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Abstract: We present field deployment results of a portable optical absorption spectrometer for
localization and quantification of fugitive methane (CH4) emissions. Our near-infrared sensor targets
the 2ν3 R(4) CH4 transition at 6057.1 cm−1 (1651 nm) via line-scanned tunable diode-laser absorption
spectroscopy (TDLAS), with Allan deviation analysis yielding a normalized 2.0 ppmv·Hz−1/2 sensitivity
(4.5 × 10−6 Hz−1/2 noise-equivalent absorption) over 5 cm open-path length. Controlled CH4 leak
experiments are performed at the METEC CSU engineering facility, where concurrent deployment of
our TDLAS and a customized volatile organic compound (VOC) sensor demonstrates good linear
correlation (R2 = 0.74) over high-flow (>60 SCFH) CH4 releases spanning 4.4 h. In conjunction
with simultaneous wind velocity measurements, the leak angle-of-arrival (AOA) is ascertained
via correlation of CH4 concentration and wind angle, demonstrating the efficacy of single-sensor
line-of-sight (LOS) determination of leak sources. Source magnitude estimation based on a Gaussian
plume model is demonstrated, with good correspondence (R2 = 0.74) between calculated and
measured release rates.

Keywords: absorption spectroscopy; infrared; diode laser; methane; natural gas; fugitive emissions;
source estimation; angle-of-arrival; Gaussian plume model

1. Introduction

Natural gas (NG) harvesting has undergone accelerated growth due to increasing demand for
alternative clean energy sources [1,2], with over half-million active wells for oil and gas extraction in
the United States alone [3]. Methane (CH4), the primary constituent of NG, is of primary interest given
its high energy density [4] and relatively clean combustion process [5], with modern applications [6–8]
ranging from electricity generation to domestic heating and, more recently, as an automotive fuel (in the
form of compressed NG). However, given the high radiative forcing [1] of CH4 (37× higher than CO2),
its efficacy as a clean fuel is reliant on the suppression of fugitive emissions (up to 6.0% of total well
production for conventional NG [2]), the majority of which occur during the NG production/extraction
phase [1,2,9]. Ideally, point sensors with adequate CH4 sensitivity and molecular specificity should be
located on-site for spatially resolved, continuous in situ leak monitoring [10]; however, the present lack
of cost-effective CH4 monitoring solutions prevents large-scale implementation of source attribution
technologies for the timely localization and quantification of NG leaks [11–13]. Presently, a spectrum of
existing chemical sensing technologies of CH4 exist, although these methods [10,14] (e.g., chemiresistive,
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electrochemical, photoionization methods) are broadly susceptible to a wide array of volatile organic
compounds (VOCs), thus presenting poor species discrimination [15] for leak magnitude estimation.

Infrared (IR) absorption spectroscopy has emerged in recent years as a promising solution
for trace-gas detection which requires high levels of precision and molecular specificity [16–18],
with applications ranging from health diagnostics [19,20] to environmental [21,22] and industrial
process monitoring [23]. Fundamental rovibrational transitions in the mid-IR (3–25 µm) are readily
targeted using quantum (or interband) cascade laser (QCL/ICL) technologies [24,25], while weaker
overtone bands are typically measurable in the near-IR (NIR) using conventional tunable diode
laser absorption spectroscopy (TDLAS) [17,26,27]. In particular, CH4 is accessible by the latter
given the convenient presence of its 2ν3 harmonic overtones in the telecommunications U-band
(1625–1675 nm) [27,28], and the spectrally resolved nature of TDLAS intrinsically enables excellent
species discrimination through appropriate selection of interference-free transitions. In contrast to
hyperspectral imaging [29] or non-dispersive IR techniques [16], TDLAS offers both significantly
improved specificity and sensitivity, with noise-equivalent absorption (NEA) < 10−5 Hz−1/2 achievable
in well-designed systems [16].

In this paper, we present a field deployable NIR TDLAS spectrometer for in situ CH4 monitoring
on oil and gas well pads for localization and quantification of fugitive emissions. Outdoor testing is
conducted at the Methane Emissions Technology Evaluation Center (METEC) site [30] at Colorado
State University (CSU) using a variety of control and blind CH4 release experiments. Our portable
near-IR TDLAS point sensor is based on a 5 cm open-path free-space design, and targets the CH4

R(4) overtone transition (6057.1 cm−1) to achieve single-ppmv-level sensitivity, and quantitatively
demonstrates the performance attainable for CH4 fugitive emissions monitoring using only a single
TDLAS sensor. In conjunction with wind velocity sensors deployed at METEC CSU, we demonstrate
successful angle-of-arrival (AOA) leak source identification, and initial work will be presented using a
classical Gaussian plume model for source magnitude estimation. We envision our source estimation
methods to be widely applicable to a variety of sensing configurations (optical or otherwise), while
providing a comparison benchmark for a next generation integrated photonic sensors with superior
size, weight, power, and cost (SWaP-C) currently under development [18,27,31].

2. Sensor Design and Characterization

2.1. TDLAS Sensor Configuration

The portable sensor unit is shown in Figure 1a, which consists of the TDLAS spectrometer
mounted on top of a height-adjustable tripod (extensible up to 1.5 m) for manual elevation control.
A reflective aluminum sunshield is mounted above the sensor unit to reduce heating from direct solar
irradiance during extended field deployments. The physical construction of TDLAS optics is depicted
in Figure 1b and comprises of a 5 cm open-path optical cell, two InGaAsP photodetectors (Model
PDA10DT, Thorlabs, Newton, NJ, USA), and a 20 vol.% CH4 reference cell (3 cm) housed within a
IP65-rated transparent polycarbonate enclosure (V = 8 × 5 × 3 in.3). The laser light at 1651 nm is input
through an optical fiber feedthrough, which is split 90:10 via 1 × 2 fiber coupler for simultaneous
sample (open-path) and reference measurement respectively. The open-path cell utilizes aspheric lens
(Model PAF-X-7-C, Thorlabs, Newton, NJ, USA) collimators between the 5 cm free-space path, where
each lens is alignment optimized and anti-reflection coated for etalon suppression (demonstrated
by the relatively clean spectrum shown later in Figure 3b, Section 2.3). Directional ambient air flow
through the TDLAS enclosure is aided by the photodetector thermoelectric cooler (TEC) fans, which
draw air through the dual inlets (left) and through the open-path cell before ejecting at the outlet
(right). Both inlet/outlet are sealed with coarse particulate filters to prevent accumulation of dust and
contaminants within the TDLAS enclosure.
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Figure 1. (a) The portable tunable diode-laser absorption spectroscopy (TDLAS) sensor mounted on 
a height-adjustable tripod (extensible up to 1.5 m). (b) Top view of the TDLAS sensor enclosure (V = 
8 × 5 × 3 in.3). The gas inlets draw in ambient air via the photodetector TEC fans, and is probed for 
CH4 by the 5 cm open-path. (c) The TDLAS sensor control unit (V = 16 × 12 × 6 in.3), which houses the 
(DFB) laser diode, polarization controller, and DAC/ADC acquisition board. 

