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Abstract: The normal and disordered people balance ability classification is a key premise for
rehabilitation training. This paper proposes a multi-barycentric area model (MBAM), which can be
applied for accurate video analysis based classification. First, we have invited fifty-three subjects
to wear an HTC (High Tech Computer Corporation) VIVE (Very Immersive Virtual Experience)
helmet and to walk ten meters while seeing a virtual environment. The subjects’ motion behaviors
are collected as our balance ability classification dataset. Secondly, we use background differential
algorithm and bilateral filtering as the preprocessing to alleviate the video noise and motion blur.
Inspired by the balance principle of a tumbler, we introduce a MBAM model to describe the body
balancing condition by computing the gravity center of a triangle area, which is surrounded by the
upper, middle and lower parts of the human body. Finally, we can obtain the projection coordinates
according to the center of gravity of the triangle, and get the roadmap of the subjects by connecting
those projection coordinates. In the experiments, we adopt four kinds of metrics (the MBAM,
the area variance, the roadmap and the walking speed) innumerical analysis to verify the effect of the
proposed method. Experimental results show that the proposed method can obtain a more accurate
classification for human balance ability. The proposed research may provide potential theoretical
support for the clinical diagnosis and treatment for balance dysfunction patients.

Keywords: balance ability classification; multi-barycentric area model; virtual reality; video analysis

1. Introduction

Imbalance capacity can seriously affect people’s normal study and life. The number of disordered
people in the world has increased year after year, and many of them are prone to anxiety or may
even give up treatment due to the tests and training being limited, meaning they cannot achieve their
desired results in a reasonable amount of time. Therefore, being able to screen out disordered people
according to their balance ability, and improve their balance ability through training has an important
practical significance.

At present, the existing research on human balance ability is mainly based on physical testing and
mechanical testing, whose fundamental principles are based on the shift of the center of gravity, moving
speed and trajectory, and other relevant parameters [1,2]. Inspired by this research, a multi-barycentric
area model (MBAM) is proposed to test body balance ability in this paper. While typical people can
integrate into society easily, balance disabled people may have resistance due to their physical struggles
and fear. In recent years, with the rapid development of VR technology, researchers have developed
some VR systems suitable for rehabilitation training, which is more safe and feasible for testing and
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training people with disordered suffering [3,4]. The literature [5] designed and developed a virtual
dolphinarium for potential autism intervention. The autistic children will be allowed to act as dolphin
trainers at the poolside and to learn (nonverbal) communication through hand gestures with the virtual
dolphins, which will promote their learning and positive behavior, and can help them improve their
communication, and social interaction and learning abilities. The literature [6] studied the method
of relieving neural pressure based on virtual reality technology. Participants accept VR-based stress
therapy, including the islands environment, forest environment, and soothing music. Aiming at a
similar target, we intend to eliminate psychological pressure of disordered suffering people by improve
the testing and training process.

Accordingly, we propose a classification method for those with a balance ability problem based
on MBAM and hope to carry out balance ability rehabilitation training for them. The balance ability
detection and rehabilitation training system is designed based on a HTC VIVE helmet VR platform.
Both normal and balance disordered people use the same virtual scene while capturing their moving
behavior. Then, the training videos are extracted to multiple features, such as the roadmap, moving
speed, multiple gravity centers. Finally, all the features of the balance disordered people can be
obtained and analyzed for classification and potential training purposes.

2. Methods

2.1. Participants

The existing literature indicates that the individual experience in a VR environment varies greatly
due to age and physical condition [7–10]. The immersive virtual environment can produce a sense of
dizziness and discomfort with the visual stimulation to subjects [11,12], and the feeling of discomfort
for the elderly and weak is stronger. There are 53 volunteers (32 males, 21 females) from a university,
aged between 18 and 27 years (mean age 24.78 ± 2.17 years, mean height 1.69m ± 0.18, mean weight
68.24kg ± 13.67) with normal indexes of physical examination in recent participant experiments. Some
volunteers disclosed that they have occasionally have symptoms such as carsickness, fear of heights,
and prone to falling. The experiments in this work do not involve the volunteers’ further detailed
information for privacy, and each participant’s information will be replaced by a number where needed
in the experiment.

