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Abstract: Pose estimation and map reconstruction are basic requirements for robotic autonomous
behavior. In this paper, we propose a point–plane-based method to simultaneously estimate the
robot’s poses and reconstruct the current environment’s map using RGB-D cameras. First, we detect
and track the point and plane features from color and depth images, and reliable constraints are
obtained, even for low-texture scenes. Then, we construct cost functions from these features, and we
utilize the plane’s minimal representation to minimize these functions for pose estimation and local
map optimization. Furthermore, we extract the Manhattan World (MW) axes on the basis of the
plane normals and vanishing directions of parallel lines for the MW scenes, and we add the MW
constraint to the point–plane-based cost functions for more accurate pose estimation. The results of
experiments on public RGB-D datasets demonstrate the robustness and accuracy of the proposed
algorithm for pose estimation and map reconstruction, and we show its advantages compared with
alternative methods.

Keywords: visual SLAM; pose estimation; map reconstruction; point–plane-based factor graph;
Manhattan World; RGB-D camera

1. Introduction

This article is an extension of a recent conference paper [1] that presented the exploitation of plane
features to estimate sensors’ poses for low-texture indoor environments. Robust pose estimation and
environment mapping are of great significance in the execution of robotic tasks, such as motion control
and navigation. The robot’s pose and the scene’s map can be obtained by utilizing robotic sensors,
such as wheel encoders, inertial measurement units [2–4], lasers [5,6], and cameras [7–9]. Among
these solutions, the visual-based method is one of the more effective approaches because cameras can
conveniently capture informative images to estimate the robot’s poses and perceive its surroundings.
Although there have been plenty of methods using monocular, stereo, or RGB-D cameras for pose
estimation and 3D mapping, daunting challenges remain for structural and low-texture environments
for several reasons. For instance, in existing point-based methods [10,11], key steps in pose estimation,
such as image aligning and computing the transformation matrix, heavily rely on feature points
or high-contrast pixels. However, feature points are generally absent in structural and low-texture
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environments, and these methods can fail to estimate poses or result in low-accuracy estimations. To
solve this problem, high-level features, such as lines and planes, are required.

Most indoor environments have many parallel and orthogonal lines and planes (called the
Manhattan World [12]), and these high-level features can be exploited to improve the performance
of pose estimation. Since these line and plane features can be easily calculated by using RGB-D
cameras, which provide both depth information and a color image, the RGB-D camera has become
a popular alternative to monocular and stereo cameras for the purpose of simultaneous localization
and mapping (SLAM) tasks in indoor environments. These structural regularities have been exploited
in studies [13–16] to estimate drift-free rotation, and by decoupling the rotation and translation
components, pose estimation accuracy and map quality have been markedly improved by using the
Manhattan World (MW) assumption with an RGB-D camera in scenes that satisfy the MW assumption.

In this paper, we propose a robust and accurate approach to pose estimation and 3D mapping
using an RGB-D camera. We detected and matched point features from the color images by using the
oriented fast and rotated brief (ORB) descriptor, and we detected and tracked multiple planes from
the depth images on the basis of a motion model. Then, we exploited these features to construct cost
functions to solve the pose of each captured frame and point–plane landmarks in local and global
maps. Meanwhile, we added an orientation constraint to the loop detection process to reduce the
drift error and avoid mismatches using an appearance constraint. Furthermore, we extracted the
MW axes in the first captured frame of MW scenes, and we added the MW constraint to the previous
point–plane-based cost functions to improve their performance.

Our algorithm exploits point and plane features and adds the MW constraint for pose estimation
and scene reconstruction, which can perform well in harsh environments with low texture as well as
general indoor environments. The contributions of this work are as follows:

• We exploited point and plane features, which provide reliable constraints for the estimation of
poses and reconstruction of the scene’s map for the majority of indoor environments.

• We added the MW constraint to point–plane-based cost functions, resulting in the provision of
fixed-plane normals as global landmarks for more accurate pose estimation.

• We evaluated our proposed approach on two public available datasets, and we obtained robust
and accurate performance.

2. Related Work

The existing RGB-D SLAM methods for structural and low-texture environments can be divided
into three classes: plane-based methods, dense methods, and MW-based methods.

