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Abstract: As an important means of multidimensional observation on the sea, ocean sensor networks
(OSNs) could meet the needs of comprehensive information observations in large-scale and multifactor
marine environments. In what concerns OSNs, accurate location information is the basis of the data
sets. However, because of the multipath effect—signal shadowing by waves and unintentional or
malicious attacks—outlier measurements occur frequently and inevitably, which directly degrades
the localization accuracy. Therefore, increasing localization accuracy in the presence of outlier
measurements is a critical issue that needs to be urgently tackled in OSNs. In this case, this paper
proposed a robust, non-cooperative localization algorithm (RNLA) using received signal strength
indication (RSSI) in the presence of outlier measurements in OSNs. We firstly formulated the
localization problem using a log-normal shadowing model integrated with a first order Taylor series.
Nevertheless, the problem was infeasible to solve, especially in the presence of outlier measurements.
Hence, we then converted the localization problem into the optimization problem using squared
range and weighted least square (WLS), albeit in a nonconvex form. For the sake of an accurate
solution, the problem was then transformed into a generalized trust region subproblem (GTRS)
combined with robust functions. Although GTRS was still a nonconvex framework, the solution could
be acquired by a bisection approach. To ensure global convergence, a block prox-linear (BPL) method
was incorporated with the bisection approach. In addition, we conducted the Cramer–Rao low bound
(CRLB) to evaluate RNLA. Simulations were carried out over variable parameters. Numerical results
showed that RNLA outperformed the other algorithms under outlier measurements, notwithstanding
that the time for RNLA computation was a little bit more than others in some conditions.

Keywords: bisection method; ocean sensor networks; outlier measurements; non-cooperative
localization; received signal strength indication

1. Introduction

Wireless sensor networks (WSNs) are self-organizing networks consisting of numerous sensor
nodes connected by some means of communication. Because of their small size, low energy
consumption, strong robustness, flexible layout, and rapid networking for nodes, WSNs are now
widely used in a large number of fields [1–4]. One of the vital applications is to conduct ocean sensor
networks (OSNs) to monitor ocean environments in the case of forecasting climate changes [5]. To fulfill
this task, a tremendous number of sensor nodes, such as buoys that are sensitive to environmental
factors, are deployed on the ocean surface. Considering the cost of nodes, only a few sensor nodes are
armed with a global positioning system (GPS), called anchor nodes [6,7], while the others are unknown
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nodes. It should be noted that data collected by sensor nodes are meaningful only when the latter is
properly geo-referenced [8]. Hence, the critical issue that needs to be tackled in OSNs is to acquire
location information of the unknown nodes with assistance from the anchor nodes.

Regarding localization in OSNs, non-cooperative localization (NCL) and cooperative localization
(CL) schemes are considered the major scenarios [9]. In CL, the unknown nodes are able to communicate
with the rest of the sensor nodes (anchor nodes and other unknown nodes) within the communication
range, whereas they cannot in NCL. In general, the complexity, computational time, and energy
consumption in CL are far more than that of NCL, albeit more accurate as well [10]. In order to
achieve long-term monitoring of the ocean, the scheme with less energy consumption seems to be a
better choice. In this case, we focus more on the NCL scheme in OSNs. Basically, NCL contains five
measurement techniques: (1) time of arrival (TOA), (2) time difference of arrival (TDOA), (3) angle of
arrival (AOA), (4) time of flight (TOF), and (5) received signal strength indication (RSSI) [8]. As for
the localization accuracy, TOA, TDOA, AOA, and TOF may outperform RSSI at the cost of extra
apparatuses in some circumstances. Besides, TOA, TDOA, and TOF have to synchronize time during
localization. On the contrary, there is no need to arm extra apparatuses and synchronize time in RSSI.
Therefore, RSSI is considered a cost-effective and energy-saving method widely used in OSNs [11].
In this case, we used RSSI as the measurement technique in this paper.

Past years have witnessed development of research on localization in OSNs. Considerable efforts
have been investigated in recent years [12–25]. To mention a few, an optimal sensor placement strategy
that depended on the required task at hand was proposed in [13]. This strategy could run in the
presence of Gaussian noise in the range-based scheme. Then, the authors further proposed a multiple
underwater target positioning method in [18] with the strategy exploited. The localization problem
in [18] was transformed into an optimization problem. Two-phase localization was presented, where
convex optimization tools were utilized for single target localization, and Pareto optimization tools
were used when it came to multiple target localizations. Similar two-phase work was proposed in [23].
In the first phase, a particle swarm optimization (PSO)-based localization algorithm was employed to
locate the unknown nodes. For the sake of avoiding the case that some of the unknown nodes had not
been localized in the first phase, a circle-based, range-free localization method was presented in the
second phase.

