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Abstract: This paper proposes a sound event detection (SED) method in tunnels to prevent further
uncontrollable accidents. Tunnel accidents are accompanied by crashes and tire skids, which usually
produce abnormal sounds. Since the tunnel environment always has a severe level of noise,
the detection accuracy can be greatly reduced in the existing methods. To deal with the noise issue in
the tunnel environment, the proposed method involves the preprocessing of tunnel acoustic signals
and a classifier for detecting acoustic events in tunnels. For preprocessing, a non-negative tensor
factorization (NTF) technique is used to separate the acoustic event signal from the noisy signal in
the tunnel. In particular, the NTF technique developed in this paper consists of source separation
and online noise learning. In other words, the noise basis is adapted by an online noise learning
technique for enhancement in adverse noise conditions. Next, a convolutional recurrent neural
network (CRNN) is extended to accommodate the contributions of the separated event signal and
noise to the event detection; thus, the proposed CRNN is composed of event convolution layers and
noise convolution layers in parallel followed by recurrent layers and the output layer. Here, a set of
mel-filterbank feature parameters is used as the input features. Evaluations of the proposed method
are conducted on two datasets: a publicly available road audio events dataset and a tunnel audio
dataset recorded in a real traffic tunnel for six months. In the first evaluation where the background
noise is low, the proposed CRNN-based SED method with online noise learning reduces the relative
recognition error rate by 56.25% when compared to the conventional CRNN-based method with
noise. In the second evaluation, where the tunnel background noise is more severe than in the first
evaluation, the proposed CRNN-based SED method yields superior performance when compared
to the conventional methods. In particular, it is shown that among all of the compared methods,
the proposed method with the online noise learning provides the best recognition rate of 91.07% and
reduces the recognition error rates by 47.40% and 28.56% when compared to the Gaussian mixture
model (GMM)–hidden Markov model (HMM)-based and conventional CRNN-based SED methods,
respectively. The computational complexity measurements also show that the proposed CRNN-based
SED method requires a processing time of 599 ms for both the NTF-based source separation with
online noise learning and CRNN classification when the tunnel noisy signal is one second long,
which implies that the proposed method detects events in real-time.

Keywords: tunnel accident detection; sound event detection (SED); non-negative tensor factorization
(NTF); convolutional recurrent neural network (CRNN); online noise learning

1. Introduction

Recently, millions of sensors have been deployed in almost all urban areas, industrial facilities,
and other environments that are rapidly increasing in volume and scope [1]. In practice,
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monitoring human activities requires a tremendous amount of resources. To this end, research on
automated surveillance has progressed rapidly, focusing on video- or image-based approaches operating
in real-world environments [2]. However, video data are sometimes unavailable due to poor lighting
conditions or the target being out of view of the camera system [3], so analysis based only on visual data
is insufficient and error prone [4]. To overcome this disadvantage, different types of sensors have been
designed either alone or in conjunction with video signals. For example, ultraviolet/infrared cameras
are suitable for detecting fires in tunnels [5], and radar sensors are deployed to monitor vehicles in
tunnels [6]. In addition to those sensors, acoustic sensors can support video sensors, resulting in
many applications, such as surveillance for intruder detection [7], public environmental monitoring [8],
multimedia analysis [9], and speaker position detection [10].

Numerous methods dealing with sound event detection (SED), which is defined as the task of
identifying the temporal activities of each sound event [11], have been proposed. Figure 1 shows a
block diagram of a typical SED method that consists of three processing stages: (1) preprocessing,
(2) feature processing, and (3) classification. The first processing stage of SED preprocesses an input
sound signal by using the techniques for noise reduction [12] and target audio source separation [13].
The preprocessed sound signal is passed to the second processing stage to extract features for the
classification. In particular, the feature extraction is generally related to the type of classifier, which is
involved in the third processing stage. Many different types of classifiers are used for SED. Among them,
model-based classifiers, such as the support vector machine (SVM) [4] and the hidden Markov model
(HMM) [14], have been widely used. In these approaches, a statistical model is trained for each
predefined sound event class, and then the onsets and offsets of each sound event are detected using
the trained models. Recently, deep neural network-based classifiers, such as the convolutional neural
network (CNN) [15] and recurrent neural network (RNN) [16,17], have been proposed. In particular,
a classifier based on the convolutional recurrent neural network (CRNN) has been reported to have
better classification accuracy than those based on CNN or RNN alone [11,18,19].
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As mentioned earlier, SED can be applied to various surveillance systems. Among them, this paper
focuses on sound-based accident detection in a tunnel environment. As traffic infrastructure is growing,
the number of tunnels has increased. Thus, car accidents in tunnels are expected to be more frequent.
In particular, due to the closed spatial characteristic of tunnels, it is vital to detect accidents within
them. Moreover, it is necessary to prevent second accidents by detecting first accidents quickly and
providing information to the rear vehicles. In order to determine tunnel accidents, the use of video
data coming from a closed-circuit television (CCTV) has been popular, but video-based event detection
(VED) can often cause false alarms due to various adverse conditions such as darkness, severe weather,
a shaking camera, and a limited viewing angle. On the other hand, when a car crash occurs behind the
camera, there are no visual data regarding the accident, but the crash sound can be clearly recorded by
a microphone [3]. This implies that SED can be replaced with VED in such adverse conditions.

As another example, the 1999 Mont Blanc accident involved a truck that caught on fire while
colliding with other vehicles, which took 39 lives [20]. When the accident occurred, the driver
abandoned the vehicle and informed the control center via an emergency call. However, the precise
location of the accident was not confirmed because the video data from the CCTV could not be
identified. The tunnel fire brigade arrived in 57 min, but due to the high-density smoke, it caused many
casualties. As illustrated in this case, if a large-scale accident occurs in a tunnel, it can cause large-scale
property damage. In addition, it can be difficult to judge the situation of the accident scene due to fire
smoke or dust. Therefore, SED-based accident analysis can be applied in such situations, as sound can
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be captured even in fields obscured by dust and obstacles. Accidents in tunnels are mainly caused by
driver error or structural faults, and they can lead to death if they are not responded to quickly enough.
In addition, they can progress rapidly from minor accidents to major disasters [5]. Since the processing
time for sound data is usually less than that of video data, this makes SED work faster than VED.

Figure 2 shows the architecture of an accident management system in a tunnel [21]. As shown in
the figure, when an accident occurs in a tunnel, sensor data are collected from the sensors placed in
the tunnel wall, where the sensor data could be video data from the CCTV or sound data from the
acoustic sensors or microphone array. Then, the sound data are analyzed in the management server by
using an SED algorithm to determine whether an accident has occurred. When an accident is detected,
the traffic flow is subsequently managed in a safe and efficient manner using variable message signs
(VMSs) and lane control systems (LCSs). In this case, negative effects caused by accidents can be
minimized if the processing time of the SED is kept as short as possible.
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Several research works have applied SED to accident detection in roads and tunnels [4,21–23].
In fact, the preprocessing of some previous methods was done using a non-negative tensor factorization
(NTF) technique [21,22], and then the feature parameters were extracted by using signal processing
techniques (e.g., the log-mel spectrogram and mel-frequency cepstral coefficient (MFCC) [4]). Recently,
deep learning-based feature extraction approaches have been proposed. For example, the feature maps
from convolutional layers in a CNN were used for genre classification [24] and audio classification [25].
After that, the classifier was designed based on a statistical approach, such as the SVM [4,23] or
the Gaussian mixture model (GMM)–HMM [21,22]. The performance of the previous methods
was reasonable when the background noise varied slowly. However, in a rapidly varying noise
environment depending on the road or weather conditions, these techniques could increase the
errors due to mismatches between the pre-trained noise models and the actual background noise [23].
Therefore, the noise models should be adapted according to the incoming background noise. Moreover,
it is known that deep neural network-based approaches outperform statistical approaches in speech
and audio processing [26–29]. Therefore, the classifier also needs to be designed using a deep
neural network.