Figure 1c shows the acquisition and control electronics unit associated with the TDLAS sensor 
(similar to [21]), consisting of a distributed feedback (DFB) diode laser source and data acquisition 
(DAQ) card (Model NI-USB 6361, National Instruments, Austin, TX, USA) housed within a sealed 
IP66-rated polycarbonate enclosure (V = 16 × 12 × 6 in.3). The DFB diode laser selectively targets the 
2ν3 R(4) CH4 transition [27,28,32] at 1651 nm (6057.1 cm−1), specifically utilized for immunity with 
respect to common atmospheric constituents (e.g., H2O, CO2, CO, and other VOCs of interest). The 
DFB laser is housed within an integrated TEC/current-driver unit (Model CLD1015, Thorlabs, 
Newton, NJ, USA) and provides up to 3 mW optical throughput (accounting for all insertion losses) 
into the TDLAS sensor at 1651 nm (Tlaser = 15 °C). The DFB laser is outcoupled from the enclosure via 
fiber feedthrough (top), directly leading to the input coupler on the TDLAS unit shown in Figure 1a. 
Data streaming (analog-to-digital conversion, ADC) and laser control (digital-to-analog, DAC) is 
accomplished through the DAQ board, which provides synchronous laser ramp and detector read-
in (500 kHz channel sample rate) for real-time CH4 retrieval via serial data transfer for spectral 
analysis on a local computer. 

In a nominal measurement configuration, the TDLAS sensor undergoes line-scanned 
measurements at a 500 Hz laser ramp rate, using a wavelength range spanning 6.5× the R(4) transition 
full-width half-maximum (FWHM~0.15 cm−1) to ensure that sufficient spectral baseline is acquired 
for normalization and accurate baseline removal. Given that the wavelength of the laser is not known 
a priori, the 3 cm CH4 reference cell serves primarily as a reference to ensure the DFB laser is correctly 
wavelength centered [32]. Additionally, the accuracy of TDLAS is particularly susceptible to 
detection baseline drifts [33] and, therefore, the baseline is measured (at 13% acquisition duty cycle) 
between each ramp sequence to ensure removal of transmission offsets in the measured spectra. 

Figure 1. (a) The portable tunable diode-laser absorption spectroscopy (TDLAS) sensor mounted on a
height-adjustable tripod (extensible up to 1.5 m). (b) Top view of the TDLAS sensor enclosure (V = 8 ×
5 × 3 in.3). The gas inlets draw in ambient air via the photodetector TEC fans, and is probed for CH4 by
the 5 cm open-path. (c) The TDLAS sensor control unit (V = 16 × 12 × 6 in.3), which houses the (DFB)
laser diode, polarization controller, and DAC/ADC acquisition board.

Figure 1c shows the acquisition and control electronics unit associated with the TDLAS sensor
(similar to [21]), consisting of a distributed feedback (DFB) diode laser source and data acquisition
(DAQ) card (Model NI-USB 6361, National Instruments, Austin, TX, USA) housed within a sealed
IP66-rated polycarbonate enclosure (V = 16 × 12 × 6 in.3). The DFB diode laser selectively targets
the 2ν3 R(4) CH4 transition [27,28,32] at 1651 nm (6057.1 cm−1), specifically utilized for immunity
with respect to common atmospheric constituents (e.g., H2O, CO2, CO, and other VOCs of interest).
The DFB laser is housed within an integrated TEC/current-driver unit (Model CLD1015, Thorlabs,
Newton, NJ, USA) and provides up to 3 mW optical throughput (accounting for all insertion losses)
into the TDLAS sensor at 1651 nm (Tlaser = 15 ◦C). The DFB laser is outcoupled from the enclosure via
fiber feedthrough (top), directly leading to the input coupler on the TDLAS unit shown in Figure 1a.
Data streaming (analog-to-digital conversion, ADC) and laser control (digital-to-analog, DAC) is
accomplished through the DAQ board, which provides synchronous laser ramp and detector read-in
(500 kHz channel sample rate) for real-time CH4 retrieval via serial data transfer for spectral analysis
on a local computer.

In a nominal measurement configuration, the TDLAS sensor undergoes line-scanned measurements
at a 500 Hz laser ramp rate, using a wavelength range spanning 6.5× the R(4) transition full-width
half-maximum (FWHM~0.15 cm−1) to ensure that sufficient spectral baseline is acquired for
normalization and accurate baseline removal. Given that the wavelength of the laser is not known a
priori, the 3 cm CH4 reference cell serves primarily as a reference to ensure the DFB laser is correctly
wavelength centered [32]. Additionally, the accuracy of TDLAS is particularly susceptible to detection
baseline drifts [33] and, therefore, the baseline is measured (at 13% acquisition duty cycle) between
each ramp sequence to ensure removal of transmission offsets in the measured spectra.
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For typical real-time analysis, spectra at a specified interval (typically 1 s) are acquired and
averaged, followed by application of a Voigt profile least-mean squares (VLMS) regression for CH4

retrieval. Due to the time required for spectral analysis (spectral averaging, baseline removal, and
VLMS regression) the acquisition duty cycle is reduced (50%), resulting in a time resolution of 2 s per
CH4 concentration point (although this is not an intrinsic limitation; parallelization of acquisition and
analysis threads may bring this to full acquisition duty cycle without data loss [34]). In cases where
higher time-resolutions are required, continuous streaming of 500 Hz ramp spectra may be acquired,
followed by post-processing to achieve CH4 concentrations with time resolutions down to 2 ms. In this
latter scenario, TDLAS becomes both computationally challenging and data-intensive due to the large
number of acquired spectra and is, as in our case, solely utilized for sensor diagnostics (Section 2.2)
rather than field measurements.

