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Abstract: The European Space Agency (ESA) Climate Change Initiative (CCI) project combines
multi-sensors at different microwave frequencies to derive three harmonized soil moisture products
using active, passive and combined approaches. These long-term soil moisture products assist in
understanding the global water and carbon cycles. However, extensive validations are a prerequisite
before applying the retrieved soil moisture into climatic or hydrological models. To fulfill this objective,
we assess the performances of three CCI soil moisture products (active, passive and combined) with
respect to in-situ soil moisture networks located in China, Spain and Canada. In order to compensate
the scale differences between ground stations and the CCI product’s coarse resolution, we adopted two
upscaling approaches of Inverse Distance Weighting (IDW) interpolation and simple Arithmetic Mean
(AM). The temporal agreements between the satellite retrieved and ground-measured soil moisture
were quantified using the unbiased root mean square error (ubRMSE), RMSE, correlation coefficients
(R) and bias. Furthermore, the temporal variability of the CCI soil moisture is interpreted and
verified with respect to the Tropical Rainfall Measuring Mission (TRMM) precipitation observations.
The results show that the temporal variations of CCI soil moisture agreed with the in-situ ground
measurements and the precipitation observations over the China and Spain test sites. In contrast,
a significant overestimation was observed over the Canada test sites, which may be due to the strong
heterogeneity in soil and vegetation characteristics in accordance with the reported poor performance
of soil moisture retrieval there. However, despite a retrieval bias, the relatively temporal variation of
the CCI soil moisture also followed the ground measurements. For all the three test sites, the soil
moisture retrieved from the combined approach outperformed the active-only and passive-only
methods, with ubRMSE of 0.034, 0.050, and 0.050–0.054 m3/m3 over the test sites in China, Spain and
Canada, respectively. Thus, the CCI combined soil moisture product is suggested to drive the climatic
and hydrological studies.

Keywords: ESA CCI soil moisture; validation; ground measurements upscaling; spatiotemporal analysis

1. Introduction

Soil moisture (SM) is one of the most important land surface parameters, as it has a significant
impact on vegetation growth, ecosystems, water cycle, agricultural production and climate change [1].
Thus, monitoring of soil moisture at regional and global scales is essential to deepen our insights into
the physical processes of the global water cycle [2], crop growth [3] and drought events [4]. For studying
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the hydrological [5] and climate change [6] factors, the long-term soil moisture is particularly necessary,
which acts as a key driving parameter for the land surface process models. Consequently, soil moisture
is considered to be an essential climate variable [7].

The traditional soil moisture information was collected via the ground point measurements
which are labor- and time-consuming and make it difficult to capture the spatiotemporal variation.
In contrast, the remote-sensing techniques provide an efficient tool to estimate soil moisture at
varying spatiotemporal scales using the electromagnetic waves. Furthermore, compared to the
visible electromagnetic spectrum, the microwaves at long wavelength are less affected by the
atmosphere and clouds, allowing us to penetrate vegetation and operate at all-weather conditions [7].
Thus, the microwave signal has become one of the most effective sources to estimate the soil moisture
at different spatial and temporal resolutions. The quality of the soil moisture retrieval depends on
two factors: the sensor systems and the retrieval algorithms which transform the data into useful
geophysical parameters. There are mainly three methods to retrieve the surface soil moisture from
microwave data: (i) active radar is based on the inversion of backscattering coefficients, (ii) passive
radiometer is based on the inversion of brightness temperature, and (iii) active–passive approaches
combine the advantages of radar and radiometer signals.