In this paper, a new SED method in tunnels is proposed to prevent uncontrollable further accidents.
As shown in Figure 1, the proposed SED method also consists of the preprocessing of tunnel acoustic
signals, mel-filterbank analysis, and the classification of acoustic events in tunnels. In the preprocessing
stage of the proposed method, an NTF technique [22] is also used to separate both the acoustic event
signal and background noise signal from the noisy signal in a tunnel. The reason behind the selection
of the NTF technique for separating the event audio and noise from the input noisy signals is motivated
by the research conducted on the combination of deep learning and non-negative matrix factorization
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(NMF) [30,31]. By doing this, noise that is not observed during training can be reduced by the neural
networks. Since the SED covered by this paper aims for robust operation in various tunnel noise
environments that cannot be handled in the training process, the proposed method also attempts
to combine the NMF-based preprocessing and the deep learning-based classifier. Thus, this paper
employs the NTF-based sound source separation, which is a generalized form of the NMF for the
tensor process, to conduct preprocessing on the multi-channel noisy signal.

Unlike the previous method in [22], the NTF technique used in this paper includes online noise
learning so that the separation performance by NTF is improved under adverse tunnel noise conditions.
After that, the mel-filterbank parameters are extracted from the separated acoustic event signal and from
the separated background noise, respectively, resulting in two sets of mel-filterbank parameters. Next,
a CRNN-based classifier is proposed to utilize the two sets of mel-filterbank parameters. The proposed
CRNN is composed of two CNNs followed by an RNN with gated recurrent units (GRUs). Here,
the two CNNs are one event CNN and one noise CNN, and the event CNN is trained using a set of
mel-filterbank parameters from the acoustic event signals separated by NTF, while the noise CNN
is trained using those from background noise that is adapted by online noise learning in NTF. Next,
the outputs of the two CNNs are concatenated as input features for the following RNN. Finally,
the performance of the proposed SED method employing the proposed CRNN and NTF employing
online noise learning is evaluated in terms of event detection accuracy, and it is compared with those
of a GMM–HMM classifier [22], CNN-based classifier, and conventional CRNN-based classifier [32],
where the preprocessing stage is a conventional NTF without any noise adaptation. In addition,
the effect of online noise learning on the accuracy of the NTF-based SED is discussed.

The main contributions of this paper are as follows: (1) to incorporate online learning into NTF
for tunnel noise estimation, and (2) to model the event sound and noise individually to improve the
detection performance. In other words, the noise basis for NTF is adapted with an online noise learning
technique to cope with the diverse acoustic environments of the tunnel. In addition, even if the quality
of the separated event audio signal is improved by online noise learning, the tunnel noise is further
considered in the classification model. To this end, a CRNN-based SED network is designed to have
two subnetworks based on multiple CNNs in order to accept the spectra of each separated sound event
and background noise.

The remainder of this paper is organized as follows: Section 2 reviews a conventional SED
method applied in a tunnel, where NTF and GMM–HMM are used as a preprocessor and a classifier,
respectively. Next, Section 3 proposes a new CRNN-based SED method using an online noise learning
technique, where the CRNN architecture is newly proposed to accommodate the event signal and
background noise with two different CNNs. Section 4 evaluates the detection accuracy of the proposed
SED method and compares it with those of statistical approaches using SVM and GMM–HMM as well
as other neural network-based approaches. Finally, Section 5 concludes this paper.

2. Review of a Conventional SED Method in a Tunnel

This section describes a GMM–HMM-based SED method using multi-channel signals in a tunnel,
as proposed in [22]. Figure 3 shows a block diagram of this conventional method. As shown in the
figure, multi-channel noisy signals are captured by multiple microphones and then transformed into
the frequency domain by applying a short-time Fourier transform (STFT). Next, an NTF technique
is applied to separate the spectrum of an event sound signal from that of the multi-channel noisy
signal. Then, the estimated event sound signal is obtained by applying an inverse STFT to the
separated spectrum of the event sound signal. After that, feature extraction is performed from
the estimated event sound signal, and then a GMM–HMM-based classifier is constructed using the
extracted feature parameters.



Sensors 2019, 19, 2695 5 of 21

Sensors 2018, 18, x FOR PEER REVIEW  5 of 20 

 

 
Figure 3. Block diagram of a conventional GMM–HMM-based SED method. 

2.1. NTF-Based Source Separation 

An NTF-based source separation method attempts to decompose the input noisy signal into the 
event sound and noise signal [22]. Let 𝑦 (𝑛) be the noisy signal of the c-th channel and the 𝑖-th 
frame. Then, the multi-channel noisy signal at the i-th frame,  𝒚 (𝑛) = [𝑦 (𝑛), 𝑦 (𝑛), ⋯ , 𝑦 (𝑛)],  is 
represented as: 

𝐲 (𝑛) = 𝐬 (n) + 𝐝 (n) (1) 

 
where 𝐶  is the number of channels and 𝐬 (n)  =  [𝑠 (𝑛), 𝑠 (𝑛), ⋯ , 𝑠 (𝑛)] and 𝐝 (n)  =

 [𝑑 (𝑛), 𝑑 (𝑛), ⋯ , 𝑑 (𝑛)] are the multi-channel clean event sound signal and noise at the i-th frame, 
respectively. After applying a K-point STFT to each 𝑦 (𝑛), its spectrum, 𝑌 (𝑘), is concatenated as 
𝐘  =  [𝑌 (𝑘), 𝑌 (𝑘), ⋯ , 𝑌 (𝑘)]. Then, the multi-channel event sound spectrum, 𝐒 , is estimated from 
𝐘  by using a supervised NTF-based source separation technique [33]. 