2.2. Sensitivity Analysis and Noise Characterization

Examples of CH4 concentration retrieval under high-frequency (high-time resolution) and real-time
operating conditions are shown in Figure 2a (insets) in ambient laboratory conditions, where the former
shows acquired CH4 time-series at 10 ms resolution (5-spectra averaging, 4 s total acquisition time),
and the latter at 2 s (600 s acquisition). Allan deviation analysis [35] is used to quantify the sensitivity
in both operating modes, demonstrating 20.2 ppmv (at 10−2 s) short-term precision (Figure 2a, blue), or
NEA = 4.5 × 10−6 Hz−1/2, consistent with state-of-art TDLAS sensor systems [16]. Real-time sensitivity
analysis (Figure 2a, black) yields a minimum detection limit (MDL) of 1.3 ppmv (at 20 s integration
time), although ambient fluctuations during field deployment scenarios may cause significant stability
time variation. To accommodate such stability time limitations during the field deployment, we utilize
baseline removal techniques (described in further detail in Section 3.2 and depicted in Figure 5) to
ensure that peak events are accurately captured. Given the 50% acquisition duty cycle of real-time
analysis, we may theoretically expect a

√
2× sensitivity degradation factor with respect to ideal Gaussian

noise (green line, Figure 2a); however, the larger deviation (2.3× from ideal at 2 s integration time) is
likely due to the onset of short-term accuracy drift, as evidenced in the high-frequency Allan deviation
near ~1 s.
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= 4.5 × 10−6 Hz−1/2), and a minimum detection limit (MDL) of 1.3 ppmv at 20 s. (b) The power 
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noise induced by the fan-cooled InGaAsP photodetectors. 

Figure 2. (a) Allan deviation analysis in two operating modes: (i) high-frequency acquisition (left, blue)
and real-time acquisition (right, black), with CH4 time-series shown in the insets. The TDLAS sensor
demonstrates short-term sensitivity of 20.2 ppmv at 10−2 s (noise-equivalent absorption (NEA) = 4.5 ×
10−6 Hz−1/2), and a minimum detection limit (MDL) of 1.3 ppmv at 20 s. (b) The power normalized
noise spectral density of the TDLAS sensor (blue), in comparison to the DFB laser source (red). The
TDLAS line-scan frequency of 500 Hz is selected to mitigate the impact of low-frequency noise induced
by the fan-cooled InGaAsP photodetectors.
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Given a 5 cm measurement path length, a NEA of 4.5 × 10−6 Hz−1/2 for our TDLAS sensor
corresponds to a minimum detectible absorption (MDA) coefficient αmin = 8.9 × 10−7 cm−1

·Hz−1/2.
The relatively short (5 cm) path length was selected as a compromise between alignment robustness for
long-term field deployments and sensitivity requirements for CH4 leak detection, where sensors with
sub-10 ppmv sensitivities yield diminishing returns for leak monitoring applications [36]. Additionally,
our free-space TDLAS sensor benchmarks the performance attainable by a next-generation of integrated
photonic chip sensors currently under development [18,27,31], which provide similar effective path
lengths due to modal confinement limitations. These miniaturized chip sensors are intended to provide
further benefits in size, weight, power, and cost (SWaP-C), and will be demonstrated in the next
iteration of field testing. In the case where significantly enhanced sensitivities are desired, multi-path
(or cavity-enhanced) designs along with mid-IR (quantum-cascade or interband-cascade laser) sources
(targeting the fundamental ν3 band near 3.3 µm) may be integrated into the sensor unit to yield
ppbv-level sensitivities [16].

Figure 2b shows the amplitude spectral density of optical throughput from the open-path cell
(blue) compared against the DFB laser. The low-frequency noise contributions (<500 Hz) are due to the
fan-cooled InGaAsP photodetectors housed within the TDLAS enclosure. This fan-induced noise is
suppressed in our measurements by selection of TDLAS line-scanning rate of 500 Hz, which decouples
the TDLAS spectral scans from the low-frequency noise floor [32]. Above 500 Hz, the intensity noise
is dominated by the empirical detection noise floor (σdet = 8.0 × 10−7 Hz−1/2), yielding a calculated
detection noise-equivalent power (NEP) of 7.2 × 10−10 W·Hz−1/2 (at 100 kHz) given a total power of
0.9 mW through the free-space path (1.21 kV/W detector gain). In the ideal scenario where the system
approaches this detection-noise limit, integration of the NEP spectral density over the measurement
bandwidth yields a detection-limited MDA αdet = 4.1 × 10−7 cm−1

·Hz−1/2, indicating that our TDLAS
sensor operates at 2.2× above the empirical detection noise floor. Increasing the line-scan rate may
reduce this factor by further reducing residual laser intensity noise, although at the cost of diminishing
the spectral wavelength resolution during each scan sequence.

2.3. TDLAS Enclosure Residence Time and CH4 Spectra

Figure 3a shows a controlled ~3 s CH4 release from a 1.0 vol.% cylinder (air balance) near the
TDLAS sensor inlet to simulate a passing CH4 plume under laboratory conditions, yielding a peak
concentration of 150 ppmv (typical of concentrations attained during field measurements). For display
clarity, the time-series is depicted using 40 ms time-resolution (20 spectra averaging per CH4 point),
and exponential modeling of the 90% to 10% peak level yields a characteristic flow response time
of 2.1 s. Given a typical peak width of ≤20 s in typical field measurement scenarios, this response
time is expected to accurately resolve temporal variations of CH4 peaks (i.e., the TDLAS chamber is
expected to accurately reflect ambient concentrations). Furthermore, the real-time analysis interval of
2 s (Section 2.2) sufficiently captures changes on the order of the chamber response time and does not
limit the temporal resolution of fast CH4 fluctuations.