The SMOS (Soil Moisture and Ocean Salinity) [2,8] satellite launched in 2009 has contributed
to monitor soil moisture and ocean salinity, while the SMAP (Soil Moisture Active Passive) [9,10]
satellite launched in 2015 is dedicated to retrieve the soil moisture and soil thaw/freezing status.
In particular, the SMAP mission aimed to retrieve soil moisture at a moderate spatial resolution by
disaggregating the brightness temperature using the radar backscattering coefficients. Unfortunately,
the radar component failed to run after three months’ operation [11]. The independent radar system
such as Sentinel-1 [12] was combined with the SMAP radiometer signals for a joint retrieval [13].
Nevertheless, the temporal coverage of these two satellites is rather short, limiting the long-term
studies related to climate and hydrology. Since 2010, the European Space Agency Climate Change
Initiative (ESA CCI) has integrated active (ERS-1/2 SCAT [14], MetOp ASCAT [15,16]) and passive
(SMMR [17], SSM/I [18], TMI [19], AMSR-E [20], WindSat [21], AMSR2 [22] and SMOS [8]) microwave
sensors to develop a global long-term (37–39 years) soil moisture product [23–27], which significantly
benefits research into global evapotranspiration and climate change.

However, before the application of the ESA CCI soil moisture products, intensive validations are
required under different soil, vegetation and climate conditions in order to verify their applicability and
uncertainty over different regions [28]. For instance, the CCI products were assessed in Europe [28–30],
Asia [31–33] and Africa [34] using the in-situ ground soil moisture observation stations. Nevertheless, it is
challenging to match the spatial scales between the CCI soil moisture at coarse resolution and the
in-situ point measurements. Upscaling methods were needed to compensate the differences in spatial
scales, making the inter-comparison possible. The upscaling methods include simple Arithmetic
Mean (AM) [35,36], Inverse Distance Weighting (IDW) interpolation, nearest neighbor [28] and kriging
interpolation methods [37,38]. The different upscaling methods used soil texture and crop characteristics
to account for the spatial autocorrelation and heterogeneity. Considering the efficiency, our study
evaluates the two upscaling methods of AM and IDW to process the in-situ data within the same pixel,
for a comparison with the CCI retrieved soil moisture.

Actually, different versions of CCI SM products have been released, and our study assesses the
performance of version 03.3 using the in-situ soil moisture networks located in China, Spain and
Canada. At present, CCI SM products have not been verified in Canada, so our study will
reveal their performances over high-altitude areas which are significantly influenced by the soil
thawing–freezing cycle. Although some validations were conducted in China [31–33] and Spain [28,29]
before, our study will deepen the understanding of the CCI SM uncertainty using different upscaling
and processing approaches.
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2. Materials and Methods

2.1. Study Sites and Ground-Based Soil Moisture Measurements

The ground soil moisture measurements were obtained from the International Soil Moisture
Network [24] (ISMN: https://ismn.geo.tuwien.ac.at/en/), resulting from an international cooperation to
establish and maintain a global ground-based soil moisture database. This database is essential for
calibrating, validating and improving remotely sensed soil moisture, and also useful for initiating the
land surface, climate, and hydrological models.

In this study, we selected three probe soil moisture networks located in China, Spain and Canada,
as shown in Figure 1. These stations are characterized by different climatic, hydrological, soil and
vegetation characteristics, providing three different baselines to evaluate the quality of the CCI
remote-sensing soil moisture products. In addition, Figure 2 summaries the information of soil texture
(sand, silt, clay) and organic matter over the in-situ stations.
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The selected soil moisture networks distributed over different areas:

• The Soil Moisture/Temperature Monitoring Network (SMTMN) was established over an area of
100 km × 100 km in the Central Tibetan Plateau (CTP), which is the highest plateau in the world
and considered the ‘Third pole’. Over this site, 56 stations were installed to measure soil moisture
and temperature at four soil depths (0–5, 10, 20, and 40 cm) and at 30 min temporal interval.
Grass is the major vegetation with low biomass, and the variation of soil texture across the plateau
leads to a large dynamic of soil moisture [39]. Considering the low penetrating depth of the
microwave used to develop the ESA CCI soil moisture product, our study used probe-measured
soil moisture at 0–5 cm depth. The probe measurements were calibrated in terms of soil texture as
well as soil organic carbon content [40].