In the NTF framework, a channel, time, and frequency (CTF) matrix is first constructed by 
concatenating M consecutive 𝐘 s as 𝐘 =  [𝐘 , 𝐘 , ⋯ , 𝐘 ], where the dimensions of the CTF 
matrix are (𝐶 ×  𝐾 ×  𝑀). Note that 𝐘 ≅  𝐒  + 𝐃 is assumed, where 𝐒 and 𝐃 are the CTF matrices 
of the estimates of 𝐬 (n) and 𝐝 (n), respectively, because this assumption has provided satisfactory 
results for NTF-based source separation [33]. Here, a block-wise NTF decomposition is performed as 
follows [34]: 

             𝐘 = 𝐂𝐘 ⊗ 𝐁𝐘 ⊗ 𝐀𝐘

∈ 𝐘

= [𝐂
𝐒

𝐒  𝐂
𝐃

𝐃 ] ⊗ 𝐁
𝐒

𝐒  𝐁
𝐃

𝐃 ⊗ [𝐀
𝐒

𝐒  𝐀
𝐃

𝐃 ]

𝒓𝐒∈ 𝐒,𝒓𝐃∈ 𝐃

 

               = 𝐂
𝐒

𝐒 ⊗ 𝐁
𝐒

𝐒 ⊗ 𝐀
𝐒

𝐒

𝐒∈ 𝐒

+ 𝐂
𝐃

𝐃 ⊗ 𝐁
𝐃

𝐃 ⊗ 𝐀
𝐃

𝐃

∈ 𝐃

≅ 𝐒 + 𝐃 
 

 

(2)

where ⊗ refers to the tensor product and 𝐂𝐗, 𝐁𝐗, and 𝐀𝐗 are the channel gain matrix, basis matrix, 
and activation matrix of a CTF matrix, 𝐗, with a rank of r, respectively. In this case, 𝐗 could be Y, S, 
or D, and 𝐂𝐘  =  [𝐂

𝐒
𝐒  𝐂

𝐃
𝐃 ], 𝐁𝐘  =  𝐁

𝐒
𝐒  𝐁

𝐃
𝐃 , and 𝐀𝐘  =  [𝐀

𝐒
𝐒  𝐀

𝐃
𝐃 ]. Additionally, 𝑅𝐒 and  𝑅𝐃  (𝑅𝐘  =

𝑅𝐒  + 𝑅𝐃) are the ranks of the basis matrices for 𝐒 and 𝐃, respectively. In addition, 𝐂
𝐒

𝐒 , 𝐁
𝐒

𝐒 , and 
𝐀

𝐒
𝐒  are the 𝑟𝐒 -th column vectors of the (𝐶 × 𝑅𝐒 )-dimensional channel gain matrix, (𝐾 ×  𝑅𝐒 )-

dimensional basis matrix, and (𝑀 × 𝑅𝐒)-dimensional activation matrix, respectively. 𝐂
𝐃

𝐃 , 𝐁
𝐃

𝐃 , and 
𝐀

𝐃
𝐃  are also defined similarly to 𝐂

𝐒
𝐒 , 𝐁

𝐒
𝐒 , and 𝐀

𝐒
𝐒 , respectively. As described in Equation (2), 𝐒 

and 𝐃 are obtained after estimating 𝐂
𝐒

𝐒 , 𝐁
𝐒

𝐒 , 𝐀
𝐒

𝐒 , 𝐂
𝐃

𝐃 , 𝐁
𝐃

𝐃 , and 𝐀
𝐃

𝐃  for all ranks, 𝑟𝐒 and 𝑟𝐃, by 
using the NTF technique. 

As shown in Figure 3, the conventional NTF technique described in [22] pre-trains the event 
sound basis matrices and background noise basis matrices, 𝐁

𝐒
𝐒  and  𝐁

𝐃
𝐃 , from the previously 

prepared clean event sound signal and noise database, respectively. The procedure of basis 
estimation is described in [34]. Next, the NTF-based source separation method is performed to 

Figure 3. Block diagram of a conventional GMM–HMM-based SED method.
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An NTF-based source separation method attempts to decompose the input noisy signal into
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Then, the multi-channel event sound spectrum, Si, is estimated from Yi by using a supervised
NTF-based source separation technique [33].

In the NTF framework, a channel, time, and frequency (CTF) matrix is first constructed by
concatenating M consecutive Yis as Y = [Yi−M+1, Yi−M+2, · · · , Yi], where the dimensions of the CTF
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NTF-based source separation [33]. Here, a block-wise NTF decomposition is performed as follows [34]:
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]
. Additionally, RS and

RD (RY = RS + RD) are the ranks of the basis matrices for S and D, respectively. In addition,
CS

rS
, BS

rS
, and AS

rS
are the rS-th column vectors of the (C × RS)-dimensional channel gain matrix,

(K × RS)-dimensional basis matrix, and (M × RS)-dimensional activation matrix, respectively. CD
rD

, BD
rD

,
and AD

rD
are also defined similarly to CS

rS
, BS

rS
, and AS

rS
, respectively. As described in Equation (2),

Ŝ and D̂ are obtained after estimating CS
rS

, BS
rS

, AS
rS

, CD
rD

, BD
rD

, and AD
rD

for all ranks, rS and rD, by using
the NTF technique.

As shown in Figure 3, the conventional NTF technique described in [22] pre-trains the event sound
basis matrices and background noise basis matrices, BS

rS
and BD

rD
, from the previously prepared clean

event sound signal and noise database, respectively. The procedure of basis estimation is described
in [34]. Next, the NTF-based source separation method is performed to estimate CS

rS
, BS

rS
, and AS

rS
for
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BS
rS

and CD
rD

, BD
rD

, and AD
rD

for BD
rD

. Then, the channel gain and activation matrices at the i-th frame are
iteratively estimated using the following equations:

[
ĈS

l,i;rS,c ĈD
l,i;rD,c

]
=

[
ĈS

l−1,i;rS,c ĈD
l−1,i,rD,c

]
◦

∑
k∈K,m∈M Pl−1,i;c,k,m

[
BS

rS,kBD
rD,k

][
ÂS

l−1,i;rS,mÂD
l−1,i;rD,m

]
∑

k∈K,m∈M

[
BS

rS,kBD
rD,k

][
ÂS

l−1,i;rS,mÂD
l−1,i;rD,m

] , (3)

[
ÂS

l,i;rS,m ÂD
l,i;rD,m]= [ÂS

l−1,i;rS,m ÂD
l−1,i;rD,m

]
◦

∑
c∈C,k∈K Pl−1,i;c,k,m

[
ĈS

l−1,i;rS,cĈ
D
l−1,i;rD,c

][
BS

rS,kBD
rD,k

]
∑

c∈C,k∈K

[
ĈS

l−1,i;rS,cĈ
D
l−1,i;rD,c

][
BS

rS,kBD
rD,k

] , (4)

Ŷl,i;c,k,m =
∑

rS∈RS

ĈS
l,i;rS,c ⊗BS

rS,k ⊗ ÂS
l,i;rS,m +

∑
r∈RD

ĈD
l,i;rD,c ⊗BD

rD,k ⊗ ÂD
l,i;rD,m (5)

where multiplication (◦) and division are applied on an element-by-element basis and l is an iteration
index. In addition, Pl,i;c,k,m = Y(i;c,k,m)/Ŷ(l,i;c,k,m) . Note that Xl,i;r,e is the e-element of the r-th column
vector of X at the i-th frame for the l-th iteration. Equations (3)–(5) are terminated when the relative
reduction of the Kullback–Leibler (KL) divergence between iterations l and (l−1) is less than a predefined
threshold [34]. Note that all elements of the matrices, CS

rS
, AS

rS
, CD

rD
, and AD

rD
, are initialized by setting

a random value between 0 and 1. Finally, the multi-channel event sound signals at the i-th frame are
obtained by using the equation of Ŝi =

∑
rS∈RS

ĈS
L,i;rS
⊗BS

rS
⊗ ÂS

L,i;rS
, followed by an inverse STFT where

the iteration is finished at L.
The NTF-based source separation employed in the conventional SED method works well when

the training and test noise conditions are matched. However, the noise basis could be inadequate when
tunnel acoustic environments differ from those in the noise database. This is because it pre-trains noise
basis matrices from a noise database recorded in tunnel environments. Thus, the noise basis should be
updated adaptively to the environment where the SED method is implemented.