2.2. Human Body Posture Modeling

Many indicators and features can be measured for balance ability of the human body. In this
paper, we design an area-based balanced posture model and use the balance principle of a tumbler
to explain the relationship between the triangle area and the balance ability. As shown in Figure 1a,
the tumbler is in a state of equilibrium, and gravity and supporting forces act in opposite directions.
As shown in Figure 1b, the gravity centers will be not in a line when the tumbler is in an unbalanced
state. Figure 1c shows the MBAM of the typical people, and Figure 1d is the MBAM of the balance
disordered people, where P1, P2, and P3 are the center of gravities of the upper, middle and lower
part of the human body, respectively; and S1 and S2 are the areas of the triangle composed of three
centers of gravities. θ is the tilt angle of the body, which can be calculated with gravity centers. l is the
distance between Ci and Di. We choose the middle position of the two feet as the contact point Di,
since the two feet will be landed alternately when people are walking.

In general, l is the smallest and Ci is the lowest when the tumbler is in a balanced state. The line
connecting Ci and Di, and the vertical line from Ci to the ground will be overlapping with each other.
The triangle area and θ are also very small; at this time the body posture tends to be in a line. When
the body deviates from its equilibrium state, the gravity center Ci of the triangle will rise and θwill
increase gradually, as similar to the people shown in Figure 1e,f.

The establishment and analysis of the whole model are based on the Bayesian probability
theorem [13] as shown in Equation (1):
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P(A
∣∣∣B) = P(B

∣∣∣A)P(A)/P(B), P(A
∣∣∣B) ∝ P(B

∣∣∣A)P(A) (1)

where A represents the normal posture of the tester, and B represents the triangle area composed of
three barycenters.Sensors 2019, 19, x FOR PEER REVIEW 3 of 10 
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Figure 1. figure of multi-barycentric area model (MBAM). (a) Balanced tumbler. (b) Unbalanced 
Tumbler. (c) MBAM of normal people. (d) MBAM of disordered people. (e) Balanced human body 
posture. (f) Unbalanced human body posture. 

The establishment and analysis of the whole model are based on the Bayesian probability 
theorem [13] as shown in Equation (1): 

( | ) ( | ) ( ) / ( ), ( | ) ( | ) ( )P A B P B A P A P B P A B P B A P A= ∝  (1) 

where A represents the normal posture of the tester, and B represents the triangle area composed of 
three barycenters. 

While peoplewalking, the average area of multi-barycenters are calculated and indicated by η1 
and η2 for typical people and disordered people, respectively, as shown in Equations (2)–(4). 

1
1 / ( , )

n

i i
i

l n d D C
=

=   (2) 

1 2 31 ( , , )
1 1

1 / ( , ) ( / )
n n

i i p p p
i i
n d D C l S nη

= =

 = − 
 

   (3) 

1 2 32 ( , , )
1 1

1 / '( ' , ' ) ( ' / )
n n

i i p p p
i i
n d D C l S nη

= =

 = − 
 

   (4) 

where n is the number of the subjects. Di and D′i are the middle position between two feet of each 
step for the i-th normal and the i-th disordered. Ci and C’i are the gravity center of the triangle 
composed of multi-barycenters of the i-th normal and the disordered. d(Di,Ci) represents the distance 
between Di and Ci, and l represents the mean distance between Ci and Di for n subjects. p1, p2, and p3 
are three gravity centers of each person, and S (p1, p2, p3) and S′ (p1, p2, p3) are the area of triangle that 
can be used as an effective metric for the balanced and unbalanced status. 

If the area of multi-barycenter is less than η1, it can be identified as the normal. Otherwise, it 
will be identified as disordered if it is greater than η2. However, it is more difficult to judge if it is 
between η1 and η2, and this could be determined roughly by setting a threshold T according to the 
experience. However, the level of accuracy is not very high, and it needs to be combined with other 
strategies. 

In addition, in the experiments we also introduce the variance indicated by σ2 defined as 
Equation (5). 
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Figure 1. Figure of multi-barycentric area model (MBAM). (a) Balanced tumbler. (b) Unbalanced
Tumbler. (c) MBAM of normal people. (d) MBAM of disordered people. (e) Balanced human body
posture. (f) Unbalanced human body posture.