A typical measured CH4 R(4) spectrum is depicted in Figure 3b for a high-concentration (3.85 vol.%)
release. The spectrum is fit using a Voigt model [21,33], using line-shape parameters provided in
the high-resolution transmission molecular absorption database [37] (HITRAN). The spectrum is
acquired over 2 ms (500 Hz line-scan rate), with each spectral point averaged over 12 µs intervals for
display clarity. In conjunction with VLMS regression, a quadratic term is utilized to accommodate
the nonlinear laser ramp, yielding fractional absorption noise of σstd = 3.7 × 10−4 (12 µs) as indicated
by the standard deviation of the fitting residuals. It is notable that normalization to the line-shape
FWHM (and accounting for the 15.5% duty cycle of the fit-significant window) yields an estimated
MDA of 6.5 × 10−7 cm−1

·Hz−1/2, in reasonable agreement with the previously determined αmin = 8.9 ×
10−7 cm−1

·Hz−1/2. The minor discrepancy is likely a result of scan-to-scan variations of the TDLAS
system that are not captured in a single-spectrum measurement.
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Figure 3. (a) Laboratory CH4 release from a 1.0 vol.% CH4 cylinder (air balance), measured in high
resolution mode (40 ms time-resolution). The depicted peak is an average result of three consecutive
peak-aligned measurements (~3 s CH4 release), with a 2.1 s characteristic 1/e decay time. The peak
concentration attained (150 ppmv) is typical of leaks measured during the METEC field deployment.
(b) A sample spectrum (2 ms) of a high-concentration CH4 release (3.85 vol.%) into the open-path cell,
demonstrating the 2ν3 R(4) spectrum of CH4 at 6057.1 cm−1. A second-order polynomial is utilized
during Voigt profile least-mean squares (VLMS) to accommodate the non-linear laser ramp and improve
CH4 retrieval accuracy.

3. Field Deployment Results

3.1. Sensor Deployment at the METEC Facility

Controlled CH4 release experiments have been performed at the METEC CSU facility [30] based
in Fort Collins, CO, taking place over a 5-day span during the third week of July. The deployment
site consists of various well-pad configurations, offering an assortment of layout geometries based on
wellheads, condensate tanks, and gas-processing units (GPUs) (shown in Figure 4a) with predefined
leak points and source rates varying from 0 to 135 SCFH on each site. In conjunction with the TDLAS
sensor, a customized chemiresistive metal oxide (MOX)-based VOC sensor (Model TGS2611, Figaro
USA Inc, Arlington Heights, IL, USA) was placed in close proximity to validate our optical measurement
results, as shown in Figure 4b. Although the MOX sensor is expected to lack discrimination capabilities
between CH4 and other VOCs [14,15], the leak experiments are based on a well calibrated natural
gas mixture (85% CH4, with minor remaining constituents 10.2% C2H6, 0.7% C3H8, remainder N2

and CO2), thus serving as a reasonable benchmark against which our TDLAS measurement may be
compared. Additionally, an ultrasonic anemometer (Model 81000, R. M. Young Co., Traverse City,
MI, USA) is deployed on the test-site for concurrent wind-velocity measurements, which is used for
leak angle-of-arrival (AOA) detection of the source-to-detector line-of-sight (LOS) via concentration
weighted wind-angle localization, as well as Gaussian plume (Section 3.4) and machine-learning
regression models [38] for source magnitude estimation.

Over the duration of the 5-day deployment [21], a total of 16.6 h of CH4 measurements were
acquired using the TDLAS sensor (along with MOX sensor and wind velocity data), consisting of a
combination of control (4.4 h) and blind (12.2 h) release experiments. In the former (control) case, the
TDLAS sensor inlet is appropriately oriented towards a known source for direct LOS CH4 leak detection
and is used for accuracy benchmarking against MOX sensor measurements (as shown later in Figure 7,
Section 3.2), where emissions span relatively high flow-rates ranging from 68 SCFH to 135 SCFH to
ensure that a multitude of CH4 peaks may be used for TDLAS and MOX sensor correlation. In the
latter (blind) experiments, substantially visible peaks were available on only 1.9 h of measurements



Sensors 2019, 19, 2707 7 of 18

due to spatial coverage limitations intrinsic to single sensor measurements (i.e., the placement of
the TDLAS sensor was not always aligned downwind of the leak source). The blind releases were
typically of smaller magnitude (<40 SCFH) and have been incorporated into the models in Section 3.4
for source estimation of lower flow rates. Table 1 summarizes the compilation of 5 control and 2 blind
leak experiments, along with the calculated AOA (or LOS leak angle, based on the method described
in Section 3.3). In general, we note that the calculated leak-angle deviation is larger in the case of
blind experiments, which is attributable to the smaller leak-rates (<40 SCFH) utilized in those cases.
Furthermore, it is clear by comparison of the average wind-velocity and leak location columns in
Table 1 that, in all cases, the sensor is downwind. The remaining blind experiments have not been
displayed as no substantially visible peaks were observed, due to the poor alignment of the wind with
the TDLAS sensor LOS; therefore, no meaningful AOA could be calculated in those cases.

Table 1. Summary of leak experiments at the METEC facility, with calculated leak angle-of-arrival
(AOA) (0◦ corresponds to North). A total of 6.3 h of leaks from 3 well pads are performed, comprising
of 5 control leaks of large magnitude (68 SCFH and above) and 2 blind leaks of smaller magnitude.
Control experiments 1 and 4 are split into two flow rates of equal duration, and the two leak location
angles in Controls 2 and 4 indicate simultaneous dual-leak points during the experiment.