Nevertheless, two-phase localization methods function well only when the anchor nodes are
not faulted. In this matter, to avoid anchor node failure, a fault-resilient localization method was
proposed in [24]. The authors utilized multiple linear regression to learn mobility behaviors from
the neighbors of unknown nodes. The authors in [12] presented a maximum likelihood estimator
under Gaussian noise to deal with anchor node uncertainty. In addition, some anchor-free localization
methods have been presented to handle anchor node failure localization. Li et al. proposed an
anchor-free localization mechanism using belief propagation integrated with dead reckoning [25].
The authors in [16] presented a signal reflection-enabled, acoustic-based localization scheme (UREAL),
which was entirely an anchor-free approach. This scheme established the refracted–surface–reflected
link for all sensor nodes using RSSI information. Then, the authors utilized AOA ranging in the
position estimation. In addition to localization accuracy, energy consumption is considered another
limitation in localization. Guo et al. proposed an energy-aware localization method in [15], wherein the
authors took ships as anchor nodes to engage in energy-saving. Yan et al. presented an autonomous
underwater vehicle (AUV)-aided localization scheme, wherein active nodes and passive nodes were
included [14]. Yan et al. proposed an energy-efficient localization algorithm in [17]. The algorithm
converted the localization problem into a convex optimization problem using norm relaxation and
semidefinite relaxation.

However, it should be emphasized that outlier measurements may occur frequently and inevitably
because of the multipath effect, unintentional or malicious attack, and signal shadowing caused by
waves [10,26,27]. To the best of our knowledge, only a few papers took outlier measurements into
consideration when it came to localization in OSNs. In [28], the authors applied support vector
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data description (SVDD) to detect outlier measurements and then exploited auto-associative kernel
regression (AAKR) to correct deviations. The authors in [29] employed half quadratic minimization
to solve the localization problem in the presence of outliers. Soares et al. converted the localization
problem into a convex optimization problem using simple fast convex relaxation, and then they tested
the method with 10% outlier measurements engaged [30].

It may be noted that the method in [28] is costly and has high complexity. The approaches
proposed in [29] and [30] only considered outlier measurements that yielded Gaussian distribution,
which was the ideal situation. In this paper, motivated by the above issues, we propose a practical,
robust non-cooperative localization algorithm (RNLA) that regards the buoys as sensor nodes and uses
RSSI in the presence of outlier measurements in OSNs. Firstly, the localization problem is formulated
using RSSI with a log-normal shadowing model and the first-order Taylor series exploited. After
considering the dynamics of sensor nodes, the length of the anchor chain of the buoys, and the depth of
the water, the moving area is restricted. Moreover, because of the non-Gaussian outlier measurements
involved, the maximum likelihood estimator cannot function well. We then convert the original
localization problem into an optimization problem using squared range and weighted least square
(WLS), albeit in a nonconvex form. Furthermore, the optimization problem is transformed into a
generalized trust region subproblem (GTRS) incorporated with robust functions. Despite that GTRS is
still a nonconvex framework, we conduct a bisection-based block prox-linear (BPL) method to solve it.
Additionally, a Cramer–Rao low bound (CRLB) is acquired to evaluate the proposed method.

The main differences between this paper and the previous works are: (1) We consider the dynamics
of all nodes, which is more practical in real situations, especially in such a highly dynamic ocean
environment. (2) We take into account the length of the anchor chain of the buoys and the depth of
the sea, restricting the moving area. (3) In some previous works, localization in OSNs contains two
procedures (i.e., detecting the outliers and then eliminating the outliers before locating the nodes);
however, in this paper, we take the outlier measurements into consideration without detecting and
eliminating procedures, directly locating the unknown nodes in the presence of outlier measurements,
which may save localization time in OSNs. The major contributions of this paper can be concluded as
these two aspects: (1) we convert the localization problem into an optimization framework combined
with robust functions, and (2) a robust algorithm named RNLA, which figures out the global solution
and works well in a highly dynamic ocean environment, is proposed for localization in OSNs.

The remainder of the paper is organized as follows. In Section 2, we introduce the problem
formulation of non-cooperative localization. In Section 3, the proposed algorithm is illustrated.
In Section 4, comprehensive simulation results are discussed. In the last section, Section 5, we conclude
this paper.

