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Abstract: A novel method is proposed for azimuth sidelobes suppression using multi-pass squinted
(MPS) synthetic aperture radar (SAR) data. For MPS SAR, the radar observes the scene with different
squint angles and heights on each pass. The MPS SAR mode acquisition geometry is given first.
Then, 2D signals are focused and the images are registered to the master image. Based on the new
signal model, elevation processing and incoherent addition are introduced in detail, which are the
main parts for azimuth sidelobes suppression. Moreover, parameter design criteria in incoherent
addition are derived for the best performance. With the proposed parameter optimization step,
the new method has a prominent azimuth sidelobes suppression effect with a slightly better azimuth
resolution, as verified by experimental results on both simulated point targets and TerraSAR-X data.
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1. Introduction

For many applications of synthetic aperture radar (SAR), the images can be adversely affected by
sidelobes, especially in the case of strongly scattering targets with weak targets nearby, such as in a
harbour with ships and containers. Hence, it is often desirable to suppress the sidelobes in order to
improve image quality.

Several methods have been proposed to do this. The most common approach [1–3] imposes a
weighting on the signal spectrum, such as the Taylor and Hamming windows, but such methods
tend to widen the mainlobe. Another method, known as spatially variant apodization (SVA) [4,5],
and its modified versions [6–9], can reduce the sidelobes without degrading mainlobe resolution.
However, nonlinear apodization modifies the statistical distribution of the pixel intensities, thus
hindering the extraction of information from homogeneous regions [10]. In [11], a dual-Delta
factorization method was proposed to suppress sidelobes in squinted and bistatic SAR images, but this
iterative method is complex and computationally expensive.

This letter introduces a novel multi-pass squinted (MPS) SAR, whose data can be used to realize
3D imaging and also to produce 2D images with low azimuth sidelobes. Compared with traditional
multi-pass SAR for 3D imaging [12] or multi-baseline SAR for interferometry [13], in which the SAR
operates in broadside mode, MPS SAR works in squint mode and observes the scene with different
azimuth squint angles on each pass. Squint mode increases the difficulty of SAR signal processing
and can also provide more possibilities in terms of applications with corresponding imaging methods.
In this paper it is a novel application for azimuth sidelobes suppression based on MPS SAR mode; it can
suppress azimuth sidelobes significantly and improve the azimuth resolution slightly simultaneously.
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For azimuth sidelobes suppression, the first-order phase related to the Doppler centroid frequency
is specially preserved, which can be utilized in elevation processing. Some existing algorithms have
been adjusted to cater for this new signal model in elevation processing, resulting in the azimuth
mainlobe and sidelobes separating in elevation. Moreover, through the parameter optimization of
elevation integrated range, the performance of the azimuth sidelobes suppression can be better, which
is firstly introduced based on MPS SAR mode. The effectiveness of the proposed method is verified
by both simulated data and the real TerraSAR-X image data compared with the signal spectrum
weighting algorithms.

This letter describes a method for azimuth sidelobes suppression using MPS SAR data. In Section 2,
the imaging geometry is introduced. Section 3 builds the signal model and describes the processing of
the stack of images along elevation to yield resolution cells at different elevations, as in tomography.
However, unlike tomography, in this mode the azimuth sidelobes occur at different elevations and can
be eliminated by incoherent addition in elevation. The performance of the proposed method is related
to system parameters in Section 4, and a set of design criteria is proposed. Simulations with point
targets and real SAR images are performed to test the proposed method in Section 5 and conclusions
are drawn in Section 6.

2. Multi-Pass Squinted SAR

The imaging geometry of MPS SAR is shown in Figure 1a, where X, Y, Z, and S represent range,
azimuth, height, and elevation coordinates, respectively. The aircraft is in the azimuth-height plane, Ln

represents the nth pass of the aircraft, An,m is the center position of the SAR in the mth acquisition on
the nth pass, 2N + 1 and 2M + 1 are the numbers of passes and acquisitions, respectively, ϕn,m is the
azimuth squint angle, which is the angle between line-of-sight and broadside, and the heavy lines on
each pass represent the synthetic apertures of the acquisitions.
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Figure 1. Imaging geometry: (a) MPS SAR; (b) for azimuth sidelobes suppression. 

The imaging geometry of MPS SAR is shown in Figure 1a, where X, Y, Z, and S represent range, 
azimuth, height, and elevation coordinates, respectively. The aircraft is in the azimuth-height plane, 
nL  represents the nth pass of the aircraft, ,n mA  is the center position of the SAR in the mth 

acquisition on the nth pass, 2 1N +  and 2 1M +  are the numbers of passes and acquisitions, 
respectively, ,n mϕ  is the azimuth squint angle, which is the angle between line-of-sight and 
broadside, and the heavy lines on each pass represent the synthetic apertures of the acquisitions.  