Experiment Leak
Duration LeakC Flow Rate

(SCFH)

Leak Location
[Distance,

Angle]

Average
Wind-Velocity
[Speed, Angle]

Leak AOA
〈αAOA〉±δαAOA

Control 1 3554 s East GPU (Pad 3) 68/127 9.0 m, (90◦) 1.96 m/s, (137.2◦) 102.3◦ ± 22.0◦

Control 2 1757 s West GPU (Pad 3) 127 4.1 m, (90◦,110◦) 2.60 m/s, (125.6◦) 109.9◦ ± 24.1◦

Control 3 3553 s East tank (Pad 3) 135 13.0 m, (155◦) 1.77 m/s, (116.8◦) 145.5◦ ± 14.5◦

Control 4 3552 s West GPU (Pad 3) 68/130 4.1 m, (90◦,110◦) 1.58 m/s, (97.0◦) 102.3◦ ± 23.2◦

Control 5 3459 s East GPU (Pad 3) 125 9.0 m, (90◦) 2.80 m/s, (61.6◦) 82.6◦ ± 13.2◦

Blind 1 3442 s Tank (Pad 1) 36.1 3.4 m, (60◦) 0.58 m/s, (68.9◦) 76.3◦ ± 53.6◦

Blind 2 3470 s Wellhead (Pad 2) 4.4 6.9 m, (125◦) 1.41 m/s, (124.8◦) 119.3◦ ± 25.2◦
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3.2. CH4 Leak Data Acquisition and Processing 

A typical CH4 acquisition sequence is shown in Figure 5 (representing Blind 1), which depicts 
the raw retrieved CH4 concentration (red), along with the baseline-removed time-series (blue) via a 
local minimum erosion filter to increase contrast visibility for peak event detection [39]. The 

Figure 4. (a) Field deployment of the portable TDLAS sensor unit at the CSU METEC test-site. The
site layouts typically include some combination of wellheads (or ‘trees’), gas-processing units (GPUs),
and condensate tanks, all of which are possible sources from which leaks emanate. For this sample
site layout (enumerated as Pad 1 in Table 1), the placement of the optical TDLAS sensor is shown in
the white box. (b) Close-up of the optical sensor shown in (a). The TDLAS sensor is placed in close
proximity to a customized metal oxide (MOX) sensor for accuracy benchmarking. The associated
control and power units for the sensor are housed nearby the sensor assembly.

3.2. CH4 Leak Data Acquisition and Processing

A typical CH4 acquisition sequence is shown in Figure 5 (representing Blind 1), which depicts the
raw retrieved CH4 concentration (red), along with the baseline-removed time-series (blue) via a local
minimum erosion filter to increase contrast visibility for peak event detection [39]. The concentrations
are calculated using VLMS regression (Section 2.3), where each concentration point comprises an
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average of 500 spectra such as that shown in Figure 3b and is acquired every 2 s (50% acquisition
duty-cycle, followed by spectral fitting).
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Figure 5. Removal of the TDLAS sensor baseline via local minimum erosion [39]. Concentration
drifts are primarily due to spectral baseline fluctuations in the presence of large ambient temperature
variations. The erosion filter is applied at 20 s intervals to identify and null the background (black
curve). A side effect of this method involves the presence of a baseline offset (inset), which is removed
via peak thresholding prior to AOA determination.

A thermistor housed within the MOX sensor unit simultaneously tracks the temperature during
acquisition of TDLAS data, and the average temperature over the span of each experiment is used to
correct the absorption strength [28,37]:

Sη→η′(T) = Sη→η′(Tre f ) ·
Q(Tre f )

Q(T)
·

exp(−c2 · Eη/T)
exp(−c2 · Eη/Tre f )

·
1− exp(−c2 · νη→η′/T)

1− exp(−c2 · νη→η′/Tre f )
(1)

δνL(p, T) =
(Tre f

T

)n

·

[
γair(pre f , Tre f ) · (p− ps) + γsel f (pre f , Tre f ) · ps

]
(2)

Equation (1) provides the temperature correction to the CH4 R(4) transition line-strength Sη→η’(T)
due to lower-state population depletion, which accounts for the temperature-dependent impact of
the internal partition function Q(T), Boltzmann population factor, and stimulated emission. The
temperature and its reference standard are denoted by T and Tref = 296 K respectively, pref = 760 torr, c2

= 1.439 cm·K is the second-radiation constant, Eη = 104.8 cm−1 is the lower-state transition energy, and
νη→η’ is the center wavenumber (6057.1 cm−1) of all transitions constituting the R(4) line [37]. Equation
(2) defines the impact of the air-broadening temperature coefficient n (where n = 0.72), which has been
applied equally to both the air (γair) and self (γself)-broadening coefficients (a reasonable assumption
given the typically small trace-gas sample partial pressures ps relative to the ambient pressure p). Given
a typical CH4 concentration of 100 ppmv at 310 K, the above considerations introduce a line-strength
correction factor of 4.7% and Lorentz pressure-broadening variation of 3.3%, which contributes to
a peak absorption decrease of 6.5% relative to STP conditions and must be accounted for to ensure
accuracy of CH4 retrieval. In the present case, the average temperature of a single acquisition sequence
has been used for temperature correction of the absorption strength; however, this does not account
for real-time thermal variations within the acquisition sequence, which may occur as a result of wind
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conditions, cloud cover, etc. In future deployments, further accuracy improvement will be gained by
performing real-time temperature correction using a thermal reading within the TDLAS enclosure
to ensure that in situ corrections of line-strength and air-broadening via Equations (1) and (2) are
appropriately accounted for.

In addition to thermal correction factors, a significant deviation from atmospheric pressure occurs
at the high altitude of the METEC facility (located in Fort Collins, CO, USA), and barometric reading
averages over the duration of experimental data in Table 1 yields an ambient pressure of 843.9 mbar
(633.0 torr), which is used to account for the pressure-shift [37] of the transition centers relative to
the CH4 reference cell (740 torr). In comparison to STP conditions, line-shape simulations yield an
absorption minima shift of 6.0 × 10−4 cm−1 which is 0.4% of the CH4 R(4) FWHM under the conditions
of our field deployment.

Due to significant temperature drifts over the course of each experiment, concentration fluctuations
due to laser ramp nonlinearities and Fabry–Pérot etalon drifts dominate low-frequency CH4 variations
(visible in the red curve of Figure 5). The magnitude of these variations scale with respect to path length
and transition line-strength (in accordance with the Beer–Lambert law [16,33]), and its significant
amplitude is attributable to the small 5 cm optical path length and near-IR overtone detection, whose
line-strengths are over 102

×weaker than the strongest ν3 fundamental transitions. Despite the large
magnitude of these baseline variations, the frequency is highly decoupled from characteristic CH4

peak events, which occur on the order of the TDLAS sensor stability time (~20 s). Various methods
exist for the thresholding of peak events [39,40]; in our case, a simple local minimum erosion [39]
is utilized, which involves taking the baseline as the smallest value in a 20 s time-series bin. This
effectively suppresses the baseline without substantially attenuating the CH4 peaks, albeit with an
intrinsic noise offset (Figure 5, inset). In order to distinguish peak events from this noise offset, only
peaks with averages above a defined threshold (~12 ppmv) are considered and will be discussed in
Section 3.3.