2. Problem Formulation

Assume plenty of sensor nodes (buoys with anchor chain attached) are deployed on the ocean
surface of interest. In this paper, we assumed all sensor nodes were movable in the restricted area,
which is the base of the cone shown in Figure 1. Without loss of generality, suppose the number
of anchor nodes and unknown nodes are N and M respectively. The position of anchor nodes

and unknown nodes are At =
[(

at
1

)T
,
(
at

2

)T
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]T
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]
, j ∈ M respectively. x and y indicate the

corresponding coordinate.
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Figure 1. Restricted area for moving sensor nodes.

In this paper, we employed RSSI as the ranging method because its time does not need to be
synchronized, it is cost-effective, and it saves energy [9]. The localization procedures were executed in a
centralized manner, where all information within the communication radius collected was transmitted
to the processing center. The tradeoff information at each time slot between anchor nodes and unknown
nodes included the RSSI value and corresponding identity number. Suppose all sensor nodes are
armed with the signal receiver, which means the nodes are aware of the signal strength. The received
RSSI value could be modeled as the propagation path-loss model [10]

RSSIt
ri = RSSIt

s j − PL(d0) − 10ϑlg

dt
i j

d0

+ ηt
i j, (1)

where RSSIt
ri denotes the signal strength received by the ith anchor node from the jth unknown node at

time t. RSSIt
s j denotes the transmission power of the jth unknown node at time t. PL(d0) is the signal

strength loss value when the reference distance is d0 = 1 m. ϑ indicates the path loss factor. dt
i j denotes

the distance between the ith anchor node and the jth unknown node at time t. ηt
i j is Gaussian white

noise, which is rewritten as η for the convenience in the rest of the paper.
Assume R is the matrix that contains all range measurements, RSSIt

ri = Pt
ri, RSSIt

s j − PL(d0) = Pt
s j,

and d0 = 1 m. If the noise follows a zero-mean Gaussian distribution with variance σ, the corresponding
probability density function (PDF) can be written as Equation (2) [10].

p(Rt
∣∣∣Ut ) =

M∏
j=1

N∏
i=1

1
√

2πσ2
exp

−
{
Pt

ri − Pt
s j + 10ϑlg(dt

i j)
}2

2σ2

. (2)

If the transmission power and the path loss factor are known, Formula (1) could be rewritten as
Equation (3) [10].

(dt
i j)

2
= 10

Pt
sj−Pt

ri
5ϑ · 10

η
5ϑ . (3)

When the noise is relatively small, the right side of Equation (3) can be approximated using the
first-order Taylor series expansion as Equation (4) [20].

10
Pt

sj−Pt
ri

5ϑ · 10
η

5ϑ ≈ 10
Pt

sj−Pt
ri

5ϑ · (1 +
ln 10
5ϑ

η). (4)
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Equation (4) can be, alternatively, written as Equation (5) [20]

10
Pt

sj−Pt
ri

5ϑ · 10
η

5ϑ ≈ 10
Pt

sj−Pt
ri

5ϑ + η′, (5)

where η′ = 10
Pt

sj−Pt
ri

5ϑ ·
ln 10
5ϑ η.

Now, the problem in Equation (2) can be reformulated as Equation (6) [20].

p(Rt
∣∣∣Ut ) =

M∏
j=1

N∏
i=1

1
√

2πσ2
exp

−
(‖at

i − ut
j‖ − dt

i j)
2

2σ2

. (6)

Notably, Equation (6) could be solved by the maximum likelihood (ML) estimator. However, once
the outlier measurements exist (the non-Gaussian noise attributes to the noise distribution), the ML
estimator, to some extent, malfunctions. Henceforth, the proposed RNLA method was motivated by
this case.

In this paper, we took into account a non-Gaussian noise situation. The noise distribution
consisted of two parts: (1) Gaussian distribution and (2) uncertain distribution (the distribution of
outlier measurements) [31].

p(η) = (1− β)Ω
(
η; 0, σ2

)
+ βϕ(η), (7)

where Ω
(
η; 0,σ2

)
denotes the Gaussian distribution. ϕ(η) indicates the outlier measurements distribution.

β is the contamination ratio.

3. Proposed Algorithm

3.1. Generalized Trust Region Subproblem (GTRS)

In Section 2, the ML estimator was conducted when the noise was Gaussian. However, the ML
estimator was not functional in the presence of non-Gaussian outlier measurements. Therefore,
we converted Equation (6) into the optimization problem using squared range and WLS.

Û = argmin
M∑

j=1

N∑
i=1

ωt
i

{
‖at

i − ut
j‖

2

2
− (dt

i j)
2
}2

, (8)

where ωt
i denotes the weight at time t.