Based on the imaging geometry in Figure 1a, data acquired with the same azimuth squint angle 
on each pass can be combined and processed for 3D imaging, which is similar to the traditional 
TomoSAR. Moreover, the data acquired with different azimuth squint angles on each pass can be 
selected and used to suppress azimuth sidelobes. However, the acquisition of the data should meet 
the imaging geometry for azimuth sidelobes suppression, as shown in Figure 1b. Figure 1b represents 
the 2 1N +  MPS acquisitions taken from each pass in Figure 1a; nA  is the center position of the 

Figure 1. Imaging geometry: (a) MPS SAR; (b) for azimuth sidelobes suppression.

Based on the imaging geometry in Figure 1a, data acquired with the same azimuth squint angle on
each pass can be combined and processed for 3D imaging, which is similar to the traditional TomoSAR.
Moreover, the data acquired with different azimuth squint angles on each pass can be selected and
used to suppress azimuth sidelobes. However, the acquisition of the data should meet the imaging
geometry for azimuth sidelobes suppression, as shown in Figure 1b. Figure 1b represents the 2N + 1
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MPS acquisitions taken from each pass in Figure 1a; An is the center position of the acquisition on
the nth pass, ϕn is the azimuth squint angle, H is the height of the center pass, θ is the incidence
angle and α is the “flight angle”, which is the angle between the line of the center positions (assumed

collinear and equally spaced) and the azimuth coordinate; this is given by α = acos
((

→

A1An ·
→
y
)
/
∣∣∣∣∣ →A1An

∣∣∣∣∣).
B =

∣∣∣∣∣ →

AnAn+1

∣∣∣∣∣ is the distance between two adjacent center positions of the SAR and is referred to as

the baseline (assumed to be the same for all adjacent pairs), and Ba,n, B//,n, and B⊥,n are the azimuth,

parallel, and orthogonal baselines, respectively, which are the projections of the vector
→

AnAN+1 along
the azimuth, the line of sight, and elevation, with the following forms:

Ba,n = (n−N − 1) · B · cosα
B⊥,n = (n−N − 1) · B · sinα · sinθ
B//,n = (n−N − 1) · B · sinα · cosθ

, (1)

P is a point target in the scene, and represents the distance between the SAR center position An and P:

Rn(r) ≈
√(

r + B//,n
)2
+ B2

⊥,n + B2
a,n ≈

√(
r + B//,n

)2
+ (Ba,n)

2 + B2
⊥,n

/(
2
√(

r + B//,n
)2
+ (Ba,n)

2
)

(2)

where r represents the distance between AN+1 and P.

3. Signal Processing

The signal model was built and the proposed method for suppressing azimuth sidelobes was
derived based on the imaging geometry described in Section 2. It contained four main steps: 2D
focusing, image registration, elevation processing, and incoherent addition, as indicated in Figure 2.
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P  is a point target in the scene, and ( )nR r  represents the distance between the SAR center position 

nA  and P : 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 22 2 2
//,n , a, //,n , , //, ,2n n n a n n n a nR r r B B B r B B B r B B⊥ ⊥

 ≈ + + + ≈ + + + + + 
 

, (2) 

where r  represents the distance between 1NA +  and P . 
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Figure 2. Flowchart of the proposed processing method for azimuth sidelobes suppression.

The data acquired on each pass were first focused to obtain a 2D image. Here, the modified chirp
scaling kernel [14], which is suitable for squinted SAR, was used to process the raw data to get focused
2D images. However, not only the energy was focused in this 2D image processing, but also the
phase was preserved, which can be utilized in subsequent elevation processing for azimuth sidelobes
suppression in the proposed method. The 2D images were then registered to the selected master image
(n = N + 1). This allowed the stack of images to be processed along elevation, where the 2D signal
from the target P in the nth image is given by:

sn(y′, r′) =
√
σp · sin c

(
r′ − r
ρr

)
· sin c

(
y′

ρa

)
· exp

{
− j

4π
λ

Rn(r)
}
· exp

{
− j2π fd,ny′/v

}
, (3)
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where σP is the radar cross-section (RCS) of P, λ is wavelength, ρa and ρr represent azimuth and range
resolution, respectively, r′ and y′ are the variables associated with the range and azimuth position of
the focused image, v is the velocity of the SAR, and fd,n is the Doppler centroid frequency of the nth
acquisition:

fd,n = 2v sinϕn/λ ≈ 2vBa,n/

λ
√(

r + B//,n
)2
+ B2

a,n

. (4)

In Equation (3), the second exponential term is the specially preserved phase, which indicates that
in different acquisitions the phase varies with the Doppler centroid frequency and the target’s azimuth
position. The 2D focusing and image registration are the basics of the proposed method.