2.2. GMM–HMM-Based Classification

HMM has been widely used as a typical probabilistic method in modeling time series data such
as speech, audio, and even image data [35]. In [22], an HMM was applied to classify event sounds
in a tunnel for SED. To extract acoustic feature parameters, the event sound signal separated by the
NTF technique was segmented into consecutive frames of 4096 samples with 50% overlap between
frames at a 48-kHz sampling rate. Then, a 4096-point fast Fourier transform (FFT) was applied after
multiplying each frame by a Hamming window. The spectrum was used to extract 20 MFCCs [36],
and then their delta and delta–delta parameters were concatenated to make a 60-dimensional feature
vector per frame. In this conventional method, two classes of possible sound events in tunnels were
considered: car crash and tire skid. Then, each event sound class and background noise was modeled
by a five-state left-to-right HMM that consisted of a total of 200 GMMs, where the Gaussian mixtures
were used in modeling the probability density functions of observations in each state. Finally, each
HMM was trained using the MFCC features extracted from the corresponding event sound signals
or noise.

Figure 4 illustrates the network architecture for sound event classification based on GMM–HMM,
where each event including background noise is represented by a GMM–HMM as described above.
In other words, the test signal recorded from a tunnel is processed by the NTF source separation and
feature extraction, and then the MFCC feature parameters of the test signal are passed into the network
to calculate the likelihood of each HMM by using the Viterbi algorithm [37]. Finally, the event class is
selected as the HMM giving the maximum likelihood.
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Although the GMM–HMM-based classifier has been widely used in various acoustic event
classification tasks, recent research has shown that deep neural network-based models with CNN or
RNN architectures are more accurate than GMM–HMM-based methods when performing the same
tasks [11]. For this reason, the following section proposes a new method that improves the accuracy
by performing online noise learning in the NTF framework as well as by proposing a deep neural
network-based model using a CRNN.

3. Proposed CRNN-Based SED Method

This section proposes a new SED method for tunnel event sound detection, as shown in Figure 5.
Compared with Figure 3, the proposed SED method is characterized by the online noise learning for
the NTF-based source separation and the CRNN-based classification, which will be described in the
following subsections.
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3.1. NTF-Based Source Separation with Online Noise Learning

In order to cope with the diverse acoustic environments of tunnels, the noise basis should be
adapted with an online noise learning technique to improve the performance of the source separation
in adverse noise conditions. First, the conventional NTF is performed on the input tunnel noisy signal
at the i-th frame, yi(n), as described in Section 2.1. In this case, the noise basis matrix, BD

rD
, is replaced

with the noise basis matrix updated in the (i−1)-th frame, BD
i−1;rD

, by the procedure described below.

That is, the channel gain matrix, ĈS
L,i;rS

, and activation matrix, ÂS
L,i;rS

, for the event sound are estimated
after applying the iterations of Equations (3)–(5). Note here that the ranks of event sound and noise
bases RS and RD are set to 100 from preliminary experiments. Then, the spectral magnitudes of the
event sound and noise, Ŝi and D̂i, respectively, are estimated using the following equations:

Ŝi =
∑

rS∈RS

ĈS
L,i;rS
⊗BS

rS
⊗ ÂS

L,i;rS
, (6)

D̂i =
∑

rD∈RD

ĈD
L,i;rD

⊗BD
i−1;rD

⊗ ÂD
L,i;rD

. (7)

Next, the noise basis matrix, BD
i−1;rD

, is updated from Ŝi and D̂i. In this paper, only one channel signal is
used for the online noise learning instead of using multi-channel signals. To this end, the channel that
is the most suitable for the noise update should be selected. With the help of the estimated channel
gain, ĈS

L,i;rS
, the channel that provides the largest channel gain is selected as:

ĉi = argmax
c∈C

 ∑
rS∈RS

ĈS
L,i;rS,c

. (8)

Then, the noise spectrum of the c-th channel at the i-th frame, D̂i;ĉi , can be used for the noise update.
However, D̂i;ĉi is the noise estimated only from the noisy signal of the i-th frame; thus, it does not
consider the noise variation over several frames, which causes misadjusting noise because the noise
update is done for the next frame. Thus, instead of directly using D̂i;ĉi , an additional filtering process is
designed here to take into account such noise variation. Similar to [38], a minimum mean squared
error (MMSE) filter is constructed to obtain noise components for online noise learning.

The MMSE filter has a form of gi = ξi/(ξi + 1), where ξi is the a priori signal-to-noise ratio (SNR)
of the i-th frame. In this paper, ξi is estimated in a decision-directed approach [39] as follows:

ξi =
αS̃i−1;ĉi−1 + (1− α)Ŝi;ĉi

γD̃i−1;ĉi−1 + βi(1− γ)D̂i;ĉi

(9)

where S̃i−1;ĉi−1 and D̃i−1;ĉi−1 are the estimates of the event sound and noise at the (i−1)-th frame by
applying S̃i−1;ĉi−1 = gi−1 ◦Yi−1;ĉi−1 and D̃i−1;ĉi−1 = (1− gi−1) ◦Yi−1;ĉi−1 , respectively. In Equation (9),
α and γ are smoothing coefficients for the sound event and background noise, respectively, and they
are set as α = 0.1 and γ = 0.01 through exhaustive experiments. In addition, βi is a frame-dependent
adaptive noise flooring factor that can be derived from the ratio between the activations of noise and
event sound, such that:

βi = 20 log10

∑
rD∈RD

ÂD
i:rD

/RD∑
rS∈RS

ÂS
i:rS

/RS

. (10)

Note that βi reflects the overall SNR of the multi-channel event sound and noise signals because
the activation matrices are estimated without regard to any specific channel. After constructing
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gi, the spectral magnitudes of event sound, S̃i;ĉi , and noise, D̃i;ĉi , are estimated again using the
following equations:

S̃i;ĉi = gi ◦Yi;ĉi and D̃i;ĉi = (1− gi) ◦Yi;ĉi (11)

where multiplication (◦) is applied on an element-by-element basis
Next, M frames of D̃i;ĉi are also concatenated as D̃i =

[
D̃i−M+1;ĉi , · · · , D̃i;ĉi

]
to apply a

discriminative dictionary learning technique [38] such as:

B̃
D
l,i = B̃

D
l−1,i ◦

(
D̃i

B̃
D
l−1,i ÂD

L,i

)(
ÂD

L,i

)T

1
(
ÂD

L,i

)T (12)

where T is the transpose operation and the basis matrix for the update is initialized as B̃
D
0,i = BD

i .