Plane-based methods use plane features to construct and solve the optimization function for
pose estimation. Lee et al. [17] presented a fast plane extraction and matching method for indoor
mapping, and Taguchi et al. [18] used both points and planes as primitives to realize the registration
of different 3D data. Khoshelham et al. [19] proposed a no-iteration pose estimation method based
on point–plane correspondences. Thomas et al. [20] presented a structured 3D representation with
a point-to-plane relationship to correct the deformations, and local and global mapping were processed
to reduce the accumulation error and obtain an accurate large-scale 3D model. Kaess [21] presented
a minimal representation for planar features and introduced a relative plane formulation that improved
the convergence properties for faster pose optimization. The plane-based methods mentioned above
require plane extraction and matching for each frame to construct the optimization function. Since there
are no plane descriptors to perform plane matching, it is achieved by utilizing additional odometry
sensors, such as wheel encoders or an inertial measurement unit. However, these additional sensors
increase the complexity of the SLAM system and may not be available in some circumstances, so plane
matching methods that use only the RGB-D frame need to be developed.

In dense methods, almost all pixels are used to estimate the pose. Newcombe et al. [22] presented
a frame-to-global method that maintained the single-scene model with a global volumetric so that
each new frame would be integrated into the volumetric. Whelan et al. [23] used a rolling cyclical
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buffer to operate in large environments and used place recognition for loop closing. Kerl et al. [24]
proposed a dense visual SLAM method for RGB-D cameras that minimized both the photometric and
depth error of all pixels, and Prisacariu et al. [25] presented a robust dense RGB-D SLAM method
(InfiniTAM) that had low computational cost with RGB and depth constraints. These dense methods
solve the pose with a dense vision front-end and are robust in low-texture environments. However,
the number of points processed for each frame is large (typically hundreds of thousands), which makes
the optimization computationally infeasible in real time without GPU implementation.

MW-based methods estimate the pose by decoupling the rotation and translation components.
These methods utilize line and plane features to achieve a drift-free rotation matrix with the
MW constraint, and the translational accuracy can be improved by using drift-free rotation.
Zhou et al. [26] developed a mean shift paradigm to extract and track planar modes to achieve
drift-free rotation, and they estimated the translation using three simple 1D density alignments
in man-made environments. In the work of Kim et al. [27], lines and planes were exploited to estimate
drift-free rotation, and the translation was recovered by minimizing the de-rotated reprojection error.
Kim et al. [28] also proposed a linear SLAM method based on the Bayesian filtering framework for
MW scenes. These methods have produced good SLAM performance results in MW scenes, but if the
MW assumption is invalid, MW-based methods fail to estimate the pose or reconstruct the map.

3. Proposed Method

We propose a point–plane-based RGB-D SLAM system that exploits point and plane features to
estimate the camera pose and generate the 3D global map for indoor environments. Our proposed
system has two main parts: (1) we detect and track the point and plane features with respect to the
local map for each new captured frame, and we estimate the current pose by solving the cost function
that is constituted by the tracked features (tracking part); and (2) we update the local map that consists
of point–plane landmarks and keyframes for each new inserted keyframe, and we process the full
bundle adjustment to obtain the global map if a loop is detected (map management part). If the current
environment satisfies the MW assumption, we add the MW direction to constrain the normal of plane
landmarks for more accurate pose estimation. The overview of our proposed system is shown in
Figure 1.
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Figure 1. Overview of our point–plane-based RGB-D SLAM system. The inputs of the system are the
RGB and depth images, and it can output the camera pose and scene’s map. We estimate the camera
poses by using the tracked point and plane features. We exploit the point and plane constraints to
update the local and global maps. The MW constraint is added to the map management part if the
global MW axes are extracted from the first captured RGB-D frame.

3.1. Preliminaries

In this section, we first introduce the representations for the point and plane features that are
extracted from the color and depth images, respectively. Then, we detail the state transformation
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and distance measurement, which are essential for constructing the cost functions and solving the
nonlinear graph optimization problem for pose estimation.

3.1.1. Point and Plane Representation

We extract ORB features for point tracking, as these features are computed extremely quickly, and
they present good invariance to the camera’s auto-gain, auto-exposure, and changes in illumination.
The point feature’s 2D pixel coordinate in the color image domain is defined as uc = (uc, vc)T , where c
represents the current processing frame, and u and v represent the coordinate values on the x-axis and
y-axis, respectively. For the aligned color and depth images, the point feature’s 2D coordinates are
the same in the depth image and color image, so the corresponding value of uc in the depth image
is represented by d(uc). The point feature’s 3D position Xc is reconstructed by using the inverse
projection function P−1(·):

