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Abstract: A quartz tuning fork and its qPlus configuration show different characteristics in their
dynamic features, including peak amplitude, resonance frequency, and quality factor. Here,
we present an electromechanical model that comprehensively describes the dynamic responses
of an electrically driven tuning fork and its qPlus configuration. Based on the model, we theoretically
derive and experimentally validate how the peak amplitude, resonance frequency, quality factor,
and normalized capacitance are changed when transforming a tuning fork to its qPlus configuration.
Furthermore, we introduce two experimentally measurable parameters that are intrinsic for a given
tuning fork and not changed by the qPlus configuration. The present model and analysis allow
quantitative prediction of the dynamic characteristics in tuning fork and qPlus, and thus could be
useful to optimize the sensors’ performance.
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1. Introduction

Understanding the dynamics of a probe’s motion is important in order to use the probe as a
quantitative force sensor in atomic force microscopy and spectroscopy [1,2]. For probes such as
micro-cantilevers and quartz tuning forks (TFs), there have been long-investigated linear and
nonlinear dynamics [3–5] and associated models [6] of the probes. Various mechanistic models of
micro-cantilevers have been suggested based on a simple harmonic oscillator [7], a multi-mode
oscillator [8], or normal and torsional deflections of a three-dimensional beam [9]. For TFs,
the qPlus configuration [10] is well-approximated as the harmonic oscillator when it is driven
mechanically [11,12] so that the qPlus sensor facilitates quantitative force measurement, and thus it is
widely employed for dynamic force spectroscopy [13].

While the mechanically driven qPlus allows analytical description of the probe dynamics, one
could use the electrically driven qPlus (ED-qPlus) sensor to exploit the capability of self-actuation and
self-detection. The traditional equivalent circuit model for piezoelectric resonators [14] can be used to
describe the motion of both the ED-qPlus and electrically driven TFs (ED-TFs). However, the dynamic
characteristics of the ED-qPlus such as peak amplitude, resonance frequency, and quality factor are
very distinct from those of the original form (i.e., bare TF), although they are both electrically driven
and only one of the two prongs is fixed in the qPlus. Obviously, the one fixed prong affects the overall
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electromechanical characteristics in the qPlus configuration, but it is not quantitatively understood
how the characteristics alter by transforming TF to qPlus.

In this paper, we present an electromechanical model that comprehensively describes the motions
of the ED-TF and ED-qPlus. Our model predicts the changes in peak amplitude, resonance frequency,
quality factor, and normalized capacitance from the TF to its qPlus configuration, and we confirm the
changes experimentally. Furthermore, we introduce two intrinsic constants that are independent of the
probe type, TF or qPlus. Our results could be useful to optimize sensors’ dynamic characteristics for
quantitative interaction measurements with qPlus or TF.

2. Experiment

A quartz tuning fork is an electromechanical resonator, originally developed for the clock
generators of quartz watches and now widely used as force sensors in atomic force microscopy
(AFM) [15,16], near-field scanning optical microscopy [17], electrostatic force microscopy [18], and
magnetic force microscopy [19]. The TF can be excited electrically, and its mechanical vibration can
also be measured electrically, as described in Figure 1a. Due to the capability of self-actuation and
self-detection, neither an external actuator to drive the TF nor an optical setup to detect its motion are
required. When using a TF as a quantitative force sensor, one should carefully analyze the response
signal of the TF, because the two prongs are coupled with each other. One way to eliminate the
coupling between the two prongs is to firmly fix one prong to a supporting wall. This TF configuration
is called qPlus [10], as schematically described in Figure 1b.
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Figure 1. Two working configurations of electrically driven quartz tuning forks and the traditional
electrical circuit model for quartz resonators. (a) The quartz tuning fork with two prongs can be
electrically actuated and its dynamic response can also be measured electrically, where the two prongs
move in opposite directions, in an antisymmetric mode of vibration; (b) The qPlus sensor is made by
fixing one prong firmly to a supporting wall so that the other prong is allowed to vibrate. Both the
actuation and the detection of the qPlus can also be made electrically; (c) The equivalent circuit model
for quartz resonators (e.g., tuning fork, qPlus).