We assumed that the variation in the heights of the targets in the scene was less than the resolution
in elevation (see Equation (9)), so the imaging area could be seen as effectively flat. Thus, the targets in
the same 2D image cell cannot be separated in elevation after elevation processing.

As a new application, the spectral analysis (SPECAN) [15,16] algorithm was used to process the
MPS SAR signal in elevation. The residual phase induced by varying center distance Rn(r) was first
compensated by multiplying the signal with its complex conjugate phase:

H(r, n) = exp
{
j 4π
λ Rn(r)

}
≈ exp

{
j 4π
λ

(√(
r + B//,n

)2
+ B2

a,n + B2
⊥,n

/(
2
√(

r + B//,n
)2
+ (Ba,n)

2
))}

. (5)

After multiplication, the signal was modeled as:

sn
′(y′, r′) =

√
σp · sin c

(
r′ − r
ρr

)
· sin c

(
y′

ρa

)
· exp

{
− j2π fd,n

y′

v

}
, (6)

Then, a new variable ξn (different from that in [15,16]) was designed to focus the signal in elevation
by the single Fourier transform (FFT), to give:

ss(y′, r′, s) =
∑2N+1

n=1 (sn
′(y′, r′) · exp

{
− j2πξns

}
) ≈ (2N + 1)√σp · sin c

(
r′−r
ρr

)
· sin c

(
y′

ρa

)
· sin c

(
s+y′cotα/sinθ

ρe

)
(7)

where,

ξn = 2B⊥,n

/λ
√(

r + B//,n
)2
+ (Ba,n)

2

 ≈ 2B⊥,n/(λr), (8)

ρe is the resolution in elevation, given by [12]:

ρe ≈ λr
/(

2B⊥,total
)
. (9)

Here, B⊥,total = 2N · B sinα · sinθ is the total orthogonal baseline. The elevation range after
elevation processing is [−Hmax/2, Hmax/2], where the maximum ambiguity in elevation Hmax is:

Hmax ≈ λr/(2B sinα · sinθ). (10)

From Equations (3) and (7), it can be seen that the signal in (r′, y′, 0) occurs at (r′, y′,−y′cotα/sinθ)
after elevation processing, which means the azimuth signal of the target will be located at different
positions in elevation, i.e., the mainlobe and sidelobes along the azimuth of the focused target will
separate in elevation. Moreover, if

∣∣∣−y′cotα/sinθ
∣∣∣ > Hmax/2, the signal will be aliased in elevation;

the aliased position is given by:

s′ = −y′cotα/sinθ−
⌊
−y′cotα/sinθ/Hmax + 0.5

⌋
·Hmax, (11)

where bxc is the largest integer not larger than x.
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To further explain the effect of elevation processing, Figure 3a shows the azimuth profiles of a
target in a 2D image, and Figure 3b is a slice across the 3D image in the azimuth-elevation plane. It can
be seen that after elevation processing, the sidelobes at different azimuth positions were shifted to
different elevations. Moreover, the F and G parts in Figure 3a were located at the wrong positions due
to aliasing in elevation, as given by Equation (11).Sensors 2019, 19 5 of 11 
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the 3D image in the azimuth-elevation plane.

Thus, if we integrate the energy of the signal ss(y′, r′, s) incoherently over the elevation range
[−h, h] in which mainly the azimuth mainlobe and maybe several lower sidelobes are distributed,
an image, s̃(y′, r′), with low azimuth sidelobes is obtained:

s̃(y′, r′) =
∫ h

−h

∣∣∣ss(y′, r′, s)
∣∣∣2ds. (12)

It can be seen that the selection of h is crucial in determining the performance of the proposed
sidelobes suppression method and it will be discussed below in detail.