• The Red de Estaciones de Medición de la Humedad del Suelo (REMEDHUS) network is located
within an area of 30 km × 40 km in the central semiarid of the Duero basin in Spain [41]. It has
a semi-arid Mediterranean climate. The land is mainly covered by agricultural crops including
cereals and vineyards [41]. This network contains 24 stations equipped with capacitance probes
(Stevens Hydra Probe) installed horizontally at a depth of 5 cm.

• The Real-Time In-Situ Soil Monitoring for Agriculture (RISMA) soil moisture network distributes
across Canada, with 12 stations in Manitoba, 4 stations in Saskatchewan and 6 stations in
Ontario [42]. In this study, we selected Manitoba and Saskatchewan sites for test, they cover an
area of around 15 km × 70 km and 10 km × 25 km, respectively. The Ontario site was disregarded,
as the CCI pixel covered only a few stations. All stations were designed to record real dielectric
permittivity, soil moisture and soil temperature using hydra probes at surface 0–5 cm, 5 cm,
20 cm and 50 cm, while some of these stations reached a deeper depth at 100 cm and 150 cm.
At each depth, two or three hydra probe sensors were installed to capture the spatial variability in
soil moisture, and to provide alternative measurements in the case of any sensor malfunction.
Similarly, we extracted 0–5 cm soil moisture records from this network.

2.2. European Space Agency Climate Change Initiative (ESA CCI) Remotely Sensed Soil Moisture Products

In this study, we used the ESA CCI soil moisture products version 03.3 obtained from the ESA
data archive (http://www.esa-soilmoisture-cci.org/). These products were generated using active
(ERS1-2 SCAT, MetOp ASCAT) and passive (SMMR, SSM/I, TMI, AMSRE, WindSat, AMSR2 and SMOS)
microwave space-borne instruments, covering the period from November 1978 to December 2016.
The soil moisture was retrieved by three approaches: active-only, passive-only and a combination of
them [26,27]. The active method was based on the Soil Water Retrieval Package which estimates the soil
saturation degree using the reference backscattering coefficients corresponding to extreme dry and wet
conditions. The passive method used the Land Parameter Retrieval Model (LPRM) to extract the soil
moisture from brightness temperature [43]. The active and passive retrieved soil moisture were then
merged with different weights for a combined product [44]. Through the multi-sensor combination,
the CCI product provides global daily surface soil moisture at a spatial resolution of 0.25◦.

2.3. Spatial Distribution of Global CCI Retrieved Soil Moisture

Figure 3 shows the global spatial distribution of the ESA CCI soil moisture from active radar,
passive radiometer data and their combinations. As a previous description, due to the retrieval
algorithm (by referring to the radar backscattering at extreme wet and dry soil conditions, respectively)
used in the active data, the resulting soil moisture is given as saturation index (Figure 3a), by contrast
with the standard volumetric soil moisture (Figure 3b,c). Thus, this may prohibit the direct comparison
with the passive and combined approaches. Although the conversion from the saturation index to the
volumetric soil moisture values was achieved, it may introduce additional bias due to the uncertainty
in the required porosity estimates. As the retrievable pixels are different between the active and passive
methods, their combination increased the retrieval rate significantly.

http://www.esa-soilmoisture-cci.org/
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Indeed, the long-term series of ESA CCI soil moisture was realized through multi-sensor
combinations. For the year of 2014 in Figure 3, the soil moisture was mainly obtained through the
inversion of ASCAT A-B for the active approach, and SMOS and AMSR2 for the passive approach [25].
Consequently, the differences in the sensor configurations also caused retrieval uncertainty. In particular,
the different frequency leads to varying penetration depth, resulting in complex interaction between
the microwave and the vegetation and soil layers.

In Figure 3, the invalidity pixels may due to several reasons. In the early years, the radiometer
often operated at high frequency such as X-, Ku-, K- and Ka- bands. In this case, the microwave
penetration depth is rather shallow. Thus, during the vegetated seasons, the backscattering or the
emission signals are dominated by the vegetation, limiting the sensitivity of the microwave signals to
soil dielectric constants. Furthermore, the retrieval process without convergence may also result in
invalid pixels.