The electrical responses of the ED-TF (Figure 1a) and ED-qPlus (Figure 1b) are described well by
the equivalent circuit model shown in Figure 1c. Note that the equivalent circuit describes the linear
motion of a TF or qPlus, although a recent study showed the amplitude dependence of the resonance
frequency in such quartz resonators [20]. Therefore, one should consider the nonlinearity when using
a quartz sensor to quantify the tip–sample interaction potentials and forces with milli-electron volt
and pico-Newton resolutions [20]. In the equivalent circuit, the LRC circuit is connected in parallel
with a capacitance C0, and thus the total signal Ie is given by the sum of Im and Ic. While the current
through the LRC circuit Im represents the vibrational motion of the TF or qPlus, the C0 produces the
stray capacitance current Ic. Therefore, the total signal Ie includes both the motion-induced signal
Im and the capacitive signal Ic. Based on the model (Figure 1c), we can derive the resonance curve
function, the oscillation amplitude Ae versus the driving frequency f (= w/2π) [3], for the measured
electrical signal Ie:
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where A0 = Rout(V0/R), w0 = 1/
√

LC, Q = Lw0/R, and C0 = C0/C. Here, Rout is the resistance that
regulates the magnitude of output voltage, given by the combination of the preamplifier gain and the
controlled gain of the voltage divider at the input of the measuring instrument.

Figure 2 shows the experimentally measured resonance curves of the ED-TF and ED-qPlus, where
we used two TFs of different size, TF A (Figure 2a) and TF B (Figure 2c), and their qPlus configurations,
qPlus A (Figure 2b) and qPlus B (Figure 2d), respectively. All probes were electrically driven and their
motion was also electrically detected. The resonance curve exhibited one peak and one local minimum for
all probes. The peak originated from the vibrational resonance of the mechanical motion of the probe Im,
and the local minimum from the stray capacitance current Ic. With one prong fixed, the resonance curve of
the qPlus showed significant change in the overall shape; the peak amplitude of the ED-qPlus decreased
by an order of magnitude, and the bandwidth and the resonance frequency decreased compared to the
ED-TF (Figure 2).
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Figure 2. Electrically measured resonance curves of the bare tuning fork and its qPlus configuration
(both electrically driven). The electrical signals of the tuning fork (a,c) and qPlus (b,d) showed
asymmetric curves with one peak and one local minimum. These curves were well fit by Equation (1)
derived from the equivalent circuit model (Figure 1c). From each fit, we could uniquely determine
the dynamic characteristics shown in Equation (1), A0, Q, f0(= w0/2π), and C0(= C0/C), for each
probe. We used two tuning forks with different sizes, electrically driven tuning fork (ED-TF) A
and ED-TF B (a,c), and they were transformed to qPlus sensors, ED-qPlus A and ED-qPlus B (b,d),
respectively. The electrical signal in volts (left vertical axis) was converted into mechanical amplitude
in nanometers (right vertical axis) by using a theoretical method (method (a) described in Ref. [16]).
For accurate calibration of oscillation amplitude, one can use experimental methods based on thermal
noise spectrum (method (b) in Ref. [16]) for qPlus sensors and energy balance principle [21] generally
for quartz resonators, rather than the theoretical approach.
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Although only one prong is fixed in the qPlus, the dynamic characteristic parameters of the qPlus
were very different from that of the TF, as shown in Figure 3. We could uniquely determine the dynamic
characteristics, A0, Q, f0(= w0/2π), and C0, by fitting Equation (1) to the experimentally measured
resonance curves shown in Figure 2. For probes A and B, we found that the qPlus configuration showed
much lower values of peak amplitude A0 (Figure 3a), quality factor Q (Figure 3b), and resonance
frequency f0 (Figure 3c) than the original bare TF. On the other hand, the capacitance C0 (Figure 3d)
was about twice that of the TF for both probes A and B. As we will show, this was not accidental but
reflects the geometrical structures and mechanics of the qPlus and the TF.