It should be noted that the problem in Equation (8) is nonconvex. Thus, a proper transformation is
exploited by reformulating it as a constrained minimization problem [32]. Assume that each unknown
node is independent. Here, we took one of the unknown nodes j as an example to demonstrate the rest
of the parts. Then, Equation (8) can be rewritten as

(ût
j,=

t
j) = argmin

N∑
i=1

ωt
i

(
=

t
j − 2(at

i)
Tut

j + ‖a
t
i‖

2
−

(
dt

i j

)2
)2

subject to ‖ut
j‖

2
= =t

j

. (9)

Now, the problem in Equation (9) can be expressed as a quadratic program as

minimize
yt

j

‖ωt(℘tyt
j − bt)‖

2

subject to (yt
j)

TDyt
j + 2fTyt

j = 0
, (10)
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where yt
j = [ut

j,=
t
j]

T
and the corresponding matrices ℘t, bt, D, and f are defined as

℘t =


−2(at

1)
T

...
−2(at

N)
T

1
...
1

, bt =


(dt

i j)
2
− ‖at

1‖
2

...
(dt

N j)
2
− ‖at

N‖
2

, D =

[
In

01×n

0n×1

0

]
, f =

[
0n×1

−
1
2

]
, (11)

where n denotes the dimension.
The original localization problem is further transformed into GTRS, a constrained minimization

problem, as shown in Equation (10).

3.2. German-McClure (GM) Function with Huber Norm in GTRS

Although the problem has already been transformed into GTRS, large errors may appear in a way,
directly using a bisection approach to figure out the solution under outlier measurements. Henceforth,
inspired by [33,34], the objective function could be expressed as

J
(
yt

j,ω
t
)
=

N∑
i=1

ωt
i(℘

t
iy

t
j − bt

i)
2
+

N∑
i=1

ε2ωt
i − lnωt

i , (12)

where ℘t
i = [−2(at

i)
T, 1], bt

i = (dt
i j)

2
− ‖at

i‖
2, and ε denotes the parameter that needs to be determined.

The former summation of Equation (12) is Equation (10), the latter term of Equation (12) is added
to cater for the use of the German-McClure (GM) function, being one of the M-estimators commonly
used in robust statistics. The aim of the GM function is to degrade the influence of large errors by
interpolating between `2 and `0 norm [35].

The GM function can be expressed as

ρε(e) =
e2

e2 + ε2 , (13)

where e denotes the residual of the former summation of Equation (12). ρε(·) indicates the function of e.
However, the GM function does not guarantee a unique solution, though it is a robust function.

In this case, the Huber norm, being a convex function, is incorporated with the GM function to figure
out parameter e.

The Huber norm is introduced in Equation (14).

ρκ(e) =
 1

2 e2
|e| < κ

κ|e| − κ2

2 |e| ≥ κ
. (14)

If the noise is Gaussian, the Huber function would be 95% asymptotically efficient when the
parameter κ is 1.34σ [34].

Incorporating the GM function with the Huber norm, Equation (14) can be rewritten as

ρε(e) =

 e2

e2+ε2 |e| < ε0
1
8 (

3
ε0
|e| − 1) |e| ≥ ε0

, (15)

where ε0 = 1.34σ and ε =
√

3ε0.
Now, we have obtained the optimal parameter ε = 1.34

√
3σ.
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3.3. Robust, Non-Cooperative Localization Algorithm (RNLA)

The problem in Equation (12) can be expressed as

minimize
y j

(℘tyt
j − bt)

TWt
k−1(℘

tyt
j − bt)

subject to (yt
j)

TDyt
j + 2fTyt

j = 0
, (16)

where Wt
k denotes the diagonal weight matrix in the kth iteration at time t, wherein

(
ωt

i

)k
is the ith

diagonal entry of Wt
k.

At each iteration, the value of
(
ωt

i

)k
is updated by

(
yt

j

)k
and

(
ωt

i

)k−1
. The value of

(
yt

j

)k+1
will

be updated by
(
yt

j

)k
and

(
ωt

i

)k
. Hence, the weight of the kth iteration of ith diagonal entry at time t is

given by (
ωt

i

)k
=

1{(
et

i

)k
}2

+ ε2

, (17)

where
(
et

i

)k
= ℘t

i

(
yt

j

)k
− bt

i .

It is worth noting that the GTRS has no duality gap, and the optimal solution can be derived from

the dual solution [32].
(
yt

j

)k
would be the optimal solution of Equation (16) within a necessary and

sufficient condition: {(
℘t

)T
Wt

k−1℘
t + λtD

}(
yt

j

)k
=

(
℘t

)T
Wt

k−1bt
− λtf,{(

yt
j

)k
}T

D
(
yt

j

)k
+ 2fT

(
yt

j

)k
= 0,(

℘t
)T

Wt
k−1℘

t + λtD�0.