Additionally, the noise basis matrix, B̃
D
l,i;rD

, is iteratively updated by minimizing the KL divergence.
However, the update in Equation (12) is performed for all ranks of the basis matrix, which causes
excessive updating of the noise basis matrix even when the event sound signal is dominant. To prevent
this problem, a noise basis to be updated that satisfies the following equation is selected:

Ii(r) =

r

∣∣∣∣∣∣∣∣ 1
M

i∑
j=i−M+1

ÂD
j;r > η

 (13)

where η = 1/(M·RS)
∑i

j=i−M+1
∑RS

r=1 ÂS
L, j;r, and Ii(r) = 1 means that the r-th basis should be updated

to accommodate the noise that appears at the i-th frame. Then, the activation matrix, ÂD
L,i, is decomposed

into ÂD
i;rD∈Ii;u

and ÂD
i;rD∈Ii; f

, where Ii;u =
{
r
∣∣∣Ii(r) = 1

}
and Ii; f =

{
r
∣∣∣Ii(r) = 0

}
, respectively. After that,

Equation (12) is modified as:

B̃
D
l,i;rD∈Ii;u

= B̃
D
l−1,i;rD∈Ii;u

◦


 D̃i

B̃
D
l−1,i;rD∈Ii;u

ÂD
L,i;rD∈Ii;u

(ÂD
L,i;rD∈Ii;u

)T
/1

(
ÂD

L,i;rD∈Ii;u

)T

 (14)

Finally, the basis matrix for the next frame, BD
i+1, is obtained by concatenating the fixed noise

basis BD
i;rD∈Ii; f

and the converged B̃
D
i;rD∈Ii;u

in Equation (14) as BD
i+1 =

[
BD

i;rD∈Ii; f
B̃

D
i;rD∈Ii;u

]
. Moreover,

the spectral magnitudes, S̃i;ĉi and D̃i;ĉi , are used as the input for the CRNN-based classifier, which will
be explained in the next subsection.

3.2. CRNN-Based Event Classification

The CRNN was successfully used in an audio classification task [11], where audio event signals
came from a home or residential area and they were modeled only by a neural network without
considering the background noise in the model. However, as mentioned earlier, the tunnel environment
is more severe than the home or street environments in [11]. Thus, the tunnel noise also needs to be
considered in the classification model. To this end, the conventional CRNN architecture is extended
here to accommodate the event sound and noise signal together, as shown in the lower part of Figure 5.
In other words, the proposed CRNN-based classifier first consists of two CNNs: one event CNN and
one noise CNN. Then, the outputs from the two CNNs are concatenated so that the concatenated
output in the time and feature dimension is used as the input to an RNN layer. Next, the RNN output
is flattened by a fully connected (FC) layer, and then the FC layer is connected to the output layer to
classify the event sound or noise.

Figure 6 illustrates the proposed CRNN-based classifier in detail. First, the stereo-channel input
tunnel noisy signal is separated into both event sound signals and background noise using the
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NTF technique with online noise learning, as described in Section 3.1. Similar to the conventional
GMM–HMM-based SED method, each separated signal is sampled at 48 kHz and segmented into
consecutive frames of 4096 samples with 50% overlap between the frames. Then, a 4096-point FFT is
applied to each separated signal, and a 128-dimensional mel-filterbank analysis [40] is performed for
each frame. As an input feature to CNNs, the frames are integrated in 30-frame groups, resulting in
a (30 × 128) image. As mentioned previously, each event sound and noise is modeled by a separate
CNN, and both CNNs are composed of three convolution layers, where the number of kernels is 8, 16,
and 32 for each convolution layer; however, (3 × 3) kernels are all used with a stride size of 2. Moreover,
each convolution layer is followed by batch normalization [41], rectified linear unit (ReLU) activation,
and a dropout layer [42] with a rate of 0.2 and a (3 × 3) max pooling layer [43]. In particular, the stride
size of the max pooling layer is set to (1 × 2) for the first two convolution layers and to (1 × 4) for the
third one.
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By following the procedure described above, there are two CNN outputs from the event and noise
CNN with dimensions of (30 × 8 × 32). Then, they are each stacked into a (30 × 256)-dimensional



Sensors 2019, 19, 2695 11 of 21

image and concatenated to construct a (30 × 512)-dimensional image. Next, a bi-directional RNN with
16 GRUs is followed by the concatenated layer in order to learn the temporal context information,
where a ReLU is used as an activation function for each GRU. The output of the RNN is inputted to an
FC layer with dimensions of (30 × 32). Finally, the output layer with a softmax activation function is
used to classify the input tunnel signal as “car crash”, “tire skid”, or background noise.

4. Performance Evaluation

The performance of the proposed SED method was evaluated on two different datasets: one was
the MIVIA road audio events dataset for publicly available for road surveillance applications [4],
and the other dataset was newly organized for SED in tunnel environments. In particular, the latter
dataset included artificially generated sound clips as well as sound clips recorded in actual tunnels
to compensate for the lack of recording data to train the model parameters of each classifier due
to the low frequency of accidents in real tunnels. For the comparison with the proposed method,
conventional classifiers including SVM [4,23], GMM–HMM [22], CNN, and a conventional CRNN [32]
were evaluated as well as the proposed method. Moreover, the effectiveness of the proposed NTF-based
online noise learning for SED in a tunnel environment was examined. In addition, the performance
contribution of the mel-filterbanks extracted from the proposed NTF-based online noise learning was
compared with those of CNN-based features extracted from both noisy input and NTF without online
noise learning. Finally, the computational complexity of the conventional and the proposed SED
methods was compared.

4.1. Datasets

Table 1 describes the MIVIA road audio events dataset. As shown in the table, it was composed
of two events (tire skid and car crash) of 200 audio clips each, whose total length was 326.38 s and
522.6 s for tire skid and car crash, respectively. In addition to the event sounds, the dataset included
background noise (2732 s long). All clips were recorded with an omni-directional microphone with a
sampling rate of 32 kHz and then up-sampled to 48 kHz. Since this dataset was recorded by a single
microphone, both the conventional and the proposed SED methods discussed in Sections 2 and 3 were
performed with C = 1.

Table 1. Distribution of the MIVIA road audio events dataset [4].

Class # Events Duration

Tire skid (TS) 200 326.38 s
Car crash (CC) 200 522.5 s
Background noise (BN) - 2732.0 s

For the evaluation regarding this dataset, four-fold cross-validations were performed, and final
outcomes were measured by averaging all cross-validations. In other words, event sounds for tire skid
(TS) and car crash (CC) were grouped into four groups, where each group was composed of 50 event
clips per event, resulting in 100 clips in total. In addition, the background noise (BN) was divided
into four groups so that the length of each group for BN was about 700 s long. After that, three out of
the four groups were used together to train the GMM–HMM or neural networks, and the remaining
group was used for testing them. Note here that any event clip or noise used in the training was not
overlapped with those in the test. This cross-validation was repeated four times.