While peoplewalking, the average area of multi-barycenters are calculated and indicated by η1

and η2 for typical people and disordered people, respectively, as shown in Equations (2)–(4).
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where n is the number of the subjects. Di and D′i are the middle position between two feet of each step
for the i-th normal and the i-th disordered. Ci and C’i are the gravity center of the triangle composed of
multi-barycenters of the i-th normal and the disordered. d(Di,Ci) represents the distance between Di
and Ci, and l represents the mean distance between Ci and Di for n subjects. p1, p2, and p3 are three
gravity centers of each person, and S (p1, p2, p3) and S′ (p1, p2, p3) are the area of triangle that can be
used as an effective metric for the balanced and unbalanced status.

If the area of multi-barycenter is less than η1, it can be identified as the normal. Otherwise, it will
be identified as disordered if it is greater than η2. However, it is more difficult to judge if it is between
η1 and η2, and this could be determined roughly by setting a threshold T according to the experience.
However, the level of accuracy is not very high, and it needs to be combined with other strategies.

In addition, in the experiments we also introduce the variance indicated by σ2 defined as Equation (5).

σ2 =
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i=1
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where St
i is the area of the triangle at a certain time t, and Si is the average area of all time during the

walking for the i-th person.

2.3. Human Body Posture Feature Extraction and Classification

The feature extraction and classification process of unbalanced body posture consists of three
steps: Firstly, differential and filtering are performed as image preprocessing on the video data;
Then, the based balance ability classification is achieved by using the support vector machine (SVM)
method after thefeature extraction; Finally, the experiments are conducted on real datasetsto verify the
proposed classification.

The process of image preprocessing and feature extraction is described in Figures 2 and 3.
As shown in Figure 2a, the system can locate the positions of the helmet and handle with the HTC
VIVE platform. The training videos are taken from the front and side of the walking path. The subject
gets the designated fruit or vegetable from the table at the bridgehead (Figure 2b) by following the
instructions. Then, they are required to place the objects into the basket at the bridge-end, as seen in
Figure 2d–e. In the real experimental environment, in order to facilitate the following image processing,
we request the subjects wear dark clothes as the wall is white.
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Figure 2. The subject walking in theVR scene. (a) The chart of experiment scene scheme. (b) The 
action of the subject for picking up a piece of fruit in the real environment. (c) VR scene 
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environment. (e) VR scene corresponding to (d). 
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Step 1. Video frame preprocessing. Among the obtained experimental video data, taking one frame 
from each consecutive two frames and save it for further processing, named Ip. 

Step 2. Difference algorithm. The image Ip and blank scene Ie are used to make a difference to obtain 
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Figure 2. The subject walking in theVR scene. (a) The chart of experiment scene scheme. (b) The action
of the subject for picking up a piece of fruit in the real environment. (c) VR scene corresponding to (b).
(d) The action of the subject for putting down a piece of fruit in the real environment. (e) VR scene
corresponding to (d).

In order to summarize the proposed model, our preprocessing process can be summarized by the
following steps as shown in Figure 3.

Step 1. Video frame preprocessing. Among the obtained experimental video data, taking one frame
from each consecutive two frames and save it for further processing, named Ip.

Step 2. Difference algorithm. The image Ip and blank scene Ie are used to make a difference to obtain
the difference image Idif [14], as shown in Equation (6).

Idi f = Ip − Ie (6)

Step 3. Image denoising. We use a bilateral filter to denoise [15].
Step 4. Using the edge detection operator to process the corroded grayscale image to obtain the

connected region of the image [16].
Step 5. The image moments are used to describe feature parameters. An image is a two-dimensional

plane, and the pixel value of each point can be regarded as the density of the point.
The expectation of that point is the moment of it.
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As shown in Equation (7), if it is a binary image, V(i,j) has only two values: 0 (black) and 1 (white).