(18)

The last term of Equation (18) means that
(
℘t

)T
Wt

k−1℘
t + λtD is a positive semidefinite. Under the

constraint conditions, the problem of Equation (16) is reformulated to figure out the optimal solution
of λt.

φ(λt) =
{(

yt
j

)k(
λt

)}T
D
(
yt

j

)k(
λt

)
+ 2fT

(
yt

j

)k(
λt

)
; (19)

(
yt

j

)k(
λt

)
=

{(
℘t

)T
℘t + λtD

}−1{(
℘t

)T
bt
− λtf

}
. (20)

To ensure
(
℘t

)T
Wt

k−1℘
t + λtD�0, the optimal of λt denoted λt1∗ should be in the interval ξ [32]

λt1∗
≥ ξ = −

1
λ1

, (21)

where λ1 is the largest eigenvalue of
{(
℘t

)T
℘t

}− 1
2
D
{(
℘t

)T
℘t

}− 1
2
.

In pursuance of
(
yt

j

)k
, we should figure out λt∗ first, which is solved by a bisection approach.

However, only the theoretical convergence is guaranteed from a bisection approach. For the sake
of the global convergence of the solution, we exploit BPL [36] in the bisection procedure.

Suppose the estimate of the jth unknown node in the kth iteration at time t is
(
yt

j

)k
, and the

corresponding weight is Wt
k . Inspired by [36], the update rule for yt

j can be expressed as
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(
yt

j

)k
= argmin

yt
j

〈
∇yt

j
J
((

ŷt
j

)k
, Wt

k−1

)
, yt

j −

(
ŷt

j

)k
〉
+ ltk‖y

t
j −

(
ŷt

j

)k
‖

2

2

subject to (yt
j)

TDyt
j + 2fTyt

j = 0

(22)

where ltk is the Lipschitz constant of ∇yt
j
J
(
yt

j, Wt
k−1

)
.

υt
k =

1
12

√√
ltk−1

ltk
; (23)

(
ŷt

j

)k
=

(
yt

j

)k
+ υt

k+1

((
yt

j

)k−1
−

(
yt

j

)k−2
)
. (24)

In general, BPL is a variant of the gradient descent method. Here we use
(
yt

j

)k
as the initial value

to figure out the optimal solution yt∗
j under the update rule and extrapolation factor υt

k [36].
(
yt

j

)k+e
is

the optimal solution yt∗
j when the conditions below are satisfied:

(
ltk+eIn+1 + λtD

)(
yt

j

)k+e
= −

(
℘t

)T
υt

k+e−1

(
℘t

(
ŷt

j

)k+e
− bt

)
+ ltk+e

(
ŷt

j

)k+e
− λtf; (25)

{(
yt

j

)k+e
}T

D
(
yt

j

)k+e
+ 2fT

(
yt

j

)k+e
= 0,

λt2∗
≥ max

{
−ltk+e,−

1
λ1

}
.

(26)

It is apparent that the problem in Equation (26) is GTRS, of which λt2∗ is obtained through iteration

processes. Once λt2∗ is acquired, the corresponding
(
yt

j

)k+e
could be obtained by the first term of

Equation (25).
The proposed RNLA method could be expressed in Algorithm for RNLA. (Algorithm 1)
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Algorithm 1. Algorithm for RNLA

1. Initiation: A, ε, maximum number of iterations Iteration = Iteration1 + Iteration2, the convergence tolerance
δ and ς, and time
2. Calculate the range measurement matrix R
3. for t = 1 : time do
4. for j = 1 : M do
5. for i = 1 : N do
6. Calculate ℘t, bt, D, and f according to Equation (11)
7. end
8. Let (ωt

i)
0
= 1,∀i and k = 1

9. while STOP = FALSE do
10. Solve Equation (19) with Equation (20) using the bisection approach to figure out λt1∗.