Figure 6a,b show results using the above analysis for two experiments (Control 4 and 3 respectively).
MOX sensor and anemometer data are concurrently acquired with the TDLAS unit, and the resulting
time-synchronized results (red: TDLAS; blue: MOX; purple/green: anemometer) demonstrate excellent
visual correspondence between the MOX and TDLAS time-series. From Figure 6a (Control 4),
we qualitatively note greater density of peaks occurring in the high flow-rate case, where the
experiment is performed successively at two flow-rates (68 SCFH and 130 SCFH) over the span of
3552 s, whilst maintaining the TDLAS sensor 4.1 m west of the GPU leak source. Figure 6b (Control 3)
shows the results of a uniform 135 SCFH control leak on the thief hatch of the condensate tank, with
the sensor placed 13 m downwind (116.8◦, southeasterly wind). Lower CH4 peak concentrations
are observed (and expected) given the 4.7 m elevation of the thief hatch leak point in addition to
the greater sensor-to-leak distance than that shown in Figure 6a (Control 4). Similar analyses have
been performed for all control and blind experiments, and the resulting leak AOA calculations are
summarized in Table 1. Figure 6c,d are wind-rose graphs corresponding to anemometer data in 6a,b.
In both cases, the leak is observed in a general upwind orientation from the TDLAS/MOX sensor
(Table 1), as expected in the simple case where a CH4 leak plume macroscopically proceeds along the
wind direction. It is useful to note that by meteorological convention [41], a northerly wind (i.e., wind
angle 0◦) indicates that wind is blowing north to south, which is the standard adopted throughout
this paper.
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Figure 6. (a) Concurrent measurements of CH4 from the TDLAS, MOX, and anemometer data for
Control 4. General visual agreement is observed between the TDLAS and MOX sensors. The average
temperature of 39.4 ◦C was acquired using an internal thermistor in the MOX sensor unit. (b) Similar
results for Control 3. (c,d) depict the corresponding wind-rose of the anemometer data. The results of
AOA retrieval for these experiments are shown later in Figure 8, Section 3.3.

To quantitatively assess the agreement between the TDLAS and MOX sensors, their correlation
(using 20 s integration bins) is displayed in Figure 7 for each of the 5 control experiments from Table 1.
Linear regression yields a slope of 1.2 ppmv/mV, with correlation R2 = 0.74. Although the TDLAS
and MOX sensor units are placed in close proximity, possible causes of correlation deviations from
linearity include MOX sensor hysteresis and response time, which cause peak ‘pile-up’ during dense
CH4 plumes from large or nearby leaks, as well as the directional flow orientation of the TDLAS sensor,
which results in peak attenuation if the wind angle is not within the source-detector LOS. To avoid this
asymmetric flow limitation in future deployments, an isotropic flow chamber is under development to
eliminate directional selectivity of ambient CH4 detection.

To visualize the distribution of signal and noise of the CH4 time-series measured by both TDLAS
and MOX sensors, the inset of Figure 7 shows a histogram of all 20 s time bins from each control
experiment in the correlation plot. Both the TDLAS and MOX sensor data distributions are shown,
with the latter scaled to parts-per-million (by volume) units using the correlation slope of 1.2 ppmv/mV.
When expanded to a logarithmic scale, convergence of the peak distributions between the sensors
agree only above a threshold of [CH4]thresh = 12 ppmv, below which the CH4 concentrations (averaged
to 20 s) are dominated by the intrinsic noise offset of the baseline erosion filter. Visible noise ‘peaks’
or distribution maxima of 3 ppmv and 0.6 ppmv are observed for the TDLAS and MOX sensors
respectively, where the former is in reasonable agreement with the previously measured signal floor in
Figure 5 (inset). The use of local minimum erosion (at 20 s bins) entails a noise offset similar to the
nominally estimated Allan deviation analysis in Figure 2a and requires thresholding to distinguish
true CH4 peaks from the noise floor.
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Figure 7. Correlation between TDLAS sensor readings and a proximally located MOX sensor during
the 5 control leak measurements at varying locations and leak rates. The data spans a total of 4.4 h
with 20 s integration time per point, yielding a scaling factor of 1.2 ppmv/mV. The inset shows a scatter
histogram plot, indicating the distribution of baseline noise dominates CH4 measurements below
12 ppmv and defines the threshold for peak discrimination.

3.3. CH4 Angle-of-Arrival (AOA) Source Determination

Based on the CH4 and anemometer data shown in Figure 6a,b, the corresponding AOA is
calculated based on the mean wind angle weighted by CH4 concentration, where only peaks above a
threshold value of [CH4]thresh are utilized (Figure 7, inset) to mitigate noise in the AOA calculation.
The time-series are binned into 20 s averaging periods, given that measured CH4 peaks are typically
on the same order. Heuristically, the selection of a 20 s characteristic time is long enough to mitigate
misalignment of wind and CH4 peak events (due to the TDLAS sensor response time), and sufficiently
short to avoid averaging signals down to the noise floor. An average of the measured wind angle
weighted by the CH4 peaks [42] yields a simple measure of AOA (denoted as <αAOA>) and deviation
δαAOA:

〈αAOA〉 =

∑
i
ωi ·ϕi∑
i
ωi

(3)

δαAOA
2 =

∑
i
ωi · (ϕi − 〈αAOA〉)

2∑
i
ωi − 1

(4)

Equation (3) describes the AOA as a weighted average of wind angle ϕi (accounting for the
cyclic nature of ϕi at null wind angle [42]) with weight factors ωi, which in the results displayed in
Table 1 and Figure 8 is simply the CH4 concentration, i.e., ωi = [CH4](ti). In more advanced physical
models, it may be necessary to model ωi as a function of wind speed, instantaneous wind angle, and/or
leak distance; however, the simple model in our experiments are sufficient to yield reasonable AOA
determination. An unbiased estimate of the leak angle variance is provided by Equation (4), which
includes the effect of Bessel’s correction in the denominator given the sampling of CH4 peaks over the
span of an experiment. Together, Equations (3) and (4) yield complete information <αAOA> ± δαAOA

of the leak angle as determined by a single TDLAS sensor, which corresponds to the results shown in
Table 1.
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Figure 8. (a) Site layout for the experiments shown in Figure 6 (horizontal/vertical scale bar in
meters). The source angle for the two depicted release experiments (blue and red) are determined
using a concentration weighted average wind angle, shown in (b) and (c) respectively. The errors
are correspondingly calculated using a weighted variance of wind angles from the mean. To ensure
accurate AOA retrieval, signal thresholding ([CH4]thresh = 12 ppmv) was used to eliminate erroneous
peaks resulting from noise offsets in the CH4 baseline.