2.4. TRMM Precipitation

The Tropical Rainfall Measuring Mission (TRMM) precipitation data were widely validated
using the ground gauge observations around the world, while this study used them as a reference
to interpret the temporal behavior of CCI soil moisture product. For a given land surface, the soil
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moisture can be approximated by the differences between the precipitation and evapotranspiration,
assuming weak runoff. Thus, the precipitation event may cause the change of soil moisture. In this
study, the daily TRMM precipitation products (3B42 V7) given in millimeters at 0.25◦ × 0.25◦ spatial
resolution were obtained from the National Aeronautics and Space Administration (NASA) GES DISC
(https://disc.gsfc.nasa.gov/). The selected spatial resolution is close to the ESA CCI SM product [45].
For a given day, simple summation of the valid retrieved 3-hourly precipitation data in a grid
cell was performed to calculate a daily precipitation amount. As described in [46], due to the
scale differences between satellite remotely sensed soil moisture (0.25◦ × 0.25◦) and ground point
measurements, the inclusion of the precipitation at the same spatial resolution (0.25◦ × 0.25◦) such as
TRMM observations is an alternative way to interpret the spatiotemporal distribution patterns of the
retrieved soil moisture.

2.5. Collocation and Comparison Strategy

For a given pixel in the ESA CCI SM product, the coordinates of pixel center are given, allowing us
to determine that the ground measurements are within or outside the pixel. The distances between the
location of a given ground measurement and all the CCI SM pixel centers were calculated, and the CCI
SM pixel with the minimum distance is matched to this ground data. After calculation, the 56 stations
of the CTP-SMTMN network were found to distribute across 12 pixels of CCI SM. As we focused on
the temporal dynamics of soil moisture, only the representative pixels covering the maximum number
of ground measurements were selected. The optimal pixels covered 21 stations for the CTP-SMTMN
network, five stations for the REMEDHUS network, and six stations for the RISMA network.

Furthermore, the three ESA CCI soil moisture products were given in different units. The combined
and passive products were denoted by volumetric soil moisture (m3/m3), while the active product
is given by saturation degree (%). These different units result from the retrieval algorithms applied
to the passive and active microwave data. As per the previous description, the soil moisture from
radar data is obtained by referring to the backscattering coefficients in wet and dry soil conditions,
leading to a result of saturation degree rather than volumetric soil moisture. In order to conduct the
inter-comparison among three soil moisture products (active, passive and combined), a unit conversion
from saturation degree to volumetric soil moisture is conducted:

SMvol
(
m3/m3

)
= Q(%) × P

(
m3/m3

× 100%
)

(1)

where the SMvol and Q are the volumetric soil moisture and saturation degree, respectively. The porosity
P was provided by the ESA CCI SM team, it was calculated by accounting the fractions of clay, sand,
silt, and organic matter [47].

2.6. Upscaling Ground Measured Soil Moisture to Match the ESA CCI Products

The ESA CCI SM data at pixel size of 0.25◦ and the point ground-based soil moisture stations
are characterized by significant different spatial scales. A CCI SM pixel (about 600 km2) includes
multiple ground-based point measurements [48]. Thus, for each CCI SM pixel, an upscaling of the
ground-based station data within the pixel is conducted to obtain a value to represent the ground data
corresponding to the pixel. This match between small and large spatial scales allows a comparison
between the retrieved and ground measured soil moisture.

In this study, we used two upscaling methods: simple Arithmetic Mean (AM) and Inverse Distance
Weighting (IDW) interpolation. The AM calculates the average value of the all the known ground
point measurements fallen within the pixel regardless their locations. By contrast, the IDW calculates

https://disc.gsfc.nasa.gov/
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the potential value corresponding to the pixel center using the known coordinates of the ground
point measurements.

y(x) =

N∑
i=1

wi(x) · yi

N∑
i=1

wi(x)
(2)

where the weight of each known soil moisture measurements are given as:

wi(x) =
1

d(x, xi)
p (3)

with the distance d between the point measurement and the pixel center, and power p = 1.