M10 =
∑

i

∑
j

i ·V(i, j), M01 =
∑

i

∑
j

j ·V(i, j), M00 =
∑

i

∑
j

V(i, j) (7)

where i and j are the coordinate of the point, respectively, and M10 and M01 are the accumulation of
the x coordinate and y coordinate of all white areas of the image, respectively. Therefore, (xi, yi) is the
barycentric coordinate of the image calculating by Equation (8). Accordingly, the triangle area can be
obtained according to the upper, middle and lower center of gravities [17].

xi = M10/M00, yi = M01/M00 (8)
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The pseudocode for extracting features is as follows:

Feature extraction pseudocode

1: Begin Function
2: Obtain training videos
3: Video image preprocessing. Take one frame from each two consecutive frames and record.
4: Select pure background image without person as Ie.

Select images with person walking as Ip.
5: Do image difference (Idif = Ip − Ie).
6: Image denoising using bilateral filtering
7: Search body silhouette using edge detection operator
8: Calculate the smallest rectangle that is perpendicular to the boundary of body silhouette
9: Search the upper, middle and lower barycenter of the human bodyaccording to the image moment, (center1,
center2, center3)
10: Calculate the area of a triangle composed of three centers of multiple barycenters.
11: Draw a walking roadmap according to the projection of the triangle.
12: Calculate walking speed of the first half and the second half during the whole walking time, respectively.
13: End function

2.4. SVM-Based Balance Ability Classification

SVM (Support Vector Machine) is a very effective and practical method for solving binary
classification problems, which maps input vectors to high-dimensional feature spaces through
pre-selected nonlinear mapping relationand constructs a linear classification in the feature space, and
determines the final decision function by solving the dual problem [18].
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In this paper, the triangle area composed of multiple barycentres is regarded as input data of SVM,
and the classification accuracy is 87.8788%. We take one frame from each consecutive two frames, and
the data selected follows a Gaussian distribution. For example, in all recorded image frames, 5% of the
images are extracted in the first 20% of the time period, and 40% in the middle 60% of the time period,
and 5% in the last 20% of the time period for analysis. Table 1 shows the correct label and the test label
of the test data for 24 groups, where 1 indicates the label of the normal people and −1 indicates the
label of the disordered people. According to the classification result of Table 1, only one group of
classification result is wrong, which verifies the validity of the MBAM model.

Table 1. Classification test data and labels.

Data 387 326 382 297 362 351 310 390 281 353 376 389
Correct label 1 1 1 1 1 1 1 1 1 1 1 1

Test label 1 1 1 1 1 1 1 1 1 1 1 1

Data 378 325 355 382 279 267 372 254 268 367 322 371
Correct label −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

Test label −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 1 −1

3. Results

3.1. Analysis of Experimental Results

At present, the assessment of human body balance ability mainly includes traditional observation,
scale evaluation and balancing instruments [19,20]. Also, more and more VR-based techniques are
used in clinical assessment of balance ability [21]. In this article, we apply classification method based
on visual stimulation for human balance ability in VR environment, which is safe, easy to operate, and
low cost. This method can acquire the data of the multi-barycentric area during walking and classify
accordingly. We expect this system could do some meaningful work for further rehabilitation training
for people with balance dysfunction.

Table 2 is the comparison of classification accuracy for body balance ability in 12 normal subjects
and 12 balance dysfunction subjects in VR environment and physical environment, respectively. We
select 300 frames of images for each participant to analyze. The classification accuracy of balance
ability for normal people both in VR environment and physical environment is 100%. However,
the classification results for the disordered in VR environment and physical environment are quite
different, and that is about 91.67% and 58.33%, respectively. In a VR environment, subject No.23
missed detection, and in a physical environment, subjects No.13, 15, 18, 23 and 24 missed detection.
Analyzing the reasons: In the actual physical environment, subjects can see their body and the real
circumstances, so they can rely on the information obtained by their eyes to predict the comingmotion
and make posture adjustments in advance. Compared with physical scenes, in the VR environment
(with a helmet), subjects cannot see their body and the whole real physical scene; therefore, they could
not predict the next action, and adjust their body or make any preparation in advance. That is to say,
visual correction effectsin advance can be eliminated partly in a VR environment, and thus thebalance
dysfunctioncan be detected more objectively. Hence, for disordered people in a VR environment, the
detection accuracy is much higher than in a physical environment.