Xc = P−1(uc, d(uc)) = d(uc)(
uc − cx

fx
,

vc − cy

fy
, 1)T ∈ R3 (1)

where fx and fy are the focal lengths on the x-axis and y-axis, and (cx, cy)T is the camera’s central coordinate.
We detect the planes from the depth images using a fast plane extraction algorithm [29], which has

three steps: generate initial blocks, merge the blocks on the basis of agglomerative clustering, and refine
the border pixels. With this approach, we can obtain the plane: nT · Xp = d, where n = (nx, ny, nz)T

represents the unit normal vector of the plane, Xp represents the 3D point lying on this plane, and d
is the distance to the origin of the camera coordinate system. The plane can also be represented by
a homogeneous vector, πππ = (πx, πy, πz, πw)T :

πππ = Q(n, d) =
1√

n2
x + n2

y + n2
z + d2

[
n
−d

]
∈ S3 (2)

where Q(·) is the normalized transfer function for a 4-dimensional vector, S3 represents the unit
sphere, which can be identified with a set of unit quaternions, so the operations on the quaternions are
suited to the plane’s homogeneous representation [21].

3.1.2. State Transformation

The 3D point Xc in the current frame is transformed to Xw = Rw,c · Xc + tw,c in the global
coordinate, where Rw,c ∈ SO(3) is the rotation matrix and tw,c ∈ R3 is the translation vector. When we

use the rigid-body transformation matrix that defined as Tw,c =

[
Rw,c tw,c

01×3 1

]
, the transformation

relationship is expressed as

[
Xw

1

]
= Tw,c ·

[
Xc

1

]
.

The plane πππc in the current coordinate is transformed to the global coordinate by πππw = Q(T−T
w,c ·πππc),

where T−T
w,c =

[
Rw,c 03×1

−tT
w,c ·Rw,c 1

]
. In terms of the plane’s normal-distance representation, its state

transformation is represented by

[
nw

−dw

]
= T−T

w,c ·
[

nc

−dc

]
.

3.1.3. Distance Measurement

In the graph-based pose estimation problem, the error function is constructed from an edge that
connects multiple nodes [30]. As the binary edge only connects two nodes, the error function measures
the distance between these two nodes. For two 3D points X1 and X2, we use the 2-norm function ‖ · ‖2

to define their relative distance: eX = ‖X1 − X2‖2.
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For two planes πππ1 and πππ2, their relative distance is defined as eπππ = ‖ log(πππ−1
1 ·πππ2)‖2, where πππ−1 =

(−πx,−πy,−πz, πw)T, and we use the quaternion multiplication to operate the planes’ multiplication:

πππ−1
1 ·πππ2 =


−π1xπ2w − π1yπ2z + π1zπ2y + π1wπ2x
π1xπ2z − π1yπ2w − π1zπ2x + π1wπ2y
−π1xπ2y + π1yπ2x − π1zπ2w + π1wπ2z
π1xπ2x + π1yπ2y + π1zπ2z + π1wπ2w

 (3)

The function log(·) maps an element of S3 to the 3D rotation vector:

log(πππ) =
2 cos−1(πw)√
π2

x + π2
y + π2

z

 πx

πy

πz

 (4)

3.2. Pose Estimation with Point and Plane Features

We match the points and planes detected in the current frame with the point and plane landmarks
in the local map, and we utilize the tracked point and plane features to construct a cost function for
estimating the current pose. By combining the point and plane constraints, we can accurately estimate
the pose in scenes, even those with less texture.

3.2.1. Point and Plane Feature Tracking

As mentioned in Section 3.1.1, we extract the ORB point features and plane features from the
current frame Fc. For the point features, we get the initial point matches between the current frame
and the last reference keyframe by using the ORB descriptors. Then, we project the corresponding map
points onto the current frame and discard some outlier matches on the basis of the projection error.
The set of optimized point matches is defined as X = {(Xc

i , XL
i ), i = 1, 2, ...m}, where Xc represents the

point feature’s 3D position in the current frame coordinate, and XL represents the 3D position of the
point landmark in the local map.