11. Update
(
yt

j

)k
according to Equation (20)

12. Update
(
ωt

i

)k
according to Equation (17)

13. if

∣∣∣∣∣∣J
((

yt
j

)k
, Wt

k

)
− J

((
yt

j

)k−1
, Wt

k−1

)∣∣∣∣∣∣ < δ or reach the number of Iteration1 then

14. STOP←True
15. else k = k + 1
16. end
17. Let ltk = 0, υt

k = 0
18. while STOP = FALSE do

19. Calculate ltk = 2‖
(
℘t

)T
Wt

k℘
t
‖

F

20. Calculate υt
k and

(
ŷt

j

)k
according to Equations (23) and (24)

21. Figure out λt2∗ according to Equation (26)

22. Update
(
yt

j

)k
according to Equation (25)

23. Update
(
ωt

i

)k
according to Equation (17)

24. if

∣∣∣∣∣∣(yt
j

)k
−

(
yt

j

)k−1
∣∣∣∣∣∣ < ς or reach the number of Iteration then

25. STOP←True
26. else k = k + 1
27. end
28. end
29. end

In addition, a flowchart is presented, as shown in Figure 2, to better understand the process
of RNLA.
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Figure 2. Flowchart of the robust, non-cooperative localization algorithm (RNLA). RSSI = received
signal strength indication.

3.4. Cramer–Rao Low Bound (CRLB)

In this part we will conduct the CRLB, being a covariance matrix representing a lower bound
of any unbiased estimators [37], for the location estimate. Same as the above parts, we take the jth

unknown node at time t as an example. Let ût
j =

[
ût

jx, ût
jy

]
denote the estimated position of the jth

unknown node at time t, and Cov
(
ût

j

)
denote the covariance matrix. Basically, the covariance will meet

Cov
(
ût

j

)
= E

{(
ût

j − ut
j

)T(
ût

j − ut
j

)}
�F−1, (27)

where F is the Fisher information matrix (FIM), which can be expressed as

F =


∂2p

(
Rt

∣∣∣∣ut
j

)
∂2ut

j

. (28)

Only two parameters are included in ut
j, thus Equation (28) could be rewritten as
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F =


∂2p

(
Rt

∣∣∣∣ut
j

)
∂2ut

jx

∂p
(
Rt

∣∣∣∣ut
j

)
∂ut

jx
·

∂p
(
Rt

∣∣∣∣ut
j

)
∂ut

jy

∂p
(
Rt

∣∣∣∣ut
j

)
∂ut

jy
·

∂p
(
Rt

∣∣∣∣ut
j

)
∂ut

jx

∂2p
(
Rt

∣∣∣∣ut
j

)
∂2ut

jy

. (29)

It is easy to obtain closed-form expressions of F if the noise yields Gaussian distribution. However,
in this paper, the noise is not Gaussian distribution due to outlier measurements are engaged. The
closed-form expressions are not available. In this matter, a Monte Carlo simulation is employed.
Equation (29) can be rewritten as

F =
( 10ϑ

ln 10

)2
· Iη ·


N∑

i=1

(
ut

jx−at
ix

)(
ut

jx−at
ix

)
‖ut

j−at
i‖

4

2

N∑
i=1

(
ut

jx−at
ix

)(
ut

jy−at
iy

)
‖ut

j−at
i‖

4

2

N∑
i=1

(
ut

jy−at
iy

)(
ut

jx−at
ix

)
‖ut

j−at
i‖

4

2

N∑
i=1

(
ut

jy−at
iy

)(
ut

jy−at
iy

)
‖ut

j−at
i‖

4

2

, (30)

where Iη ≈ 1
NC

NC∑
sample=1

[
∇ηp(η)sample]2

p2
(
(η)sample) denotes the intrinsic error that can be obtained by Monte Carlo

simulation. NC denotes the total number of samples in the Monte Carlo simulation. ∇ηp(η) is the first
gradient operator.

Let ‖ût
j − ut

j‖2
= error. The root mean square error (RMSE) is related to the obtained CRLB through

√
E(error2) ≥

√
Tr

(
F−1

)
, CRLB

(
ut

j

)
, (31)

where Tr(·) is the trace of a matrix.

3.5. Complexity Analysis

The complexity of the algorithm is strongly relative to N and M, specifically, the function of N
and M. Assuming that the network is fully connected, the number of connections in the network could
be expressed as C = M ·N + M · (M− 1)/2 [38]. At each time slot, the unknown nodes will be located
at a time. Since we utilized a non-cooperative scheme, there were no connections among unknown
nodes. In this case, if the network was fully connected, the number of connections of the network
should be C = M ·N. For an unknown node (i.e., M = 1), let Iteration be the maximum number of
steps. At each time slot, the corresponding complexity of RNLA could be linear (i.e., O(Iteration ·N)).
In other words, the overall complexity of the network could be O(Iteration ·M ·N).