Table 2. Comparison of classification accuracy under a VR environment and a physical environment.

Subject Category Experimental
Environment

The Number
of Subject

Correct
Classification Accuracy

The normal
(Subject No.1~12)

VR environment 12 12 100%
Physical environment 12 12 100%

The disordered
(Subject No.13~24)

VR environment 12 11 91.67%
Physical environment 12 7 58.33%
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3.1.1. Analysis of the Multi-Barycentric Area

Among 24 subjects, 30 groups of data are selected for each subject according to the Gaussian
distribution mentioned in Section 2.4 for analysis. As shown in Figure 4, subjects 1 to 12 are normal,
and the area data are distributed between 300 and 2000; Subjects 13 to 24 with poor balance ability,
the area data are distributed between 2200 and 6000. Virtual scenes can easily to cause dizziness,
and people with balance impairment are more likely to be affected. Experimental data prove that
the triangle area enclosed by the multi-barycentric of the normal is smaller than that of people with
balance disorders in the VR scene.
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3.1.2. Analysis of Variance of the Multi-Barycentric Area

In the experiment, 12 typical people and 12 people with balance impairment are recorded.
The multi-barycentric area composed of the upper, middle and lower of human body is obtained by
pretreatment process mentioned in image preprocessing and feature extraction. The area variance is
shown in Figure 5. The experimental results show that the variance of multi-barycentric area in typical
people is small, and the body posture shaking is not obvious compared with that in people with a
balance disorder.
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3.1.3. Analysis of Roadmap and Moving Speed

Because of the visual stimulation of the virtual scene, the subject may appear dizzy when
walking [22,23]. In the experiment, fivetypical subjects and five disordered subjects from 53 subjects
are selected randomly.

For each person, we select 60 sets of data computed by the triangular projection coordinates
composed of multiple barycentres, and then connect the projection coordinates sequentially to get
the roadmap of each person. As shown in Figure 6, orange lines correspond to the walking track of
five typical subjects and the green lines correspond to five disordered subjects. From the roadmap,
compared with the typical subjects, we can see that the range of body moving of disordered subjects is
much larger than that of the typical subjects during the walking. Therefore, we can judge the balance
ability of subjects preliminarily by analyzing their walking routes roughly.
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Similarly, we can obtain the walking speed of 53 subjects. When they enter the virtual reality
scene in the early stage, they felt dizzy and walk slowly. After a period of training, this phenomenon
gradually disappeared. As shown in Figure 7, the walking speed of nine typical people and nine balance
impaired people in the first half and the second half in virtual reality environment are calculated,
respectively. We find that the walking speed of normal people was basically faster than that of balance
impaired people.
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4. Discussion

A MBAM model based on video analysis to assess the balance ability of the human body is
proposed in the article. After analyzing the training video data, we find that there is a significant
difference in the balance ability between typical and balance disordered people. The triangle area and
area variance of the typical people during walking are smaller than that of the disordered. By the
comparison of roadmap and walking speed, compared with people with balance impairment, the body
shaking of typical people in the virtual environment is not obvious, and the moving speed is faster.
Subjects walking in the VR environment for a long time will have a visual adaptation process. During
the visual adaptation process, the balance ability score increases as training time increases. Our method
can effectively be used to classify balance ability, and we hope it will provide clinical diagnosis and
theoretical support for the treatment of patients with balance dysfunction in clinical medicine.

The proposed model has a good classification on human balance ability, but we realize that there
are two limitations in the current study. Firstly, the subjects are all the adult young people aged
between 18 and 27 years, and there is no strong diversity at the age level of the subjects. Secondly,
the sample size in the experiments is 53, and it is insufficient. Even so, this original MBAM research
has initially shown its effectiveness in the experiments. In the following study, we plan to carry out the
research from two aspects. One is to introduce a deep learning frame to find better features for human
balance capacity classification. The other is to select subjects of different ages and levels to increase the
sample diversity in experiments to verify the effectiveness of more methods.