The equivalent circuit model provides the electrical parameters L, R, C, and C0 that reproduce
the dynamic characteristics of the ED-TF and the ED-qPlus such as A0, Q, f0(= w0/2π), and C0, but
it does not give information about how the electrical parameters are quantitatively related to the
mechanical parameters of the TF or qPlus (e.g., the prong’s stiffness). Thus, we cannot explain how the
electrical parameters and the electrical responses are changed by the qPlus configuration solely based
on the electrical model. Moreover, the equivalent circuit model does not include detailed information
about the mechanical motion of the TF or qPlus.
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Figure 3. Dynamic characteristics of the electrically driven tuning fork and qPlus sensor. From the
resonance curves (Figure 2) and their fit curves using Equation (1), one can uniquely determine the
four dynamic characteristics, (a) A0, (b) Q, (c) f0, and (d) C0.
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3. Theory and Analysis

We present a comprehensive electromechanical model of a tuning fork, as described in Figure 4.
Several mechanical models have been reported for the tuning fork and qPlus. Since Naber et al.
presented a mechanical model including two masses and three springs [22], various models with the
base damping [23] and the base mass [24] were proposed. While several models employ a spring to
directly couple two prongs [25], our model shows the coupling of prongs by the common link to the
base, as shown in Figure 4.

The qPlus configuration of the TF is obtained by fixing one prong, here the lower prong in Figure 4,
which is experimentally obtained by attaching the prong to a supporting wall (Figure 1b) and here
theoretically obtained by increasing the mass m2 → ∞ (see Appendix A for another possible way to
obtain the qPlus configuration). Therefore, the model in Figure 4 is generally for both the ED-TF and
ED-qPlus. When applying a voltage V0eiwt to the probe, the voltage signal effectively exerts a force
F0eiwt on the two prongs of the TF. Then, the two prongs with masses m1 and m2 and the base with
mB vibrate, and the mechanical motion of the two prongs induces a current Im. At the same time, the
stray capacitance current given by Ic = iC0wV0eiwt also flows, which is associated with the electrical
structure of the probes and the applied voltage V0eiwt. Thus, the total electrical signal Ie is given by the
sum of Im and Ic.

mB

m1

m2

Figure 4. Electromechanical model for an electrically driven tuning fork. The input voltage V0eiwt

effectively generates the mechanical force F0eiwt, given as iαwV0eiwt, where α is the constant that
converts applied electrical voltage to mechanical force. The force actuates the two prongs of the tuning
fork, and the geometrical displacement of the two prongs xm = x1 − x2 induces the electrical current
Im = βxm, where β is the converting factor. In addition, the input voltage induces the stray capacitance
current Ic. The measured current Ie is given by the sum of the motion-induced current and the stray
capacitance current, that is, Ie = Im + Ic (see the text for details).

The model (Figure 4) employs two conversion factors, α and β, which can be obtained by
experimental calibration of the probe system [26]. The factor α is the constant that converts driving
voltage V0eiwt to mechanical force F0eiwt applied to the TF or qPlus, such as F0eiwt = αV0iweiwt. The β

is the constant converting geometrical displacements of the two prongs, xm = x1 − x2, to electrical
current Im (i.e., Im = βxm).

