment Original Model New Model Improvement 
e01 7:06 6:50 3.61% 
r01 6:55 6:37 4.34% 

Difference 2.63% 3.36% 0.72% 

6. Conclusions 

In this paper, the problem of optimizing the number and positions of waypoints in a cooperative 
aerial reconnaissance model using a number of unmanned aerial systems was examined. As a 
solution, a modified simulated annealing algorithm was proposed. The improvement of the new 
algorithm, compared with the principle used in the original CAR model, was verified in a series of 
experiments. 

The experiments in the first set were designed to evaluate the proposed probabilistic algorithm. 
In these experiments, the optimal deployments of waypoints are already known and thus can be 
compared with the results achieved by the algorithm. The average difference between the optimal 
solution and the solution found by the simulated annealing was only 0.023%; in the most complex 
problem, with 71 waypoints (142 independent variables), the difference from the optimal solution 
was 0.114%. 

The second set of experiments was based on typical reconnaissance scenarios, and their purpose 
was to evaluate the increase in effectiveness of the reconnaissance operation. The new model 
managed to shorten the time needed to conduct operations by an average of 10%. Also, the 
comparison of the results with the lawnmower pattern proved the effectiveness of the proposed 
method. Furthermore, one of these experiments was performed in the SteelBeast simulation system 
in order to verify the model under various meteorological conditions. The simulations confirmed the 
results estimated by the model. 

In the CAR model, the collision avoidance of cooperating UAVs is not taken into consideration. 
It is supposed that each UAV has its own internal collision avoidance system or other precautions 
are taken (e.g., different height of flight for each vehicle). Moreover, trajectories of individual vehicles 
should not cross if planned optimally. 

The future work of the authors will focus on the problem of persistent surveillance by a number 
of unmanned aerial vehicles. In this task, similar principles of the optimization of waypoints can be 
used. Also, the possibility of extending the model to avoid the potential collisions will be investigated. 
The model could integrate some principles of the traffic collision avoidance systems (TCAS), for 
example, see the work of [34]. Furthermore, the experiments will be conducted to verify the 
performance of the model when planning the reconnaissance of a very uneven terrain or in an urban 
area, where some parts of the area of interest may be occluded. 
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