Author Contributions: Data collection, L.X. and T.Z.; Formal analysis, T.Z. and Z.X.; Methodology, L.X. and
H.J.; Software, Z.X. and T.Z.; Supervision, H.J.; Validation, L.X. and T.Z.; Writing—original draft, L.X. and H.J.;
Writing—review and editing, H.J. and Z.X.

Funding: This research was partially supported by the National Natural Science Foundation of China (61501370
and 61871319), andthe Technology Innovation Leading Program of Shaanxi (Program No. 2019CGXNG-015).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Zhao, W.J.; You, H.; Jiang, S.R.; Zhang, H.X.; Yang, Y.L.; Zhang, M. Effect of Pro-kin visual feedback balance
training system on gait stability in patients with cerebral small vessel disease. Medicine 2019, 98, e14503.
[CrossRef] [PubMed]

2. Xie, F.F.; Liu, X.M.; Guo, Z.H. Influencing Factors of Static Balance Posture Diagram. Acta Microsc. 2018, 27,
214–225.

3. Llorens, R.; Gil-Gomez, J.A.; Alcaniz, M.; Colomer, C.; Noé, E. Improvement in balance using a virtual
reality-based stepping exercise: A randomized controlled trial involving individuals with chronic stroke.
Clin. Rehabil. 2015, 29, 261–268. [CrossRef] [PubMed]

4. Calabrò, R.S.; Russo, M.; Naro, A.; De Luca, R.; Leo, A.; Tomasello, P.; Molonia, F.; Dattola, V.; Bramanti, A.;
Bramanti, P. Robotic gait training in multiple sclerosis rehabilitation: Can virtual reality make the difference?
Findings from a randomized controlled trial. J. Neurol. Sci. 2017, 377, 25–30. [CrossRef] [PubMed]

5. Cai, Y.; Chia, N.K.; Thalmann, D.; Kee, N.K.; Zheng, J.; Thalmann, N.M. Design and Development of a Virtual
Dolphinarium for Children with Autism. IEEE Trans. Neural Syst. Rehabil. Eng. 2013, 21, 208–217. [CrossRef]
[PubMed]

6. Taneja, A.; Vishal, S.B.; Mahesh, V.; Geethanjali, B. Virtual reality based neuro-rehabilitation for mental stress
reduction. In Proceedings of the 2017 Fourth International Conference on Signal Processing, Communication
and Networking (ICSCN), Chennai, India, 16–18 March 2017; pp. 1–5.

7. Almajid, R.; Keshner, E.; Wright, W.G.; Tucker, C.; Vasudevan, E. Effect of visual dependence and task loads
on the TUG sub-components in old and young adults. In Proceedings of the International Conference on
Virtual Rehabilitation, Montreal, QC, Canada, 19–22 June 2017.

8. Grabowski, P.J.; Mason, A.H. Age differences in the control of a precision reach to grasp task within a desktop
virtual environment. Int. J. Hum. Comput. Stud. 2014, 72, 383–392. [CrossRef]

http://dx.doi.org/10.1097/MD.0000000000014503
http://www.ncbi.nlm.nih.gov/pubmed/30762779
http://dx.doi.org/10.1177/0269215514543333
http://www.ncbi.nlm.nih.gov/pubmed/25056999
http://dx.doi.org/10.1016/j.jns.2017.03.047
http://www.ncbi.nlm.nih.gov/pubmed/28477702
http://dx.doi.org/10.1109/TNSRE.2013.2240700
http://www.ncbi.nlm.nih.gov/pubmed/23362251
http://dx.doi.org/10.1016/j.ijhcs.2013.12.009


Sensors 2019, 19, 2738 10 of 10

9. Montuwy, A.; Dommes, A.; Cahour, B. Helping older pedestrians navigate in the city: Comparisons of
visual, auditory and haptic guidance instructions in a virtual environment. Behav. Inf. Technol. 2018, 38, 1–22.
[CrossRef]

10. Samadani, A.A.; Moussavi, Z. The effect of aging on human brain spatial processing performance.
In Proceedings of the Engineering in Medicine & Biology Society, San Diego, CA, USA, 28 August–1 September
2012; pp. 6768–6771.