By solving the coupled motion of two prongs and the base (Figure 4), we obtain xm (= x1 − x2)

and thus the experimentally measurable signal Im or Ie. If the masses of the two prongs are same,
m1 ≈ m2, then the motion of the two prongs is expected to be antisymmetric, x1 ≈ −x2, and the base
motion negligible xB ≈ 0. The antisymmetric motion of the two prongs induces an electrical signal
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Im = 2βx1, and thus the magnitude of the measured voltage signal, IeRout(= (Im + Ic)Rout), is simply
given as:

ATF
e = Abs

[( 1
1− ( w

wTF
0
)2 + i( w

wTF
0 QTF )

+
C0k
2αβ

)2αβwV0Rout

k

]
. (3)

Here, the motion of the two prongs is antisymmetric, so wTF
0 = w0 =

√
k/m and QTF = k/(bw0).

On the other hand, the qPlus sensor allows only one prong to vibrate, here x1, and the motion of
the prong x1 is highly damped by the interaction with the base (Figure 4). Although the exact motion
of the prong x1 can be solved analytically from the model in Figure 4, we notice that the resulting
motion of the qPlus would be approximated as a harmonic motion with altered resonance frequency
wqPlus

0 and quality factor QqPlus. By solving the coupled equations of motion for x1 and xB, we obtain
the current Ie = βx1 + Ic of the qPlus, and the magnitude of measured voltage Rout Ie is then given
as follows:

AqPlus
e = Abs

[( 1
1− ( w

wqPlus
0

)2 + i( w
wqPlus

0 QqPlus
)
+

C0k
αβ

)αβwV0Rout

k

]
, (4)

with the resonance frequency wqPlus
0 and quality factor QqPlus (please see Appendix A for details):

wqPlus
0

wTF
0

≈

√
kB/k + 1
kB/k + 2

, (5)

QqPlus

QTF ≈ kB/k
kB/k + H

, (6)

where H is a constant related with the damping ratio bB/b, on the order of 102 (please see Appendix A
for details).

Equations (5) and (6) predict both the resonance frequency and the quality factor of the qPlus
sensor decrease, compared to that of the original TF, depending on the ratio of base stiffness to prong
stiffness (kB/k) and the value of H. The reduction of the resonance frequency and quality factor were
consistently observed in our experiment (Figure 3).

In Equation (3), the first term represents the mechanical motion of the prongs of the TF, whereas the
second term indicates the stray capacitance current. Similarly, the mechanical motion of the qPlus
is shown in the first term of Equation (4) and the capacitance in the second term of Equation (4).
Therefore, the mechanical peak amplitude ATF

0 for the TF and AqPlus
m for the qPlus are:

ATF
m =

2αβwTF
0 QTFV0Rout

k
, (7)

AqPlus
m =

αβwqPlus
0 QqPlusV0Rout

k
, (8)

and the normalized capacitance, CTF
0 and CqPlus

0 :

CTF
0 =

C0k
2αβ

, (9)

CqPlus
0 =

C0k
αβ

. (10)
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Since wTF
0 > wqPlus

0 (Equation (5)), the peak amplitude of the TF ATF
0 is higher than that of qPlus

AqPlus
0 (i.e., ATF

0 > AqPlus
0 ). Moreover, the normalized capacitance, Equations (9) and (10), shows

CqPlus
0 = 2CTF

0 . These two features are consistently observed in experiments, as shown in Figure 3.
Although the dynamic characteristics vary by probe type (Equations (5)–(10)), we find two

intrinsic constants independent of the probe type, defined as

U1 ≡
αβRout

k
=

ATF
m /V0

2wTF
0 QTF

=
AqPlus

m /V0

wqPlus
0 QqPlus

, (11)

U2 ≡
C0k
αβ

= 2CTF
0 = CqPlus

0 . (12)