4. Parameter Design

Optimization of the performance of the proposed method is based on three criteria:

4.1. The Energy of the Azimuth Mainlobe Must be Preserved

From Equation (7), the azimuth signal is distributed in elevation. To preserve the energy of the
azimuth mainlobe, the integrating range [−h, h] must contain the position of the azimuth mainlobe.
This is distributed in space because a point target can occur anywhere within the resolution cell.
We defined the azimuth mainlobe as the part of the azimuth profile (see Figure 4b) in which the energy
exceeds −4 dB (where the maximum value of the azimuth profile is normalized to 0 dB). Setting

10 log
(
sin c2

(
y′0/ρa

))
= −4, (13)
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yields y′0 ≈ 0.5ρa. Assuming the center position of the azimuth mainlobe in elevation is s0 (where
s0 ∈ (−0.5ρe , 0.5ρe)), the elevation range of the azimuth mainlobe is [s0− y′0cotα/sinθ, s0 + y′0cotα/sinθ].
So, to preserve the energy of the azimuth mainlobe of the target, we select,

h = y′0cotα/sinθ+ 0.5ρe = 0.5ρacotα/sinθ+ 0.5ρe. (14)

Sensors 2019, 19 6 of 11 
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4.2. The First Azimuth Sidelobes in Elevation Must Be Outside the Integrating Range [−h, h]

The zeroes of sin c(y′/ρa) occur at the points,

y′m = ±mρa(m = 1, 2, · · ·). (15)

The first zero point is y′1 = ρa, so the following relationship must hold:

y′1cotα/sinθ− 0.5ρe ≥ h. (16)

Inserting (9) and (14) into (16), we have:

y′1 = ρaB cosα ≥ λr/(2Nρa). (17)

4.3. The 2nd to the Kth Azimuth Sidelobes in Elevation Must Be Outside the Integrating Range [−h, h]

k is a number we select. With the increase of k, the performance of azimuth sidelobes suppression
is better. Two cases need to be considered: (a) if the kth azimuth sidelobes is not aliased in elevation,
it will be outside [−h, h] when (17) is satisfied, since y′kcotα/sinθ − 0.5ρe ≥ y′1cotα/sinθ − 0.5ρe,
where y′k = kρa; (b) if the kth azimuth sidelobes are aliased in elevation, the following conditions must
be satisfied: {

y′k+1 = (k + 1)ρa

y′k+1 cotα/sinθ+ 0.5ρe ≤ Hmax − h
, (18)

Hence,
B cosα ≤ λr(2N − 1)/(4(k + 1.5)Nρa). (19)

The sidelobes beyond kth with lower energy will contribute little, whether they are relocated in or
out the [−h, h] in elevation.

The first to kth azimuth sidelobes up to and including the kth will be suppressed if (17) and (19)
are met. Furthermore, based on (17) and (19), we have:

N ≥ k + 2, (20)
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which means that more flight passes allow more azimuth sidelobes to be removed. Figure 4 illustrates
the process of the parameter selection.

In summary, the integrating range can be computed based on (14), and the baseline B, the flight
angle α, and the number of passes 2N + 1, can be optimized using (17), (19), and (20).

5. Performance Simulation

This section shows the performance based on simulations, using the parameters listed in Table 1
where PRF represents the pulse repetition frequency. The associated elevation resolution is about 55 m,
and the maximum ambiguity in elevation (see (10)) is 1654 m. The integrating range in elevation is
[−92 m, 92 m]. Moreover, from (17) and (19), the first to the 10th azimuth sidelobes will be suppressed
after incoherent addition.

Table 1. List of simulation parameters.

Parameters Value Parameters Value

Aircraft Height 20 km Bandwidth 80 MHz
Incidence Angle 30◦ Sample Rate 100 MHz

Wavelength 0.03 m PRF 70 Hz
Velocity 100 m/s Antenna Length 4.0 m

Flight Angle 2◦ Pulse Duration 10
Baseline 12 m Flight passes 31

5.1. Point Target Simulations

Simulations for a point target were first performed to test the proposed method, as shown in
Figure 5. After elevation processing, a 3D image was obtained, and Figure 5a is a slice across this image
in the azimuth-elevation plane. It can be seen that the azimuth sidelobes were compressed to different
positions in elevation, and some sidelobes were aliased. The energy of the elevation signals between
the two red lines was then incoherently integrated to form a 2D image of the impulse response function
(IRF), as shown in the contour plot of Figure 5b. As can be seen, the target was well focused with low
azimuth sidelobes. The azimuth profile obtained using the proposed method was compared with
the (N + 1)th 2D azimuth profile obtained by a classical 2D focusing algorithm, using a rectangular
window (Figure 5c) and a Taylor window with parameters 0.25 (Figure 5d). The proposed method
is seen to suppress azimuth sidelobes without degrading the azimuth resolution. The first sidelobes
were preserved partly because they were in the integrating region, as shown in Figure 5a, but were less
than −30 dB. This was much lower than that for the rectangular window (Figure 5c), and was achieved
without the loss of resolution suffered when using the Taylor window (Figure 5d).