Since there are no plane descriptors to perform plane matching, we search for plane matches by
the motion-model-based distance constraint. If the previous two frames Fc−2 and Fc−1 were tracked
successfully, we use the constant velocity motion model [10] to predict the current pose: Tpredict

w,c =

Tc−1,c−2 · Tw,c−1, where Tc−1,c−2 is the relative pose from Fc−2 to Fc−1, and Tw,c−1 represents the

estimated pose for Fc−1. One detected plane

[
nc

−dc

]
is transformed to

[
nc

predict
−dc

predict

]
= Tpredict

w,c ·
[

nc

−dc

]
,

and we obtain the plane matches when they meet:

{
‖(nc

predict)
T · nL‖2 > 0.95

|dc
predict − dL| < 0.05

(5)

where (nL, dL) is the normal-distance representation of the plane landmark in the local map. The set of
plane matches is defined as P = {(πππc

i ,πππL
i ), i = 1, 2, ...n}, where πππc represents the plane’s homogeneous

representation extracted from the current frame, and πππL represents the plane landmark in the local map.
To avoid incorrect plane matches in cluttered environments, we only select extracted planes

that have enough points (more than 5000) lying on them to match with the plane landmarks in the
local map. For parallel planes that satisfy the previous condition, we select the plane with the largest
number of on-plane points. In this way, the number of incorrect matches can be effectively reduced.
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3.2.2. Robust Pose Estimation

We jointly utilize the tracked points and planes to construct a cost function for the current pose
estimation. Pose Tw,c can be computed by solving

{Rw,c, tw,c} = arg min
Rw,c ,tw,c

(∑
i∈X

ρ(‖Rw,c · Xc
i + tw,c − XL

i ‖2
2) + ∑

j∈P
λj‖ log(Q(T−T

w,c ·πππc
j )
−1 ·πππL

j )‖2
2) (6)

where ρ(·) is the robust Huber cost function, λj represents the number of pixels in the jth tracked
plane, and 3D point Xc

i = P−1(uc
i , d(uc

i )).
The cost function (6) contains two parts that correspond to point and plane constraints.

The accurate pose can be solved by minimizing Equation (6), even in a texture-less environment
in which few points tracked. The point constraints ensure that the pose estimation is reliable even in
scenes in which there are not enough planes to be visible.

Keyframe Selection: By the previous process, we always know the number of tracked points and
planes for each frame. If there is only one tracked plane but the number of detected planes is larger
than 2 or the number of the tracked points is less than a threshold, this frame is selected as a keyframe.
By inserting the keyframes and updating the local map, the drift error of the pose estimation can be
markedly reduced.

3.3. Map Management and Loop Detection

In this section, we describe the operation for the local map when a new keyframe is inserted, and
we detect the closing loop on the basis of both the appearance and orientation constraints. If loop
detection is successful, the full bundle adjustment is performed to generate the final global map.

Similar to the co-visibility graph and essential graph in ORB-SLAM [10], we denote the set of
co-visible keyframes by KL; all points seen in KL are represented by SL1, and all planes seen in KL are
represented by SL2. All other keyframes KF1 that are not in KL, as well as the observation points in
SL1, contribute to the cost function but remain fixed in the optimization. All other keyframes KF2 that
are not in KL, as well as the observation planes in SL2, contribute to the cost function and also remain
fixed in the optimization. We define the set of point matches as X Lm between the points in SL1 and
keypoints in keyframe m, and we define the set of plane matches as PLn between the planes in SL2 and
the keyplanes in keyframe n. The local map is updated by solving

{XL
i , πππL

j , Rk
w,l , tk

w,l |i ∈ SL1, j ∈ SL2, l ∈ KL} = arg min
XL

i ,πππL
j ,Rk

w,l ,t
k
w,l

( ∑
m∈KL∪F1

∑
p∈X Lm

ρ(EXL
mp) + ∑

n∈KL∪F2

∑
q∈PLn

λq · EπππL
nq )

EXL
mp = ‖Rk

w,m · Xm
p + tk

w,m − XL
p‖2

2

EπππL
nq = ‖ log(Q(T−T

w,n ·πππn
q )
−1 ·πππL

q )‖2
2

(7)

where λq represents the number of pixels contained in the plane.

3.3.1. Local Map Update

The local map contains three elements: the keyframe, point landmark, and plane landmark.
These elements are represented by nodes in a factor graph, which is shown in Figure 2. There are
two kinds of binary edges in this point–plane-based factor graph: one connects the keyframe node
and point landmark node, and the other one connects the keyframe node and plane landmark node.
When a new keyframe is inserted, the poses of all elements in the local map are optimized by the local
bundle adjustment (BA).
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Figure 2. Point–plane-based factor graph that is used to represent the local map. Four colors denote
four different elements. When a new keyframe (red circle) is inserted, the pose of the keyframes
(black circles), point landmarks (blue circles), and plane landmarks (yellow circles) are optimized by
minimizing the error cost function constructed by the factor graph.