Figure 5 shows the constants U1 and U2 for the TF and qPlus, which show similar values.
This discrepancy could be attributed either to imperfect bonding between one prong of the qPlus and
the supporting wall (Figure 1b), or to the base of the qPlus partially covered with glue. While our
model is linear, the nonlinearity shown by Dagdeviren et al. [20] could be partially responsible for the
discrepancy in Figure 5; the resonance frequency of oscillating probes can change by a few hertz when
changing the oscillation amplitude by nearly two orders of magnitude. In addition, one could derive
more accurate formulas for U1 and U2 (Equations (11) and (12)) to reduce the difference. Further, a new
model incorporating a previously developed mechanical model [22–25] and our electromechanical
model could enhance the accuracy. Although the exact values of the characteristics of the qPlus
can vary depending on specifics of fabrication, the overall expected changes in the characteristics
(Equations (5)–(8)) are consistent with experimental observation (Figure 3).
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Figure 5. Two constants U1 (a, Equation (11)) and U2 (b Equation (12)) derived from the electromechanical
model (Figure 4) for the electrically driven tuning fork and the qPlus sensor. Although the qPlus and its
original bare tuning fork exhibit very different dynamic characteristics (Figure 3), the two constants U1

and U2, made of their combinations, show almost similar values for qPlus and tuning fork, as expected
from our model (Figure 4).

The present electromechanical model (Figure 4) includes the mechanical constants of the TF, that
are modeled as electrical components in the traditional model (Figure 1c), and thus our model, using
the mechanical motion of prongs, explains why the dynamic features such as peak amplitude and



Sensors 2019, 19, 2686 8 of 11

quality factor vary from TF to qPlus (Equations (5)–(8)). In addition, we modeled the quartz resonator
as the coupled motion of single particles, and the model does not describe continuum mechanics
and associated higher modes of the prongs’ motion [27], which could be important for nonlinear
multi-mode measurements [28].

4. Conclusions

In summary, we presented an electromechanical model (Figure 4) that comprehensively describes
the dynamic responses of the ED-TF and ED-qPlus. While the traditional equivalent circuit model
reproduces the experimentally observed dynamic responses, the traditional model, employing
electrical components, does not predict how the dynamic characteristics change from TF to qPlus. Based
on the mechanical motion of the two prongs of the TF, our model quantitatively predicts the changes
in peak amplitude, resonance frequency, quality factor, and the normalized capacitance from the TF to
its qPlus configuration, and we experimentally verified these changes in the dynamic characteristics.

Our model and analysis could be helpful in using the ED-TF or ED-qPlus as a quantitative
force sensor. The TF or qPlus as a force sensor requires relevant dynamic characteristics (e.g.,
quality factor) depending on environmental conditions. For example, one could use the ED-qPlus in
amplitude-modulation mode, which could enhance imaging speed with reduced quality factor with
respect to its original TF. Furthermore, one could use Equation (10) to calculate the elastic constant of
the prong, which is important for accurate force measurement [29,30].
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Appendix A

From the electromechanical model (Figure 4), the equations of motion of the two prongs and the
base are given by

m1 ẍ1 = −bẋ1 − k(x1 − xB) + F0eiwt, (A1)

m2 ẍ2 = −bẋ2 − k(x2 − xB)− F0eiwt, (A2)

mB ẍB = −bB ẋB − kBxB − k(xB − x1)− k(xB − x2), (A3)

where the motions of prongs, x1 and x2, represent the deflections of the upper and lower prongs,
respectively. For a bare TF, m1 = m2 ≡ m, the motion of two prongs exhibits the antisymmetric motion,
two prongs moving in opposite direction with same speed. Thus, the resonance frequency and the
quality factors are simply given by wTF

0 = w0 =
√

k/m and QTF = k/(bw0).
In order to obtain the motion of the qPlus, we simultaneously solve Equations (A1)–(A3) and

obtain the motion of the upper prong x1 for large m2 (i.e., m2 → ∞). Notice that in the limit of m2 → ∞,
the motion of x2 is inhibited so that the motion of upper prong x1 is also obtained by assuming x2 = 0
in Equations (A1)–(A3), which gives the same result, as follows:

AqPlus
e = Abs

[( 1

1−
kB
k +2+ bB

b Q2 +L
kB
k +1

( w
w0
)2 + i( w

w0Q

kB
k +H+1−mB

m1
kB
k +1

)