11. Boylan, P.; Kirwan, G.H.; Rooney, B. Self-reported discomfort when using commercially targeted virtual
reality equipment in discomfort distraction. Virtual Real. 2018, 22, 309–314. [CrossRef]

12. Xuan, C. Technological bottleneck of virtual reality. Sci. Technol. Rev. 2016, 34, 94–103.
13. Pegoraro, P.A.; Angioni, A.; Pau, M.; Monti, A.; Muscas, C.; Ponci, F.; Sulis, S. Bayesian Approach for

Distribution System State Estimation with Non-Gaussian Uncertainty Models. IEEE Trans. Instrum. Meas.
2017, 66, 2957–2966. [CrossRef]

14. Wu, Y.; Wang, Y.; Liu, P.; Luo, H.; Cheng, B.; Sun, H. Infrared LSS-Target Detection Via Adaptive TCAIE-LGM
Smoothing and Pixel-Based Background Subtraction. Photonic Sens. 2019, 9, 179–188. [CrossRef]

15. Veerakumar, T.; Subudhi, B.N.; Esakkirajan, S. Empirical mode decomposition and adaptive bilateral filter
approach for impulse noise removal. Expert Syst. Appl. 2018, 121, 18–27. [CrossRef]

16. Thirumavalavan, S.; Jayaraman, S. An improved teaching–learning based robust edge detection algorithm
for noisy images. J. Adv. Res. 2016, 7, 979–989. [CrossRef] [PubMed]

17. Lakhani, B.; Mansfield, A. Visual feedback of the centre of gravity to optimize standing balance. Gait Posture
2015, 41, 499–503. [CrossRef]

18. Chau, A.L.; Li, X.; Yu, W. Convex and concave hulls for classification with support vector machine.
Neurocomputing 2013, 122, 198–209. [CrossRef]

19. YANG, T.; QIAN, X.; ZHNG, H. The study of correlation between Pro-Kin balance assessment equipment
and Berg balance scale in assess ing balance function of hemiplegic patients with stoke. Chin. J. Rehabil. Med.
2012, 27, 1011–1014.

20. Kostiukow, A.; Rostkowska, E.; Samborski, W. Assessment of postural balance function. Ann. Acad.
Med. Stetin. 2009, 55, 102–109. [PubMed]

21. Yeh, S.C.; Huang, M.C.; Wang, P.C.; Fang, T.Y.; Su, M.C.; Tsai, P.Y.; Rizzo, A. Machine learning-based
assessment tool for imbalance and vestibular dysfunction with virtual reality rehabilitation system.
Comput. Methods Programs Biomed. 2014, 116, 311–318. [CrossRef] [PubMed]

22. Gonzalez, A.M.; Raposo, A.B. Fall Risk Analysis during VR Interaction. In Proceedings of the Virtual &
Augmented Reality, Curitiba, Brazil, 1–4 November 2017; pp. 18–28.

23. LaViola, J.J. A Discussion of Cybersickness in Virtual Environments. ACM Sigchi Bull. 2000, 32, 47–56.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/0144929X.2018.1519035
http://dx.doi.org/10.1007/s10055-017-0329-9
http://dx.doi.org/10.1109/TIM.2017.2728398
http://dx.doi.org/10.1007/s13320-018-0523-8
http://dx.doi.org/10.1016/j.eswa.2018.12.009
http://dx.doi.org/10.1016/j.jare.2016.04.002
http://www.ncbi.nlm.nih.gov/pubmed/27857845
http://dx.doi.org/10.1016/j.gaitpost.2014.12.003
http://dx.doi.org/10.1016/j.neucom.2013.05.040
http://www.ncbi.nlm.nih.gov/pubmed/20698188
http://dx.doi.org/10.1016/j.cmpb.2014.04.014
http://www.ncbi.nlm.nih.gov/pubmed/24894180
http://dx.doi.org/10.1145/333329.333344
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	Participants 
	Human Body Posture Modeling 
	Human Body Posture Feature Extraction and Classification 
	SVM-Based Balance Ability Classification 

	Results 
	Analysis of Experimental Results 
	Analysis of the Multi-Barycentric Area 
	Analysis of Variance of the Multi-Barycentric Area 
	Analysis of Roadmap and Moving Speed 


	Discussion 
	References