2.7. Statistical Metric for Comparison

To quantify the consistency between CCI SM and upscaling ground SM, four statistical metrics of
unbiased root mean square error (ubRMSE), RMSE, mean difference (bias) and Pearson correlation
coefficient (R) were computed.

ubRMSE =

√√√√√ n∑
i=1

(mvCCI(i) −mvCCI) −
n∑

i=1

(
mvgd(i) −mvgd

)2

(4)

RMSE =

√
(mvCCI −mvgd)

2 (5)

Bias = mvCCI −mvgd (6)

R =

n∑
i=1

(mvCCI(i) −mvCCI)(mvgd(i) −mvgd)√
n∑

i=1
(mvCCI(i) −mvCCI)

2
·

n∑
i=1

(
mvgd(i) −mvgd

)2
(7)

where n is the number of days with both available retrieved and ground measured soil moisture.
The mvCCI and mvgd are the satellite retrieved and ground soil moisture, respectively. The overbar
represents the average process.

3. Results and Discussion

3.1. Central Tibetan Plateau Soil Moisture/Temperature Monitoring Network (CTP-SMTMN)

We interpreted the CCI soil moisture using both the ground measurements and referring to the
precipitation amount. Figure 4 extracts the study area in China in order to verify the details of the
soil moisture spatial pattern. The soil moisture in southeast part is significantly higher than in the
northwest. This is expected, as the precipitation in southeast China is much stronger in southeast than
northwest [49]. Unfortunately, although we extracted the TRMM precipitation to further interpret the
CCI soil moisture distribution, most of the TRMM pixels are impossible to retrieve for the selected two
days. However, we can still observe the overall higher precipitation over the southeast than northwest
in China in Figure 5.
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3.1.1. Characteristics of Soil Moisture Evolution over Time

Figure 6 shows the evolution of the daily averaged soil moisture as well as temperature from 1
January 2011 to 31 December 2014 in the CTP-SMTMN network. In general, the soil moisture in the
Tibet Plateau area shows significant annual and seasonal variation. From October to April of each year,
when the soil moisture was less than 0.1 m3/m3, the corresponding soil temperature was below 0◦.
Thus, the low soil moisture values below 0.1 m3/m3 may be due to the soil freezing process, and the
overall undulation is weak tending to be stable.

Sensors 2019, 19, x FOR PEER REVIEW 10 of 20 

 

 
(a) 

 
(b) 

Figure 6. Temporal evolutions of (a) Climate Change Initiative (CCI) retrieved and in-situ measured 

soil moisture (b) temperature in the Central Tibetan Plateau Soil Moisture/Temperature Monitoring 

Network (CTP-SMTMN) network. 

Indeed, the selected pixel is located in the northern part of Tibet, in the hinterland of the 

Qinghai-Tibet Plateau. Due to the influence of the summer monsoon in South Asia, precipitation is 

mainly concentrated from May to September. In addition, as the temperature rises, the surface 

frozen soil begins to melt, and the soil moisture value begins to gradually rise, reaching its peak in 

July and August. The temporal evolution of the retrieved soil moisture agreed with the extracted 

rainfall amount from TRMM data. The high precipitation amount led to a rapid increase in soil 

moisture. Then the soil moisture decreased due to the evapotranspiration and runoff. After 

September, as the precipitation decreased, the soil moisture began to decline, and the changes 

during the year were unimodal. 

3.1.2. Product Comparison Analysis 

As can be seen from Figure 6, the three products of ESA CCI SM show similar changes to the 

station data, which captured the trend of ground measured soil moisture well. Among them, the 

value of the combined product is most consistent with the in-situ soil moisture. The values of the 

passive and active products are higher than the in-situ measurements, and the large fluctuations are 

in agreement with previous results [33]. 

Table 1 also reflects this fact very well. The ubRMSE of the combined product is 0.034, which is 

smaller than 0.066 for passive products and 0.039 for active products. Bias for the combined product 

is also the smallest among the three. Overall, the combined product has the highest accuracy, 

indicating that the integration of active and passive data sets in the Qinghai-Tibet Plateau has 

positive effects. 