+
C0k
αβ

)αβwV0Rout

k

]
, (A4)
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with

L ≡ mB
m1

(
1− (

w
w0

)2
)

, (A5)

H ≡ bB
b

(
1− (

w
w0

)2
)

. (A6)

Here, the L and H vary with w, but they can be approximated by constants within a given
bandwidth ∆w ∼ w0/Q. Then, we can estimate the dynamic characteristics of the qPlus from
Equation (A4), such as

wqPlus
0

wTF
0
≈

√√√√ kB
k + 1

kB
k + 2 + bB

b Q2 + L
, (A7)

QqPlus

QTF ≈

√
kB
k + 1

√
kB
k + 2 + bB

b Q2 + L
kB
k + H + 1− mB

m

. (A8)

The geometrical dimensions of the prong and the base are not so different such that mB ∼ m1.
In addition, we assume the base damping bB is much larger than the damping b (see Figure 4), such
as bB/b ≥ 105. Also, we notice that 1− ( w

w0
)2 ∼ 2/Q for Q ≥ 1000 (see Figure 3b for the TF). Under

these conditions, we estimate L and H,

|L| ∼ mB
m1

2
Q
� 1, if

mB
m1
∼ 1, (A9)

|H| ∼ bB
b

2
Q

> 100, if
bB
b
≥ 105. (A10)

Using Equations (A9) and (A10) and bB
b Q2 � 1, Equations (A7) and (A8) are further

approximated as

wqPlus
0

wTF
0
≈

√√√√ kB
k + 1

kB
k + 2

, (A11)

QqPlus

QTF ≈

√
kB
k + 1

√
kB
k + 2

kB
k + H

≈
kB
k

kB
k + H

, (A12)

where we assumed the base elasticity kB is much stiffer than the prong’s elasticity k.
Equations (A11) and (A12) show that the resonance frequency wqPlus

0 and the quality
factor QqPlus of the qPlus are determined by model parameters kB/k and H. Inversely, from
Equations (A11) and (A12), one can determine the model parameters kB/k and H using the
experimentally measured resonance frequency wqPlus

0 /wTF
0 and the quality factor QqPlus/QTF

as follows:

kB
k
≈

2
(

wqPlus
0
wTF

0

)2
− 1

1−
(

wqPlus
0
wTF

0

)2 , (A13)
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H ≈ kB
k

QTF

QqPlus

(
1− QqPlus

QTF

)
. (A14)

Using experimentally measured quantities such as wqPlus
0 /(2π) = 32, 420.9 Hz, wTF

0 /(2π) =

32, 756.5 Hz, QqPlus = 959, and QTF = 4675 (Figure 3, ED-TF A), we obtain kB/k = 47 and H =

182. Notice that the assumption in Equation (A10), H ≥ 100, and kB/k > 10 in Equation (A12)
are reproduced.

The qPlus configuration could be also obtained by a large value of k of the spring connecting m2.
In that condition, the mass m2 moves along with mB, and thus both mB and m2 behave as one body
with mB + m2. The coupled motions of the upper prong with mass m1 and the effective base with
mB + m2 determine the qPlus characteristics such as wqPlus

0 and QqPlus. Here, the effective base mass
mB + m2 is not so different from the original mass of the base mB, since mB ∼ m2 = m1 (Equation (A9)).
Note that in the case of the qPlus obtained by m2 → ∞, the dynamic characteristics wqPlus

0 and QqPlus

are determined by the coupled motions of the upper prong with mass m1 and the base with mB,
in which the interactions made by kB and bB dominate over the interaction by the spring connecting
m2, that is, kB/k ∼ 10 and also bB/b ∼ 105, as shown earlier. Therefore, whether a qPlus is made by
m2 → ∞ or by a large value of k of the spring connecting m2, the dynamic characteristics are almost
the same. This feature is also predicted by Equations (A11) and (A12), where they do not include the
mass information of the prong and the base.
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