In order to organize the audio dataset for SED in the tunnel, audio signals were recorded inside
an actual 700-m-long one-way tunnel. To record inside the tunnel, an audio recording device with two
omni-directional microphones with a distance between the microphones of 14.8 cm apart was installed
in the tunnel’s sidewall 500 m away from the entrance. The recording continued for six months. Then,
all of the recorded data were split into a training dataset and a test dataset according to the time at
which the data were recorded. That is, 84 event clips for the training set and 48 event clips for the
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evaluation set were excerpted from the audio dataset recorded during the first three months and the
remaining three months, respectively. Note here that any sound source used in the evaluation did not
belong to the training set.

Despite the long recording time, the number of event clips was not sufficient to train the classifier
of SED methods due to the low frequency of accidents in tunnels. For this reason, additional event
clips were artificially generated by simulating the tunnel environment.

To generate the simulated data, sound clips of 311 tire skids and 93 car crashes were collected
from a Sound-Ideas sound effect dataset [44]. Next, they were artificially distorted by convolving with
a room impulse response (RIR) that was modeled by an arch-shaped space based on the Enhanced
Acoustic Simulator for Engineers (EASE) [45]. Here, the room parameters designed for the RIR
coefficients were set to reflect the structural characteristics of the tunnel where the recording was
conducted. In addition, the recorded background noise was mixed with the distorted event sounds to
simulate interferences by them. Table 2 shows the number and duration of the collected event sound
clips and background noises. Note that the evaluation set contained tire skids or car crashes that
appeared just once for an hour of background noise on average, resulting in 48 h of background noise
containing 48 sound events.

Table 2. Distribution of the audio dataset for the development of SED in a tunnel environment.

Class
Training Set (Recorded) Training Set (Generated) Evaluation Set (Recorded)

# Events Duration # Events Duration # Events Duration

Tire skid (TS) 54 120.55 s 311 383.45 s 39 109.88 s
Car crash (CC) 30 68.27 s 93 84.07 s 9 19.31 s
Background noise (BN) - 5423.66 s - - - ~ 48 h

4.2. Neural Network Modeling and Performance Measurement Metrics

The proposed CRNN-based SED method was compared with the CNN and CRNN [32]. Table 3
describes the architectures of the neural networks in detail. All of the neural networks were implemented
in the deep learning package Keras (version 2.1.5) [46] using Tensorflow (version 1.5.0). To train the
CNN, CRNN, and proposed CRNN, the model weight parameters were initialized by using a zero-mean
Gaussian distribution [47]. In addition, each neural network was trained with the mini-batch-wise
adaptive moment estimation (ADAM) optimization algorithm to minimize the categorical cross-entropy
criterion [48]. For training validation, 10% of the training data were prepared as validation data.
The early stopping rule [46] was also applied to terminate the model training with the minimum
number of epochs set to 30.

Table 3. Configuration of network architectures of three different deep neural networks used for
performance comparison.

Layer Deep Neural Network

CNN CRNN [32] Proposed CRNN

No. of convolution layers 3 3 3, 3
No. of kernels (8, 16, 32) (8, 16, 32) (8, 16, 32), (8, 16, 32)
Kernel size (3, 3) (3, 3) (3, 3)
Pool size (2, 2, 4) (2, 2, 4) (2, 2, 4), (2, 2, 4)
RNN layer - 16 Bi-directional GRUs 16 Bi-directional GRUs
FC layer Exists Exists Exists

For objective performance evaluation, four different metrics were used as in [4]:
(1) The recognition rate (RR) or the true positive rate (TPR): the rate of correctly classified events

of interest;
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(2) The false positive rate (FPR): the rate of wrongly classified events of interest when only
background sound was present;

(3) The missed detection rate (MDR): the rate of undetected events; and
(4) The area under the receiver operating characteristic (ROC) curve (AUC).
The ROC curve was a plot of the tradeoff between the TPR and FPR of a classifier when its

discrimination threshold was varied. The closer an ROC curve was to the top-left corner of the plane,
the better the performance. Thus, the AUC should be equal to 1 in a perfect classifier.

4.3. Performance Comparison Using the MIVIA Road Audio Events Dataset

This section compares the results of the proposed SED method with those of conventional SED
methods applied to the task of analyzing the MIVIA road audio events dataset. First, the conventional
methods evaluated here were all based on an SVM classifier using different feature parameters such
as MFCC features based on the bag-of-words (BoW) approach [4], temporal and spectral features [4],
and selected time and frequency features [23]. Next, audio event classifiers based on GMM–HMM [22],
CNN, and CRNN [32] were also evaluated. For these three methods, mel-filterbanks of {Ŝ} in
Equation (6) were commonly employed. After that, the SED method using the proposed CRNN
architecture with mel-filterbanks of {S̃,D̃} in Equation (11), which were obtained from the online noise
learning, was compared with other conventional methods.

Table 4 compares the performances of the SED methods evaluated on the MIVIA road audio
events dataset. In the case of the SVM-based SED method, the SVM classifier using the selected time
and frequency features [23] outperformed the other two SVM classifiers by achieving an average
RR of 95.00%. On the one hand, the conventional GMM–HMM, CNN, and CRNN classifiers were
evaluated by using the mel-filterbanks of noisy signal {Y}. As shown in the second row of the table,
GMM–HMM showed the worst performance in all measurements. This was because the background
noise was not adequately modeled by GMM–HMM. On the other hand, CNN and CRNN showed
superior performance compared to GMM–HMM because the learning from large data helped them
deal with background noise. Next, in order to investigate the effect of NTF sound source separation
on the detection performance, the three classifiers were also applied to the mel-filterbanks of the
separated signal {Ŝ}. As shown in the third row of the table, the performance of GMM–HMM was
greatly improved because the background noise was effectively reduced by the NTF technique and
thus the event sound could be better recognized than GMM–HMM with the mel-filterbanks from
the noisy signal. However, the performances of CNN and CRNN were similar to those when the
NTF-based sound source separation was not applied. Next, the NTF source separation with online
noise learning was applied to the tunnel input noisy signal, and then GMM–HMM, CNN, and CRNN
were constructed using the mel-filterbanks of the separated event sound from the NTF with online
noise learning {S̃}. However, the performance improvement for all classifiers was marginal, because the
level of background noise was relatively low in this dataset.

Finally, the proposed CRNN-based SED method was applied to the mel-filterbanks of the separated
signal and noise {S̃,D̃}. Consequently, it was shown from the last row of the table that the proposed
method gave the highest RR of 98.25%, the lowest MDR of 1.00%, and the highest AUC of 98.39%,
while the FPR was comparable to that of the CNN. This was achieved due to the two CNNs of the
proposed CRNN for modeling the event sound and noise separately.

Next, the experimental results of the proposed method were compared with those of the
conventional methods based on GMM–HMM, CNN, and CRNN by analyzing the ROC curves,
as shown in Figure 7. The ROC curves for the deep neural network-based methods were drawn by
obtaining the TPR and FPR according to the different decision thresholds that were applied for the event
detection from the softmax probability value. Note that in the case of GMM–HMM, different decision
thresholds were applied to the Viterbi score of the HMM. As shown in the figure, the proposed
CRNN-based SED method performed better, as the corresponding curve lay closer to the left and top
borders of the quadrant than those of the other methods.
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Table 4. Performance comparison of the proposed and other SED methods evaluated on the MIVIA
road audio events dataset.