3.3.2. Loop Detection based on Appearance and Orientation Constraints

In the point-based SLAM system, loop detection is performed by using a bag-of-words (BoW)
place recognition module with DBoW [31]. This visual vocabulary is an appearance constraint for
loop detection, and it is created by pretraining with a large set of pictures. Since places that appear
similar in indoor environments are familiar, as shown in Figure 3, we add an orientation constraint to
complement the appearance constraint in determining the loop keyframes.

(a) (b)

Figure 3. Two mismatched loop images based on the appearance constraint: (a) Color image of Frame
182 in the ‘OfficeRoom1’ sequence of the ICL-NUIM dataset. (b) Color image of Frame 319 in the
‘OfficeRoom1’ sequence. These two images are viewed from two completely different perspectives,
but their similar appearance score is high because the ceiling is a common feature in the environment.

In our proposed system, if the similarity score (using the visual vocabulary) between a new
inserted keyframe Ki and an existing keyframe KL

p is higher than a threshold, we select this keyframe
as the potential loop keyframe, and we compute their orientation distance in degrees by Equation (8).
We confirm loop detection if the potential loop keyframe meets dO

p,i < 90deg. By adding this orientation
constraint, the mismatch (based on the appearance constraint) of these two loop images is revised.

dO
p,i = arccos(

tr(RT
w,p ·Rw,i)− 1

2
)× 57.3 (8)

where tr(·) denotes the trace of a matrix, and Rw,i and Rw,p represent the rotation matrix component
for keyframe Ki and KL

p , respectively.
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3.3.3. Global Map Generation

If a loop is detected in the previous step, all poses of the elements are optimized by the full
bundle adjustment, and the first keyframe is fixed in the process of full BA. We represent the set of all
keyframes byKG: all point landmarks are represented by SG1, and all plane landmarks are represented
by SG2. We define the set of point matches as XGm between points in SG1 and keypoints in keyframe
m, and we define the set of plane matches as PGn between planes in SG2 and planes in keyframe n.
The global map is optimized by solving

{XG
i , πππG

j , Rk
w,l , tk

w,l |i ∈ SG1, j ∈ SG2, l ∈ KG} = arg min
XG

i ,πππG
j ,Rk

w,l ,t
k
w,l

( ∑
m∈KG

∑
p∈XGm

ρ(EXG
mp) + ∑

n∈KG
∑

q∈PGn

λq · EπππG
nq )

EXG
mp = ‖Rk

w,m · Xm
p + tk

w,m − XG
p ‖2

2

EπππG
nq = ‖ log(Q(T−T

w,n ·πππn
q )
−1 ·πππG

q )‖2
2

(9)

where λq represents the number of pixels in the plane.
After the full BA, the global map with point and plane landmarks is generated, which can be

applied to robotic localization, navigation, and path planning.

3.4. Pose and Plane Optimization with the MW Constraint

For the environment that satisfies the MW assumption, we exploit the parallel and orthogonal
lines and planes to extract the MW axes, and we add the MW constraint to construct the cost function
to optimize the poses of keyframes and landmarks.

3.4.1. MW Axes Extraction

We extract the MW axes from the first frame by utilizing the plane normal vectors and the parallel
lines’ vanishing directions (VDs), the details of which are given in our previous work [32]. To extract
the accurate plane normals, we use the normal vectors obtained by the previous fast plane extraction
method as the initial value and then perform the mean shift algorithm in the tangent plane of the unit
sphere to get the final plane normal vectors, as shown in Figure 4. As the normals of parallel planes are
regularly distributed and more likely to be around the ground MW axes on the unit sphere, the final
extracted results are obtained by utilizing all normals of parallel planes, which are more accurate than
the initial plane normals.

(a) Depth image (b) Plane primitives

1-1
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0.8

0.5-0.5

0.6

0.4

00

0.2

0

-0.2

-0.50.5

-0.4

-0.6

-0.8

-11

-1

(c) Extracted Plane Normals

Figure 4. Result of the plane normal extraction: (a) depth image of Frame 0 in the ‘Living Room 1’
sequence of the ICL-NUIM dataset; (b) detected planes using fast plane extraction method; (c) extracted
plane normals on the unit sphere. The plane primitives in the image domain and their corresponding
extracted normal vectors are in the same color.