4. Numerical Simulations

In this section, several experiments were carried out in different scenarios in Matlab R2018b to
verify the effectiveness of RNLA. The simulation area was 500× 500 m2, wherein the depth of water was
40 m, and the length of the anchor chain was 50 m. Basically, if data were collected for the wind speed
and the level of the wave, the corresponding mobility model for sensor nodes could be acquired after
analyzing the interactive force exerted on the nodes. Hence, due to absence of the data, we assumed
all nodes were movable in a random walk model in the restricted area with a velocity of 2 m/s. We set
the number of outlier measurements as N × β varying from the anchor nodes. The number of Monte
Carlo simulations was 100, where NC = 1000. The distribution of outlier measurements could be a
uniform distribution, an exponential distribution, a Rayleigh distribution, etc. Here, in this paper,
we assumed the distribution of outlier measurements was a uniform distribution (considering it was
convenient) in which the assumption was commonly exploited in many works [39–42]. For example,
the authors in [40] constructed a deep regression model with the use of a Gaussian-uniform mixture
model to deal with the outliers. The authors in [41] modeled the distribution of the measurement as a
Gaussian-uniform mixture in order to handle the severe performance degradation under interference.
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In this paper, the uniform distribution follows (−500
√

2, 500
√

2). CRLB and three methods—the
method Directly Squaring Least Square (DS-LS) mentioned in [11], the method Weighted Least
Square-Known parameters (WLS-K) proposed in [20], and the method called Weighted Triangle
Centroid Algorithm (WTCA) proposed in [43]—as comparisons were involved. The reason that we
chose these three methods was that they were proposed for localization using RSSI in OSNs. In addition,
DS-LS and WLS-K converted the localization problem into an optimization framework, which was one
of the contributions of the paper, though the optimization functions were different. Moreover, WLS-K
basically could be recognized as the common solution for GTRS, wherein we combined a bisection
approach and the BPL method to solve GTRS in this paper. Although WTCA did not convert the
localization problem into an optimization framework, this method was from our previous work that
considered the high dynamics of the ocean environment. In this paper, we calibrated localization
accuracy by RMSE, which can be expressed as

RMSE =

√√√√
1

M · time

time∑
t=1

M∑
j=1

(
ut

jx − ût
jx

)2
+

(
ut

jy − ût
jy

)2
. (32)

4.1. Scenario with Variable Anchor Nodes

In this part, the simulation was executed under variable anchor nodes. The corresponding
parameters were as follows: M = 100, σ = 2 m, and β = 0.4.

The performances of different methods under variable anchor nodes are indicated in Figure 3.
As expected, the performance of the methods improved by increasing the number of anchor nodes.
This was because more measurement information was provided for unknown nodes as the number
of anchor nodes grew. However, because there were outlier measurements, the performances of the
methods were inconsistent. DS-LS was affected mostly because a direct squaring strategy was utilized
in the method, in which the performance depended on relative, accurate measurements. As for WTCA,
the method was a microelectromechanical system (MEMS)-aided algorithm, where the accumulated
error grew as time passed. Thus, the performance was worse than WLS-K, wherein an iterative
reweighed method was used, which alleviated the influence of outlier measurements on localization
(in a way). Nevertheless, because robust functions and the BPL method were used, the negative
influence of outlier measurements received by the unknown nodes reduced gradually at each iteration.
Hence, RNLA outperformed the other three methods and was close to CRLB.
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4.2. Scenario with Variable β

In this scenario, the contamination ratio β was changeable. Parameters were set as: N = 20,
M = 100, and σ = 2 m.

In Figure 4, we can see that the performances of all methods deteriorated during an increase
of β, or equivalently, the rise of outlier measurements. The performance of DS-LS was the worst
in comparison because outlier measurements influenced the ranging. The same situation occurred
in WTCA, though the performance was better than DS-LS. It should be noted that, because of the
accumulated error resulting from MEMS, the deterioration ratio of WTCA was larger than DS-LS.
The ratio of WLS-K augmented over the increase of β as well. When the value of β was small, close
performances were exhibited between WLS-K and RNLA. This was because the iterative reweighed
strategy worked at a few outlier measurements. However, the difference became more distinguishable
as β increased. The optimal parameter conducted by robust functions worked at each iteration when β
increased. Hence, though localization accuracy was getting worse, the deterioration ratio of RNLA
decreased significantly, and the performance was better than others.
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4.3. Scenario with Variable σ

In this part, simulations were carried out under variable σ with or without outlier measurements.
In addition, to verify the effectiveness of the robust functions, WLS-K-Robust was conducted in the
simulations. Parameters were set as: N = 20, M = 100, and β = 0 or β = 0.4.