3.2. REMEDHUS Network  

Similarly, Figure 7 shows the CCI soil moisture in Spain for the two representative days 

corresponding to low and high vegetation amount, respectively. We can notice the higher soil 

moisture on 15 April than 27 July 2014 for the active, passive and combined products. Most of the 

pixels in the TRMM precipitation amount were missed in Figure 8, but a number of available pixels 

Figure 6. Temporal evolutions of (a) Climate Change Initiative (CCI) retrieved and in-situ measured
soil moisture (b) temperature in the Central Tibetan Plateau Soil Moisture/Temperature Monitoring
Network (CTP-SMTMN) network.



Sensors 2019, 19, 2718 10 of 19

Indeed, the selected pixel is located in the northern part of Tibet, in the hinterland of the
Qinghai-Tibet Plateau. Due to the influence of the summer monsoon in South Asia, precipitation is
mainly concentrated from May to September. In addition, as the temperature rises, the surface frozen
soil begins to melt, and the soil moisture value begins to gradually rise, reaching its peak in July and
August. The temporal evolution of the retrieved soil moisture agreed with the extracted rainfall amount
from TRMM data. The high precipitation amount led to a rapid increase in soil moisture. Then the soil
moisture decreased due to the evapotranspiration and runoff. After September, as the precipitation
decreased, the soil moisture began to decline, and the changes during the year were unimodal.

3.1.2. Product Comparison Analysis

As can be seen from Figure 6, the three products of ESA CCI SM show similar changes to the
station data, which captured the trend of ground measured soil moisture well. Among them, the value
of the combined product is most consistent with the in-situ soil moisture. The values of the passive and
active products are higher than the in-situ measurements, and the large fluctuations are in agreement
with previous results [33].

Table 1 also reflects this fact very well. The ubRMSE of the combined product is 0.034, which is
smaller than 0.066 for passive products and 0.039 for active products. Bias for the combined product is
also the smallest among the three. Overall, the combined product has the highest accuracy, indicating
that the integration of active and passive data sets in the Qinghai-Tibet Plateau has positive effects.

Table 1. The unbiased root mean square error (ubRMSE), root mean square error (RMSE), Pearson
correlation coefficient (R) and bias of the comparison between the in-situ SM (AM) with the active (A),
passive (P) and combined (C) CCI SM product for CTP-SMTMN, REMEDHUS and RISMA (Manitoba,
Saskatchewan). Bold numbers indicate that the combined products perform best.

Networks
ubRMSE RMSE R Bias

C P A C P A C P A C P A

CTP-SMTMN 0.034 0.066 0.039 0.059 0.093 0.074 0.856 0.831 0.865 −0.049 0.066 0.062
REMEDHUS 0.050 0.082 0.103 0.054 0.088 0.115 0.710 0.693 0.612 −0.021 0.033 −0.049

Manitoba 0.054 0.076 0.093 0.060 0.165 0.145 0.420 0.449 0.330 0.026 0.146 0.111
Saskatchewan 0.050 0.072 0.065 0.107 0.233 0.161 0.559 0.507 0.474 0.094 0.222 0.148

3.2. REMEDHUS Network

Similarly, Figure 7 shows the CCI soil moisture in Spain for the two representative days
corresponding to low and high vegetation amount, respectively. We can notice the higher soil
moisture on 15 April than 27 July 2014 for the active, passive and combined products. Most of the
pixels in the TRMM precipitation amount were missed in Figure 8, but a number of available pixels on
15 April are characterized by relative higher rainfall. However, on 27 July, almost all the pixels in the
TRMM precipitation product were not retrievable.
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3.2.1. Characteristics of Soil Moisture Evolution over Time

Figure 9 illustrates the evolution of daily mean soil moisture over time from 0–5 cm depth
as well as temperature from 1 January 2010 to 31 December 2016 in the REMEDHUS network.
Overall, soil moisture in the REMEDHUS region also showed significant annual and seasonal changes.
The REMEDHUS region is a semi-arid Mediterranean continental climate characterized by dry and
warm summers and mild and humid winters. It can also be seen that the soil moisture value is lower
from June to September each year (except for the in-situ value in 2016). From October to May of the
next year, as the precipitation changes, the soil moisture value also fluctuates.
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in the REMEDHUS network.