The geometric relationship between the VDs and parallel lines is shown in Figure 5. To extract
accurate VDs (dv

k , k = 1, 2, 3), we use the simplified Expectation–Maximization (EM) clustering method
to group image lines and compute their corresponding 3D direction vectors. We use the linear-time
Line Segment Detector (LSD) [33] to extract 2D line segments from the color image and roughly cluster
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the lines using the K-means method. Then, we compute the VDs by solving the weighted objective
function for each dv

k :

dv
k = argmin∑

i

length(l(k)i )

max(length(l(k)))
· (l(k)Ti Kdv

k)
2 (10)

where l(k) represents the ith line cluster obtained by the K-means method, length(l(k)i ) represents
the length of the ith line, max(length(l(k))) represents the maximum line length in cluster k, and K
represents the internal camera parameters.

Unit sphere

Center of projection

Great circles of the 

two line segments

Normal vectors of the 

great circles

Two parallel line segments 

detected in RGB image

Vanishing direction

3D direction vector 

for parallel lines

Figure 5. Three-dimensional geometric relationship between parallel lines and their vanishing direction.
The unit sphere is in the center of a camera projection. Two parallel lines are projected onto the unit
sphere as two great circles, and the vanishing direction is obtained by the cross-projection of these two
great circles’ normal vectors. Two parallel lines and their corresponding vanishing direction are drawn
in red.

MW Axes Seeking: In the scenes that satisfy the MW assumption, there are three fixed axes
(rg

1 rg
2 rg

3). It should be noted that we treat rg and −rg as the same direction. To determine the MW
axes, we first get a redundant set by using the plane normals and VDs obtained using the previous
method. Then, we seek the plane that contains the most pixels and set its plane normal as the first
MW axis r1. The other two MW axes r2 and r3 are sought on the basis of two principles: the number of
pixels belonging to the plane or line and the orthogonal constraint. The larger the number of pixels,
the higher the priority of the plane normal or VD. The final global MW axes are obtained by using
singular value decomposition (SVD): [

rg
1 rg

2 rg
3

]
= UVT (11)

where [U, D, V] = SVD([λ1r1 λ2r2 λ3r3]), and factor λi represents the number of pixels belonging to
a plane or line.

3.4.2. Optimization with Fixed Plane Normal

In the previous section, we present the extraction of the global MW axes (rg
1 rg

2 rg
3), which are used

to fix the normals of plane landmarks during optimization. We add the MW constraint to construct the
cost functions (6), (7) and (9), in which the plane landmarks are represented by

πππ
L f ixed
i = Q(rg

i , di) =
1√

r2
ix + r2

iy + r2
iz + d2

i

[
rg

i
−di

]
∈ S3 (12)
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For MW environments, this MW constraint can effectively improve the accuracy of the SLAM
system because adding the MW axes to the cost function is equivalent to setting three global directions
in the optimization for poses and landmarks, so the drift can be reduced. If the MW axes are not
detected in the current environment, we simply use the point–plane-based SLAM without the MW
constraint to perform the localization and mapping tasks.

4. Results

We evaluated our proposed approach on a synthetic dataset (ICL-NUIM [34]) and a real-world
dataset (TUM RGB-D [35]). All experiments were run on a desktop computer with an Intel Core i7,
16 GB memory, and Ubuntu 16.04 platform. Our proposed system was built on ORB-SLAM2 [10],
and our system is executed in the same manner as ORB-SLAM2.

• The ICL-NUIMdataset comprises images from a hand-held RGB-D camera in synthetically
generated environments. These sequences were captured in a living room and an office with
perfect ground-truth poses to fully quantify the accuracy of a given visual odometry or SLAM
system. Depth and RGB noise models were used to alter the ground images to simulate realistic
sensor noise. Some image sequences are in low-texture environments, which makes it difficult to
estimate the poses of the whole images in these sequences.

• The TUM RGB-D dataset is a famous benchmark that is used to evaluate the accuracy of a given
visual odometry or visual SLAM system. It contains various indoor sequences captured by
a Kinect RGB-D sensor. The sequences were recorded in real environments at a frame rate
of 30 Hz with a 640× 480 resolution, and their ground-truth trajectories were obtained from
a high-accuracy motion-capture system. The TUM dataset is more challenging than the ICL
dataset because includes some blurred images and inaccurate alignment image pairs that make it
difficult to estimate the camera poses.