Methods Measures

Features Classifier RR (%) MDR (%) FPR (%) AUC (%)

MFCC features BoW * [4] SVM 78.20 21 10.96 86.00
Temporal and spectral features * [4] SVM 82.65 19 5.48 90.00
Selected time and frequency features * [23] SVM 95.00 2.75 5.00 98.32

Mel-filterbanks from noisy signal {Y}
GMM–HMM [22] 67.75 32.00 29.76 82.90

CNN 96.25 2.00 4.38 97.59
CRNN [32] 96.00 3.25 3.06 97.01

Mel-filterbanks from NTF w/o
online noise learning {Ŝ}

GMM–HMM [22] 79.50 20.50 17.94 94.20
CNN 94.00 2.75 3.94 96.56

CRNN [32] 96.50 2.00 7.22 96.36

Mel-filterbanks from NTF with
online noise learning {S̃}

GMM–HMM [22] 84.75 15.00 13.35 95.20
CNN 96.00 2.50 2.40 97.45

CRNN [32] 96.00 2.75 3.28 97.33

Mel-filterbanks from NTF with
online noise learning {S̃,D̃} Proposed CRNN 98.25 1.00 3.06 98.39

* Since the experimental setup using the MIVIA road audio events dataset was identical to the previous work in [23],
the results of the star-marked methods indicated in the table were excerpted from [23].
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4.4. Performance Evaluation in a Tunnel Environment

In this subsection, the performance of the proposed SED method was evaluated on the evaluation
dataset that was actually recorded inside a tunnel. Moreover, the effectiveness of the NTF-based source
separation with online noise learning on the various SED methods including the proposed one was
also examined. To this end, each classifier was trained by the tunnel sound event dataset explained in
Section 4.1. Moreover, 48 h of the evaluation dataset containing 48 sound events were applied to the
SED methods to evaluate their classification accuracy in a real tunnel environment.

Table 5 shows the results of the conventional SED methods and the proposed one before and after
the NTF-based source separation with or without online noise learning. Similar to Table 4, in order to
examine the effectiveness of NTF on detection performance, GMM–HMM, CNN, and the conventional
CRNN-based SED methods were trained using the mel-filterbanks from the noisy spectrum {Y} or
the mel-filterbanks of the separated event sound from the NTF {Ŝ}. As shown in the first and second
rows of the table, the GMM–HMM with {Ŝ} gave a similar RR and MDR to the GMM–HMM with {Y},
while the former significantly reduced the FPR. On the other hand, CNN and CRNN, after applying the
NTF-based sound source separation, showed better performance on RR, MDR, and AUC than those
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before applying NTF. This was because the NTF-based source separation played a main role in dealing
with tunnel background noise. However, their FPRs were increased when compared to those before
applying NTF. This was because the CNN and CRNN were trained using only the separated event
audio without any consideration of the background noise. Next, the effect of online noise learning
was examined by constructing the GMM–HMM, CNN, and CRNN using the mel-filterbanks of the
separated event sound from the NTF with online noise learning {S̃}. As shown in the third row of the
table, the performances of all classifiers were improved when compared with those using NTF without
online noise learning {Ŝ}, except for the FPR of GMM–HMM. Instead, the MDR of GMM–HMM was
greatly decreased. Such performance improvement indicated that the online noise learning could
influence noise reduction in the separated event sound.

Table 5. Performance comparison of the proposed and other SED methods evaluated on the real tunnel
event dataset.

Methods Measures

Features Classifier RR (%) MDR (%) FPR (%) AUC (%)

Mel-filterbanks from noisy signal {Y}
GMM–HMM [22] 69.81 30.19 88.68 69.11

CNN 71.70 28.30 7.55 80.75
CRNN [32] 81.13 18.87 11.32 82.66

Mel-filterbanks from NTF w/o
online noise learning {Ŝ}

GMM–HMM [22] 69.81 30.19 7.55 77.22
CNN 79.25 20.75 41.51 64.68

CRNN [32] 83.02 16.98 18.67 84.56

Mel-filterbanks from NTF with
online noise learning {S̃}

GMM–HMM [22] 83.02 16.98 15.09 87.83
CNN 83.92 16.07 17.57 85.87

CRNN [32] 87.50 12.50 10.71 89.92

Mel-filterbanks from NTF with
online noise learning {S̃,D̃} Proposed CRNN 91.07 8.93 7.14 92.08

Finally, the performance of the proposed CRNN-based SED method was evaluated using the
mel-filterbanks from NTF with online noise learning {S̃,D̃}. As shown in the last row of the table,
the proposed CRNN outperformed the other comparatives in all measurements by large margins.
In particular, it reduced the recognition error rates by 47.40% and 28.56% when compared to the
GMM–HMM-based and the conventional CRNN-based SED methods, respectively. Moreover, the FPR
of the proposed CRNN was the lowest among all classifiers, which implied that the two CNNs for
the event audio and noise mostly contributed to the detection accuracy under severe tunnel noise
conditions, resulting in the highest RR and the lowest FPR.

4.5. Performance Comparison of Signal Processing-Based and Deep Learning-Based Features

The mel-filterbanks used in this paper were extracted from a signal processing technique.
However, as mentioned in Section 1, feature extraction approaches based on deep neural networks
have been proposed [49]. Figure 8 shows a block diagram of the CNN-based feature extraction
method. As described in Section 3.2, a 4096-point FFT was applied to each frame, and then the spectral
magnitudes at 2048 frequency bins were used as an input feature to the CNN. The CNN for feature
extraction was composed of three one-dimensional convolutional layers with eight kernels each,
where each convolution layer was followed by the ReLU activation and a max pooling layer whose filter
size was differently set to 8, 8, and 2 for each convolutional layer. Consequently, a (16 × 8)-dimensional
feature map was constructed, and it was flattened by an FC layer to construct the 128-dimensional
feature parameters once every frame. Note here that the class (TS, CC, or BN) was presented as a target
value to the output layer of this CNN-based feature extraction, and this output layer was removed
after extracting the feature. The feature parameters from the CNN were then brought to the input for
the CNN-based and CRNN-based classifier described in Table 3.
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Table 6 compares the performances of the SED methods evaluated on the MIVIA road audio
events dataset, where the CNN-based feature parameters and the mel-filterbanks were extracted from
both noisy signal {Y} and the separated event sound from the NTF without online noise learning
{Ŝ}. As shown in the first and second rows of the table, the CNN-based SED method with the
mel-filterbanks from {Y} had a comparable RR to that with the CNN-based feature parameters from {Y},
while there was a tradeoff between MDR and FPR. This phenomenon was similar for the CNN-based
SED methods with the CNN-based feature and mel-filterbanks applied to {Ŝ}, as shown in the third and
fourth rows of the table. On the other hand, the CRNN-based SED method with the mel-filterbanks
provided better performance in RR, MDR, and AUC but slightly worse performance in FPR and AUC
than that with the CNN-based feature parameters. However, as shown in the last row of Table 4,
the proposed CRNN classifier with {S̃,D̃} significantly improved all the measures. This implied that the
proposed CRNN classifier when combined with online noise learning was a better network architecture
than the conventional CNN for both a signal processing-based and a neural network-based feature
extraction approach.