3.2.2. Product Comparison Analysis

As can be seen from Figure 9, all satellite datasets captured well the evolution of the in-situ soil
moisture cycles, although they had a larger dynamic range than the in-situ time series. Among them,
the value of the combined product is most consistent with the value of the in-situ station, while passive
product showed overestimation, and active product showed a certain underestimation with respect to
the in-situ observations.

In Table 1, the combined product possessed an ubRMSE of 0.050 m3/m3, RMSE of 0.054, R of 0.710,
and bias is −0.021 m3/m3, which is outperformed than the active-only and passive-only approaches.
Thus, the combined product obtained the highest accuracy, and is most suitable in the REMEDHUS
network, in agreement with the results in [28].
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3.3. RISMA Network

Over the RISMA site of Canada, several field campaigns including the Soil Moisture Active Passive
Validation Experiments in 2012 and 2016 (SMAPVEX12, SMAPVEX16) were conducted for calibrating
and validating the SMOS and SMAP soil moisture retrieval algorithms [50,51]. However, over the
study site of Carman, the accuracy of soil moisture retrieval is not satisfactory due to the complex
influences of vegetation and soil texture on the emissivity and backscattering [51]. In the current study,
we used the RISMA soil moisture network to evaluate the performance of the ESA CCI soil moisture
retrieval over the Carman site in Manitoba and another site in Saskatchewan. Unlike the previous two
networks, the TRMM precipitation retrievals were not accessible here. Consequently, the precipitation
amount information collected by the in-situ stations of the RISMA network was used to interpret the
temporal variability of soil moisture.

In Figure 10, the retrieved soil moisture values from combined approach are lower than those
from the active or passive approaches, in accordance with the previous two networks. Nevertheless,
due to the high altitude and low temperature in Canada, the soils in April were often frozen over some
of the study area. We can see that the CCI soil moisture on 15 April 2014 was characterized by around
85% invalid pixels. These invalid pixels are due to several reasons: (1) validity of the radiometer
brightness temperature and the radar backscattering coefficients; (2) influence of soil thaw/freezing
cycle; (3) the non-convergence of the radiative transfer models used for soil moisture retrievals; (4) the
potential influence of radio frequency interference (RFI). However, we assumed that the RFI was not
prominent in the Canada site, as the CCI retrieval rate of soil moisture in July is significantly higher
than in April. In July, the rainfall became significant, leading to the increase in soil moisture.
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over Canada on 15 April (left) and 27 July (right) 2014.

3.3.1. Characteristics of Soil Moisture Evolution over Time

Figures 11 and 12 show the temporal evolution of daily average soil moisture at 0–5 cm depth
as well as temperature from 1 June 2014 to 1 December 2016 in Manitoba, and from 1 July 2013 to 31
December 2016 in Saskatchewan. Due to the freezing of winter soils in Canada, there were almost
no in-situ values in the winter over the in-situ stations, and the satellite signal cannot retrieve the soil
moisture as well. These factors resulted in the lack of winter data for the comparison. In general, the soil
moisture of the RISMA network does not have large fluctuations throughout the year. Following the
precipitation events, the soil moisture values increased and decreased correspondingly.
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Figure 12. Temporal evolutions of (a) CCI retrieved and in-situ measured soil moisture (b) temperature
over Saskatchewan site in the RISMA network.

3.3.2. Product Comparison Analysis

For the RISMA network, a pronouncing bias was observed in the three products of ESA CCI SM.
The soil moisture over Manitoba and Saskatchewan sites were significantly overestimated in all the
three products. Nevertheless, similar temporal trends between the ESA CCI SM and the in-situ stations
were captured, if the bias was compensated. The combined soil moisture product is the most consistent
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with the in-situ station. It can be further proved by the statistical metrics in Table 1 that the accuracies
of the combined product over Manitoba and Saskatchewan sites are the highest.