Visualizations of the above calculations are depicted in Figure 8b,c, corresponding to the time-series
datasets from Figure 6 (Control 4 and 3, displayed respectively as blue and red). The gray points
indicate all CH4 concentration values below [CH4]thresh, which are primarily dominated by the noise
floor and are discarded prior to AOA calculations. The resulting angles <αAOA>± δαAOA are displayed
in the red and blue shaded regions and are marked with respect to their physical locations on the
well pad (Figure 8a). Control 3 (Figure 8c, red) arises from a thief hatch leak on the east condensate
tank, yielding calculated leak angle of 145.5 ± 14.5◦, consistent with an expected angle of 155◦. During
Control 4 (Figure 8b, blue), the leak emissions simultaneously arise from equally split flows from dual
valve release points on the west GPU, which result in a larger spread (102.3 ± 23.2◦) to encompass both
leak directions (90◦ and 110◦) from each valve. The potential (yellow) and successfully identified leak
points (green) are displayed in Figure 8a, and comparison with Figure 6c,d demonstrate the general
downwind placement of the TDLAS sensor, where the average wind directions for Controls 3 and 4
occur at 116.8◦ and 97.0◦, respectively.

The use of a single TDLAS sensor intrinsically allows only determination of leak angle, which in
the example of Control 4 (blue), does not enable discrimination between multiple leak sources within
the estimated AOA [43] (i.e., both the east and west GPUs are potential leak candidates, although
only the west GPU is the culprit). In this case, a minimum of two sensors are necessary to ascertain
an enclosed region from which a leak emanates from, which becomes progressively more precise as
the number of sensors increase (or the source-detector distance decreases). In practical measurement
scenarios, however, it may be merely sufficient to utilize a single appropriately placed sensor to ensure
that leaks from each potential emission point occurs along a unique AOA, thus allowing accurate
localization from long-term measurements.
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3.4. CH4 Source Magnitude Estimation Models

A variety of methods exist for forward plume dispersion modeling from a point source under
defined wind conditions [44], based on Gaussian, Lagrangian, and/or computational fluid dynamics
(CFD)-based models which accurately predict CH4 concentrations given a defined sensor placement.
However, the full inversion problem (i.e., determining the source magnitude from downwind CH4

concentrations), poses a significant challenge [45,46] given the computational complexity and limited
spatial information available from a single TDLAS point sensor. Probabilistic methods (e.g., recursive
Bayesian inferencing) are of limited efficacy in the present case, given plume model parametrization
uncertainty and stochastic error inherent in the short-term (<1 h) CH4 peak measurements [47]. Despite
the shortcomings of our relatively small dataset size, we may nevertheless apply a simplified Gaussian
plume model heuristic (described below) to obtain physical insight into the emission process, which
may be generally applied to emission datasets extending beyond our limited tests.

Our quantification methodology begins with the assumption of steady-state conditions where
advective transport dominates in the downwind direction (x). The Gaussian plume model [44,45]
provides a measure of the concentration at a location r = (x,y,z) as measured by the TDLAS point
sensor, given a point source with a known (i.e., measured) emission rate Qm:

[CH4](r) =
Qm

2π · 〈|vw|〉 · σy · σz
· exp

− y2

2σy
2

 · ζ(z, H, σz) (5)

ζ(z, H, σz) =

exp

− (z−H)2

2σz
2

+ exp

− (z + H)2

2σz
2


 (6)

where 〈|vw|〉 is the average wind speed, H is the emission height, and σy, σz denote the lateral and
vertical spread in the plane perpendicular to the wind direction (x). The exponential terms on the
right-hand side of Equation (5) arise from plume spreading, and the vertical plume dispersion term
ζ(z,H,σz) defined in Equation (6) includes the impact of ground reflection to ensure conservation of
mass [45]. Intuitively, the presence of <|vw|> accounts for the dilution of the measured concentration
through advection transport (i.e., greater wind speeds result in dilution along the downwind direction),
while the effect of the downwind location x is implicitly given by the σy(x) and σz(x) dependence, which
provides a measure of the rate of plume dispersion. Based on a single-particle Lagrangian dispersion
model, it is well known [45,48] that σ~xn, where n = 1 for length scales below Lagrange integral distance
DL (i.e., x << DL), while n = 1

2 for x >> DL, with DL~100 m for relatively unstable wind conditions as
encountered in our release experiments [45]. The interpretation of DL is the crossover distance between
which plume spread may be modeled via ballistic or eddy-diffusive transport, where the former case of
ballistic transport (x << DL) is relevant for distance scales presently under consideration. The general
approach utilized here is the identification of a ‘characteristic’ downwind peak height, which may be
used to model Qc given known location rs of the TDLAS point sensor with respect to the upstream
emission location.