We compared our proposed approach with five methods: ORB-SLAM2 [10], DVO [24],
InfiniTAM [25], LPVO [27], and L-SLAM [28]. ORB-SLAM2 is a state-of-the-art point-based SLAM
system; DVO estimates the robust poses with photometric and depth error by using the color and
depth images together; InfiniTAM estimates the camera poses from the RGB and depth images
with a GPU in real time; LPVO exploits the line and plane to estimate the zero-drift rotation and
then estimates the 3D poses with tracked points in the MW scenes; L-SLAM estimates the camera
position and plane landmarks with a linear SLAM formulation in the MW environments. We use the
root-mean-square error (RMSE) of the absolute translational error (ATE) as the performance metric for
the entire sequences:

ATE.RMSE =
1
N

N

∑
i=1
‖Rg,p · Xp

i + tg,p − Xg
i ‖2 (13)

where Rg,p and tg,p represent the rotation matrix and translational matrix that transform the trajectory
coordinate obtained by our proposed method to the ground-truth coordinate; three-dimensional points
Xp

i and Xg
i denote the traces of the proposed method and ground truth, respectively; and N represents

the number of frames in the tested sequence.

4.1. Evaluation on Synthetic Dataset

We first evaluated our proposed method on the ICL-NUIM dataset. The estimated trajectories
and point–plane landmarks are shown in Figure 6, and the measured RMSE values of the ATE for each
sequence are shown in Table 1. The smallest values are bolded and indicate the most accurate result for
the pose estimation. For example, in ‘Living Room 0’, the ATE.RMSE value of our proposed method is
0.006 m, while those of ORB-SLAM2, DVO, LPVO, and L-SLAM are 0.010, 0.108, 0.015, and 0.012 m,
respectively. The ‘Living Room 1’ sequence includes images that are mostly composed of a texture-less
wall, so the accuracy of the point-based ORB-SLAM2 method is poor. As the DVO method does not
have an efficient loop-closing process, the drift error cannot be avoided, and its ATE.RMSE is large.
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InfiniTAM fails to estimate the whole frames’ poses in three sequences (“Living Room 0”, “Living
Room 3”, and “Office Room 2”) because there are some frames with only one visible plane in the depth
image and low texture in the color image. We marked the result as ‘×’. Although the LPVO method
can provide drift-free rotation, it estimates the 3D pose using only the tracked points; thus, if there
are not enough points, the accuracy decreases. L-SLAM is a linear SLAM method that uses the MW
constraint and does not need to estimate the 3 degrees of freedom rotation. L-SLAM performs well
with the MW scenes, and our method is comparable to it. The last column in Table 1 shows the number
of frames in the current sequence.

(a) LivingRoom0

(b) LivingRoom2

(c) OfficeRoom1

(d) OfficeRoom3

Figure 6. Results of camera poses and landmarks estimated by our proposed method on the ICL-NUIM
dataset: (a) ‘Living Room 0’; (b) ‘Living Room 2’; (c) ‘Office Room 1’; (d) ‘Office Room 3’. For each
sequence, the four images from left to right represent, respectively, one color image in the current
sequence, the point landmarks (black dots) obtained by our proposed method, the plane landmarks
obtained by our proposed method, and the trajectory comparison between the ground truth and our
proposed method. The estimated keyframe trace (blue boxes) and connection graph between them
(green lines) were added to the middle images that show the point and plane landmarks.

The MW assumption is sufficiently suitable for the ICL-NUIM benchmark. To clearly show the
effect of the MW constraint, we measured the ATE.RMSE for all sequences obtained by our method
without the MW constraint; this corresponds to the ‘No MW’ column in Table 1. We recorded the
values of the absolute translational error (ARE) for each frame in the ‘Living Room 0’ sequence, and the
ATE values with and without the MW constraint are shown in Figure 7: in this figure, the smaller
the ATE value, the more accurate the pose estimation. This demonstrates that the MW constraint can
improve the accuracy of pose estimation for MW environments.
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Table 1. Comparison of ATE.RMSE (unit: m) on the ICL-NUIM dataset. The smallest values are bolded,
which indicates the most accurate method for the pose estimation.