3.4. Different Upscaling Effects

Based on the three soil moisture networks, our study shows similar effects between the simple
AM and IDW methods to project the in-situ soil moisture within a pixel into the CCI SM spatial scale
(see Figures 6a, 9a, 11a and 12a). Tables 1 and 2 compares the statistical metrics between the AM
and IDW methods applied to the soil moisture ground stations. The weak difference is mainly due
to the small number of available in-situ stations within a pixel of CCI soil moisture. In addition,
the heterogeneity of soil texture, vegetation type and growth stages were not considered in the current
upscaling process. As the spatial resolution of the CCI SM is around 0.25◦ × 0.25◦, we assumed that
the heterogeneities of soil texture, topography, land cover and meteorology were averaged within
that pixel at coarse resolution. Furthermore, for the selected pixel, the temporal variability of the
microwave signals was assumed to be dominated by the soil moisture, as the soil texture, topography
and land cover did not change significantly along time within the pixel.

Table 2. The ubRMSE, RMSE, R and bias of the comparison between the in-situ SM (IDW) with the
active (A), passive (P) and combined (C) CCI SM product for CTP-SMTMN, REMEDHUS and RISMA
(Manitoba, Saskatchewan). Bold numbers indicate that the combined products perform best.

Networks
ubRMSE RMSE R Bias

C P A C P A C P A C P A

CTP-SMTMN 0.033 0.067 0.039 0.058 0.095 0.075 0.858 0.830 0.866 −0.048 0.067 0.063
REMEDHUS 0.065 0.093 0.112 0.065 0.104 0.118 0.583 0.565 0.510 −0.009 0.045 −0.037

Manitoba 0.055 0.076 0.094 0.059 0.160 0.141 0.413 0.446 0.323 0.021 0.141 0.106
Saskatchewan 0.052 0.073 0.066 0.105 0.231 0.159 0.544 0.490 0.467 0.091 0.219 0.144

4. Conclusions

The European Space Agency (ESA) Climate Change Initiative (CCI) contributed to
long-term soil moisture products which may benefit the study of global climate and hydrology.
However, the quantitative validations under different climatic conditions are a prerequisite to
understand their accuracies at different soil and vegetation conditions. Within this context, our study
evaluated the performances of the retrieved soil moisture from active-only, passive-only and the
combined approaches, using the ground soil moisture networks located in China, Spain and Canada.
The selected three test sites were characterized by significant differences in vegetation and soil
characteristics, providing diverse baselines for evaluations.

Simple Arithmetic Mean (AM) and Inverse Distance Weighting (IDW) interpolation were used
to upscale the ground soil moisture, for matching to the CCI retrieved soil moisture at coarse spatial
resolution. Nevertheless, due to the limited number of ground measurements, we did not find
significant differences between the AM and IDW methods applied for the aggregation of the ground
measurements. Over the networks in China and Spain, the CCI retrieved soil moisture captured the
variations of in-situ soil moisture, and positively responded to the rainfall events. However, over the
RISMA network in Canada, a significant overestimation was observed for the three soil moisture
products from active-, passive- and the combination, although the relatively temporal variation trends
still follow similar pattern. Actually, a similar low performance of the SMAP soil moisture retrieval
was reported over the Carman site [51], and this may due to the high heterogeneity in soil texture
which required further intensive investigations.

Over the three test sites, it is consistent that the soil moisture from the combined approach
outperformed than those from active-only and passive-only approaches. The former obtained
ubRMSE of 0.034, 0.050 and 0.050–0.054 m3/m3 over the test sites in China, Spain and Canada.
Thus, we suggested using the combined soil moisture products for the climatic and hydrological
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studies. However, in our study, uncertainty may occur due to the simple upscaling approaches of AM
and IDW. Therefore, in the forthcoming study, we shall investigate the alternative upscaling approaches
such as kriging interpolation and Bayesian maximum entropy to obtain more representative in-situ soil
moisture for the CCI pixels.
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