To further illustrate the performance of the proposed method, azimuth resolution, peak sidelobe
ratio (PSLR), and integrated sidelobe ratio (ISLR) [17] were given as follows. As shown in Table 2,
the azimuth resolution using the proposed method was 7.04% slightly higher than that for the
rectangular window, at about 1.85 m. PSLR of the images weighted by rectangular window and Taylor
window were −13.28 dB and −25.41 dB. ISLR of these two images were −10.11 dB and −20.18 dB,
correspondingly. Through processing with the proposed method, the PSLR and ISLR of the image
reached −31.07 dB and −29.36 dB, respectively, which were much lower than the other two images.
Overall, it could be concluded that the proposed method can suppress azimuth sidelobes splendidly
with the maintained azimuth resolution.

Simulations with three point targets with different RCSs illustrate the advantages of the proposed
method for detecting weak scatterers. The targets A, B, and C were located at −3 m, 0 m, and 3 m
along the azimuth, with RCS −20, −10, and 0 dB, respectively, and they had the same height and
range positions. Figure 6 compared the azimuth profiles using the proposed method and the classical
2D focusing algorithm with a Taylor window. The dashed lines in Figure 6 indicated the true target
positions. It could be seen that they were clearly separated and had the correct RCS when the proposed
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algorithm was used. In contrast, under the classical 2D focusing algorithm, the weaker scatterers (A
and B) were seriously affected by the sidelobes of the strong scatterer C and could not be detected.
Moreover, the mainlobe of C was widened and affected by the sidelobes of B.Sensors 2019, 19 8 of 11 
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Table 2. Imaging quality indicators for a single point target along azimuth.

Single Point Target Resolution PSLR ISLR

Rectangular Window 1.99 m −13.28 dB −10.11 dB
Taylor Window 2.49 m −25.41 dB −20.18 dB

Proposed Method 1.85 m −31.07 dB −29.36 dB
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Furthermore, simulations with three point targets at different heights were performed to verify
the proposed method in a scene with height variations. The targets D, E, and F had the same range
position and RCS and were located at (−10 m, −10 m), (0 m, 0 m), and (10 m, 10 m), where (y, z) are
the (azimuth, height) coordinates. Figure 7a,b showed the contour plots of the IRF using the classical
2D focusing algorithm with a Taylor window in azimuth and the proposed method. It could be seen
that the targets were focused at different range positions due to their different heights. The targets in
Figure 7b were all well focused, and had lower azimuth sidelobes and better azimuth resolutions than
those in Figure 7a.
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5.2. Real SAR Image Simulations

Simulations were also performed on a TerraSAR-X image of a part of Dingxing airport, China,
which contains 500 × 300 (azimuth × range) pixels. The original image from TerraSAR-X was used as
RCS of the extended target to simulate MPS SAR data with the imaging geometry in Figure 1 and the
simulation parameters listed in Table 1. It should be noted that the height of the targets in this real
SAR scene is less than the elevation resolution 55 m. The focused 2D images were then processed by
the proposed method to suppress the azimuth sidelobes.

Figure 8 showed the resulting images, which were normalized to the same total energy. Figure 8a,
b were formed using the classical 2D focusing algorithm with a rectangular window and a Taylor
window in azimuth, respectively. High azimuth sidelobes can be seen in Figure 8a, which can be
suppressed with a Taylor window at the expense of resolution (Figure 8b). Figure 8c was the image
obtained using the proposed method. The targets now had low azimuth sidelobes and the mainlobes
had not been widened, compared with those in Figure 8a,b (for example, see the target in the red circle).

As a measure of image focusing quality we used image contrast, γ, defined as the ratio of
standard deviation and mean of image intensity. Typically, a larger contrast means better image quality.
The values of contrast in the images in Figure 8 were γa = 0.1867, γb = 0.1963, and γc = 0.2492,
respectively; as expected, the image in Figure 8c had the highest contrast.
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Figure 8. 2D images obtained by processing the raw data simulated with a TerraSAR-X image of
part of Dingxing airport, China, with: (a) classical 2D focusing algorithm with a rectangular window;
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the original SAR image belongs to Airbus.

6. Conclusions

This article proposed a novel MPS SAR mode and a method to process MPS SAR data together
with parameter selection criteria that can be used to optimize system design. Based on the MPS SAR
mode, this is a novel application to suppress azimuth sidelobes using some of the existing algorithms,
which were already adjusted to meet the new mode. Simulations indicated that it provided 2D images
with lower azimuth sidelobes compared with some existing azimuth suppression methods. The analysis
presented here is idealized, since it assumes flight passes whose center positions are collinear and equally
spaced, which would in practice be difficult to satisfy. Future work will analyze the effects of relaxing
these conditions.
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