Sequence Proposed No MW ORB-SLAM2 DVO InfiniTAM LPVO L-SLAM Frames

Living Room 0 0.006 0.007 0.010 0.108 × 0.015 0.012 1508
Living Room 1 0.010 0.011 0.185 0.059 0.006 0.039 0.027 965
Living Room 2 0.026 0.027 0.028 0.375 0.013 0.034 0.053 880
Living Room 3 0.013 0.016 0.014 0.433 × 0.102 0.143 1240

Office Room 0 0.019 0.025 0.049 0.244 0.042 0.061 0.020 1507
Office Room 1 0.016 0.017 0.079 0.178 0.025 0.052 0.015 965
Office Room 2 0.017 0.019 0.025 0.099 × 0.039 0.026 880
Office Room 3 0.016 0.018 0.065 0.079 0.010 0.030 0.011 1240
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Figure 7. Performance evaluation for the MW constraint on the ’Living Room 0’ sequence.
Absolute translational errors for our proposed method with and without the MW constraint are
compared.

4.2. Evaluation on Real-World Data

We then evaluated our proposed method on the TUM RGB-D dataset. The trajectories generated
by the poses of the whole captured frames and the point–plane landmarks in the map are shown in
Figure 8. We compared the performance of our proposed algorithm with that of the other five methods
on six real-world TUM RGB-D sequences that contain structural regularities. The comparison results
are shown in Table 2. We provide the ATE.RMSE for 3D pose estimation, and the smallest values are
indicated in bold. Our proposed method performs better in low-texture environments because it uses
the point and plane features to estimate poses. In ‘fr3_cabinet’, the ORB-SLAM2 method failed to
estimate the poses for the entire sequence because there are not enough reliable tracked points for
some frames; we marked the result as ‘×’ in Table 2. The last column in Table 2 also represents the
number of frames in the current TUM RGB-D sequence.

The performance results of the MW constraint on the ‘fr3_struc_notex_far’ sequence is shown in
Figure 9. The final translational drift obtained by our proposed method with and without the MW
constraint is 0.031 and 0.072, respectively. It is clear that the MW constraint can effectively reduce the
drift error for the MW scenes.
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(a) fr3_cabinet

(b) fr3_struc_notex_far

(c) fr3_struc_notex_near

(d) fr3_large_cabinet

Figure 8. Results of camera poses and landmarks estimated by our proposed method on
the TUM RGB-D dataset: (a) ‘fr3_cabinet’; (b) ‘fr3_struc_notex_far’; (c) ‘fr3_struc_notex_near’;
(d) ‘fr3_large_cabinet’. For each sequence, four images from left to right represent, respectively,
one color image in the current sequence, the point landmarks (black dots) obtained by our proposed
method, the plane landmarks obtained by our proposed method, and the trajectory comparison
between the ground truth and our proposed method. The estimated keyframe trace (blue boxes) and
connection graph between them (green lines) were added to the middle images that show point and
plane landmarks.

Table 2. Comparison of ATE.RMSE (unit: m) on the TUM RGB-D Dataset. The smallest values are
bolded, which indicates the most accurate method for the pose estimation.

Sequence Proposed No MW ORB-SLAM2 DVO InfiniTAM LPVO L-SLAM Frames

fr3_struc_notex_far 0.017 0.029 0.276 0.213 0.037 0.075 0.141 790
fr3_struc_tex_far 0.011 0.012 0.024 0.048 0.030 0.174 0.212 904

fr3_struc_notex_near 0.008 0.009 0.652 0.076 0.022 0.080 0.066 1031
fr3_struc_tex_near 0.011 0.013 0.019 0.031 0.034 0.115 0.156 1054

fr3_cabinet 0.012 0.013 × 0.690 0.035 0.520 0.291 926
fr3_large_cabinet 0.074 0.094 0.179 0.979 0.512 0.279 0.140 979
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Figure 9. Performance evaluation for the MW constraint on the ’fr3_struc_notex_far’ sequence.
Absolute translational errors for our proposed method with and without the MW constraint are compared.

5. Conclusions

We proposed a point–plane-based method to estimate robot poses and reconstruct the maps
of scenes of indoor environments using an RGB-D camera. We exploited point and plane features
to generate reliable constraints, which we applied to the constructed cost function for solving the
transformation matrix, and we used minimal representation for planes in the nonlinear optimization
process. We developed a vanishing direction extraction method based on parallel lines and combined
it with the detected plane normals to seek the MW axes in the current environment. Then, we added
the MW constraint to further improve accuracy for MW environments. The proposed algorithm was
tested on both synthetic and real-world publicly available RGB-D datasets, and we compared the pose
estimation performance of our method with that of five existing methods. The results demonstrate
the accuracy and robustness of the proposed method. Our approach can be used for a robot’s tasks in
indoor environments. In future work, we will extend our approach to the point–line–plane feature
fusion SLAM system, which may provide robust pose estimation in more general environments and
generate structural maps.
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