According to Equation (7), if β = 0, the second term of Equation (7) is equal to zero, meaning that
there are no outlier measurements. Hence, the scenario in Figure 5a indicates the localization without
outlier measurements. Another one, Figure 5b, is the scenario of localization with outlier measurements.

In Figure 5, the performance of WTCA was significantly worse than others while σ increased if
the outlier measurements engaged or not. On the contrary, DS-LS performed well, close to RNLA,
and outperformed WLS-K, WLS-K-Robust, and WTCA (Figure 5a), although it performed badly in
the presence of outlier measurements shown in Figure 5b. Regarding WLS-K, whether the robust
functions engaged had a divergent performance. In Figure 5a,b, WLS-K-Robust worked more steadily
or even better than WLS-K. Besides, we knew that the robust functions could alleviate the adverse
effect of σ on localization from Figure 5b. Over and above the robust functions, RNLA integrated with
BPL, which further improved performance and outperformed the others in the presence or absence of
outlier measurements.
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4.4. Cumulative Distribution Function (CDF)

In order to demonstrate the effectiveness of the proposed method further, we conducted the
simulation of CDF shown in Figure 6. Resulting from the increase of accumulated error by MEMS,
it was unfair to make a comparison for WTCA. Accordingly, only WLS-K, WLS-K-Robust, and DS-LS
were involved in this part.
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Despite the performance of DS-LS, which was strongly sensitive to outlier measurements and
the worst one in Figure 6, we focused more on the other three methods. Figure 6 shows that RNLA
beat WLS-K and WLS-K-Robust, improving the localization accuracy by more than 12 m and 35 m
when N = 50 and N = 20, respectively, on average. We can also see that RNLA achieved error < 20 m
and error < 50 m at 100% when N = 50 and N = 20, respectively, whereas others attained the same
probability in the case of error ≥ 30 m and error ≥ 70 m respectively.

4.5. Computation Time

Computation time, or equivalently computation efficiency, was another factor to calibrate the
performance of the methods, apart from the localization accuracy. Unfortunately, RNLA was not
flawless. In Figure 7, the computation time in some situations was not satisfactory, though it had
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an outstanding localization accuracy with or without outlier measurements as shown in Figure 3
to Figure 6. It should be noted that WTCA was a MEMS-aided algorithm, wherein only one-time
localization was carried out. After one-time localization, acquiring the location was the task of MEMS.
Thus, the scheme was almost a real-time one. This was the reason we did not compare WTCA
computation times in Figure 7.
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The maximum number of iterations of RNLA that we set in the simulation was 1000. In Figure 7,
we saw that the robust functions could improve the computation efficiency, besides improving the
localization accuracy, in the presence of outlier measurements. DR-LS was the most efficient one in
all scenarios, whereas RNLA was the worst one, on average. This was because the BPL, a method
to figure out the global solution, involved RNLA, which needed extra time for searching. However,
the computation time of RNLA was less than WLS-K and WLS-K-Robust when N ≤ 20 (in the first
scenario) and less than WLS-K, close to WLS-K-Robust, in the second scenario (variable β). Hence, if
the area of interest did not have enough anchor nodes engaged in localization, expecting to have a good
performance in the presence of outlier measurements simultaneously, RNLA seemed to be the better one
to locate the unknown nodes. But if the environment was ideal (no outlier measurements), of course,
there was no doubt that DR-LS was the best choice. Although the computational efficiency was not
satisfactory in comparing DR-LS, WLS-K, and WLS-K-Robust, the average time for computation was
2.4 s, which was far less than our previous cooperative work in [10].
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5. Conclusions

In this paper, a practical localization method named RNLA using RSSI in the presence of outlier
measurements in OSNs was proposed. The localization problem was formulated firstly using a
log-normal shadowing model and the first-order Taylor series. However, there were non-Gaussian
outlier measurements, which the maximum likelihood estimator could not function well with. Thus,
we then converted the original localization problem into an optimization problem using squared
range and WLS, albeit in a nonconvex form. Furthermore, integrated robust functions with the
optimization problem, a GTRS framework, was conducted. To obtain the global optimal solution,
BPL was incorporated with a bisection procedure. In addition, CRLB was acquired to evaluate the
proposed method. Several experiments were executed under variable parameters and compared to
other methods. Because the robust functions and the BPL method (a method for searching the global
solution) were engaged in the algorithm, the negative influence of outlier measurements on localization
gradually reduced after iteration. Therefore, RNLA outperformed the others, though the computation
time was a little bit longer than some of them in some scenarios. In future work, we will verify the
proposed method in a real situation, considering more dynamic scenarios. In addition, methods with
less computation times will be investigated in OSNs in the future.
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