Table 6. Performance comparison of the CNN-based and CRNN-based SED methods with the
CNN-based feature parameters and mel-filterbanks evaluated on the MIVIA road audio events dataset.

Methods Measures

Features Classifier RR (%) MDR (%) FPR (%) AUC (%)

CNN-based feature from noisy signal {Y} CNN 96.50 3.5 4.38 96.90
CRNN [32] 95.25 4.75 5.03 96.09

Mel-filterbanks from noisy signal {Y} CNN 96.25 2.00 4.38 97.59
CRNN [32] 96.00 3.25 3.06 97.01

CNN-based feature from NTF w/o
online noise learning {Ŝ}

CNN 96.50 3.25 5.69 96.97
CRNN [32] 96.00 3.50 5.03 96.09

Mel-filterbanks from NTF w/o
online noise learning {Ŝ}

CNN 94.00 2.75 3.94 96.56
CRNN [32] 96.50 2.00 7.22 96.36

4.6. Comparison of Computational Complexity

This subsection compares the computational complexity of both the conventional and the proposed
SED methods. The measurements were (1) the number of parameters, (2) the average processing time
to train each model per epoch for neural networks or the iteration of the expectation-maximization
(EM) algorithm for the GMM–HMM, and (3) the average processing time for classifying a test signal
one second long. To this end, all methods were implemented on a Linux-based workstation that
consisted of an Intel Core i7, 64 GB of RAM with 11GB GTX-1080ti NVIDIA graphics. As shown in
Table 7, the proposed CRNN had about twice the number of parameters of the conventional CRNN
because its neural network was composed of two CNNs, as shown in Figure 6. Therefore, the average
processing time to train the proposed CRNN was increased when compared to those for training the
CNN and the conventional CRNN. Accordingly, the average processing time for testing the 1-s-long
tunnel input noisy signal was about 11 ms, which was comparable to that of the conventional CRNN.
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This was because each CNN in the proposed CRNN was computed using a separate graphic processing
unit (GPU), while the RNN of the proposed CRNN was less complex than that of the conventional
CRNN. Consequently, since the processing time for the NTF-based source separation with online noise
learning was measured at 588 ms, the proposed CRNN-based SED method had the processing time of
599 ms for the given test signal of one second. This implies that the proposed method could detect
events under tunnel noise conditions in real time.

Table 7. Comparison of the number of parameters and processing time for training and testing the
SED methods.

Item
SED methods

GMM–HMM [22] CNN CRNN [32] Proposed CRNN

No. of parameters 9.6K 21K 34K 64K
Processing time for model training per epoch 4 s 5 s 8 s 12 s
Processing time per second of test signal + 117 ms 2 ms 10 ms 11 ms

+ The NTF source separation with online noise learning required 588 ms, which was not counted for the processing
time denoted in this table.

5. Conclusions

In this paper, a novel SED method was proposed for the robust detection of event signals in a
tunnel environment. Unlike other tasks, SED in a tunnel environment had two difficulties: significant
noise interference and very few sound event clips. To cope with these difficulties, the proposed
method first used a preprocessing stage to adaptively separate a sound source signal from the input
tunnel noisy signal with high variation, which was performed by applying online noise learning to
the NTF-based source separation. In addition, a CRNN-based classifier was proposed to improve the
detection accuracy by combining an event CNN and a noise CNN in the CRNN architecture.

In order to analyze the performance of the proposed SED method, two experiments were conducted
using a publicly available audio events dataset for SED in a road environment and a tunnel environment
dataset that was developed from real traffic sound recordings in a tunnel. In the first experiment with
the road audio events dataset, the performance was compared with statistical SED methods such as
SVM and GMM–HMM as well as neural network-based SED methods, such as CNN, the conventional
CRNN, and the proposed CRNN. In addition, a SVM was constructed using one of the three different
feature sets including MFCC features BoW, temporal and spectral features, and selected time and
frequency features. It was shown that the SVM using selected time and frequency features provided
the best performance of all SVMs. Next, the GMM–HMM, CNN, and CRNN were constructed using
the mel-filterbanks from the noisy signal or the mel-filterbanks from the separated clean event sound
by the NTF source separation with online learning. These classifiers were compared with the proposed
CRNN with the NTF source separation with online learning. Consequently, it was shown that the
proposed method gave the highest RR of 98.25%, the lowest MDR of 1.00%, and the highest AUC of
98.39%, while the FPR was comparable to that of the CNN. This was achieved due to the two CNNs in
the proposed CRNN for modeling the event sound and noise separately. In addition, the performance
contribution of the mel-filterbanks extracted from the proposed NTF-based online noise learning was
compared with those of CNN-based features extracted from both noisy input and NTF without online
noise learning. It was shown that the CNN-based based SED method with the mel-filterbanks provided
comparable performance to that with the CNN-based feature parameters, while the CRNN-based
SED method with the mel-filterbanks gave slightly better performance than that with the CNN-based
feature parameters. This implied that the proposed CRNN-based SED method when combined with
online noise learning was the best among the compared SED methods with both the mel-filterbanks
and the CNN-based feature parameters.

Next, in the second experiment that used the tunnel environment dataset, the proposed CRNN
was also compared with the GMM–HMM, CNN, and CRNN. Similar to the first experiment, the feature
parameter set was extracted from either the noisy input signal or the event sound separated by the
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NMF source separation with online learning. From the performance comparison before and after
applying the NTF source separation, it was shown that the CNN and CRNN after NTF provided a
better RR, MDR, and AUC but a worse FPR than those before NTF. This was because the CNN and
CRNN were trained using only the separated event audio without any consideration of the background
noise. On the other hand, since the proposed CRNN-based SED method was constructed using both
the event sound and noise separated from the NTF with online noise learning, the proposed CRNN
outperformed other comparatives in all measurements by large margins. In particular, it reduced
the recognition error rates by 47.40% and 28.56% when compared to the GMM–HMM-based and the
conventional CRNN-based SED methods, respectively. Moreover, the FPR of the proposed CRNN
was the lowest among all classifiers, which implied that the two CNNs for the event audio and noise
mostly contributed to the performance improvement when compared to the conventional CRNN.

It should be noted that the proposed method can be applied to various SED applications,
such as audio surveillance equipped with a CCTV in road noise environments for security and safety,
scream detection integrated with a drone under severe mechanical noise conditions, or sound-based
home surveillance. The proposed method can also be utilized for speech-based applications, such as
speech and non-speech classification, speech-based emotion classification, and vocoder coding type
classification through encoded speech.

In future work, to improve the performance of the proposed CRNN-based SED method,
the incorporation of the NMF source separation into a neural network framework will be studied as
in [31], where the challenge is determining how to characterize the online noise learning of NMF in a
deep neural network. In addition, even though CNN-based feature extraction has been performed
in this paper, further sophisticated investigations of the effect of such neural network-based feature
extraction with online noise learning will be studied in detail.
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