Figure 9b depicts the general layout of a leak emission point with TDLAS sensor placed at some
downwind distance d. Given that the plume profile is assumed to take a Gaussian form, each measured
CH4 peak acquired at some time (e.g., time t1) probes only a particular point on the profile, while
the variation of wind vector (e.g., at time t2, t3, etc.) ensures the aggregate peaks acquired over some
duration effectively maps the shape of the Gaussian plume for a fixed sensor vertical displacement
zs (assuming negligible vertical wind shear). An example is shown in the inset of Figure 9a for
Control 3, from which a Gaussian regression fit (assuming to first order the negligible contribution of
ground plume reflections) yields a characteristic downwind CH4 peak height of [CH4](rs) = 7.7 ppmv
(i.e., a concentration peak measured at the detector along the leak LOS: rs = (d,0,zs), where x = d is the
sensor downwind distance, y = 0 indicates measurement along the AOA with no lateral deviation, and
z = zs is the sensor height). Under conditions where d << DL, we may parametrize σy and σy using the
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relations σy(d) ≡ σv,y·d and σz(d) ≡ σv,z·d, such that for y = 0, we may rearrange Equation (5) to obtain
an estimated calculation Qc of the true flow rate Qm based on the retrieved [CH4](rs):

Qc = κ · (2π · σv,y · σv,z) ·
[CH4](rs) · 〈|vw|〉 · d2

ζ(zs, H, σv,z · d)
(7)
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Figure 9. (a) Demonstration of the source emission magnitude consistency with the Gaussian plume
model. The ideal linearity is given by the gray line (unity slope, dashed), with the 50% accuracy bounds
(dotted lines). The inset shows an example of the measured Gaussian profile and its corresponding fit
(Control 3) measured across a range of wind angles. (b) Pictorial demonstration of the Gaussian profile
measurement. As the wind velocity vector varies (t1 to t3), the TDLAS sensor uses a single line-of-sight
(LOS) to probe different parts of the plume.

In Equation (7), κhas been introduced as a heuristic dispersion modifier to account for measurement
non-idealities (e.g., plume rise, near-ground measurements, low 〈|vw|〉 etc.), and is empirically calibrated
by comparison of Qc to the known leak rates Qm (Table 1). Figure 9a demonstrates the results of
Equation (7) applied to the data in Table 1, using a TDLAS sensor elevation zs = 1.5 m, and condensate
tank heights of H = 4.7 m and 3.5 m respectively used in Control 3 and Blind 1, while in all other cases of
GPU leaks, the emissions have been assumed to be level to the sensor. To ensure accurate determination
of ζ(zs,H,σv,z·d), the vertical dispersion parameter σv,z = 0.28 has been numerically selected to maximize
the linear correlation (R2 = 0.74) between the estimated Qc and known Qm, and our results show that
all the experimental cases of Table 1 in Figure 9a lie within the 50% accuracy interval of ideal linearity.
It is notable that the calculated value of σv,z is relatively close to the Pasquill–Gifford stability class
A, which is consistent with experimental measurement conditions [44] (strong direct solar irradiance,
~2 m/s average wind speed).

Deviations from known leak rates of our include (1) the slow and unstable wind speeds, (2) short
distances (<10 m) under consideration, and (3) the stochastic nature of short term (<1 h) CH4 peak
measurements which introduce a strong component of sampling error in the retrieved [CH4](rs) and
impact source inversion accuracy. Nevertheless, despite the aforementioned limitations and non-ideal
measurement conditions of our heuristically parametrized Gaussian plume model, we note that our
model provides Qc estimates within 50% accuracy of Qm based on a reconstruction of the Gaussian
profile of the plume as the wind vector varies around the source-detector LOS. This accuracy tolerance is
consistent with analysis from literature [49], demonstrating our calculations to yield results reasonable
expectations within the typical demonstrated accuracy range of Gaussian source inversion models.

In conjunction with source localization techniques, we envision the methods of Sections 3.3 and 3.4
to be applied sequentially, where the AOA (or leak region, based on source-detector LOS intersection
identified using two or more TDLAS sensors) may be first identified, followed by quantification
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methods using the above Gaussian plume model. For cases where greater accuracy is required, a
more contemporaneous machine-learning based approach has been validated [38], with initial results
demonstrating promise towards greater accuracy of quantification. However, larger training sets
are required to provide a greater confidence in the physical basis and model generalizability of our
decision-tree based regressor, and results will be presented in an upcoming publication.

4. Conclusions

In this paper, we demonstrate a portable TDLAS spectrometer for real-time CH4 monitoring,
which targets the 2ν3 R(4) CH4 transition at 6057.1 cm−1 with NEA = 4.5 × 10−6 Hz−1/2 corresponding
to 2.0 ppmv·Hz−1/2 over a 5 cm open-path measurement. The sensor is capable of both high-frequency
(up to 2 ms time-resolution) and real-time operation (2 s resolution, 50% acquisition duty cycle),
with 2.1 s chamber response time. During field testing at the METEC facility (CSU), 5 control and 2
blind experiments were successfully performed, corresponding to a total of 6.3 h of field testing data.
Over this period, CH4 measurement correlation with a proximally located customized MOX sensor
yields reasonable concentration correlation (R2 = 0.74) over source rates spanning 4.4 SCFH to 135
SCH, thus demonstrating our TDLAS sensor as a viable alternative to conventional chemical sensors,
whilst providing additional species selectivity capability through targeting appropriate cross-talk free
molecular transitions. AOA calculations are successfully demonstrated using a weighted average
determination of leak-angle, which adequately identifies all leaks in both control and blind experiment
scenarios and may be generalized for leak region identification using two or more TDLAS sensors.
To determine the leak rate, we have demonstrated a parameterized Gaussian plume model for source
magnitude estimation. Our data demonstrates good linearity between calculated and measured flow
rates (R2 = 0.74), with vertical dispersion parameter σz = 0.28, in reasonable agreement with expected
values from literature. Given the non-idealities present in our deployment however, the Gaussian
plume model yields an accuracy only slightly better than 50% for our control and blind experiments,
and further improvement has been sought through the application of a random-forest regressor to
demonstrate the efficacy of machine-learning based leak quantification [38]. As a concluding note,
a second-generation integrated photonic chip sensor is currently under development [31,36] based on
evanescent waveguide TDLAS of ambient CH4 [18,27]. Full integration of the source, detector, and
sensing components on a single chip [50–53] will provide the same functionality of our free-space
optical sensor, with the added benefit of miniaturization for superior SWaP-C performance. We envision
the scalable nature of our integrated TDLAS sensing platform to enable a new generation of optical
sensor networks for real-time, wide-area monitoring of trace-gas analytes. Preparations for a second
field deployment at the METEC facility using prototype photonic chip sensors are currently underway,
with results to be presented in an upcoming publication.
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