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Abstract: Cultivation substrate water status is of great importance to the production of netted
muskmelon (Cucumis melo L. var. reticulatus Naud.). A prediction model for the substrate water
status would be beneficial in irrigation schedule guidance. In this study, the machine learning random
forest model was used to forecast plant substrate water status given the phenotypic traits throughout
the muskmelon growing season. Here, two varieties of netted muskmelon, “Wanglu” and “Arus”,
were planted in a greenhouse under four substrate water treatments and their phenotypic traits were
measured by taking the images within the visible and near-infrared spectrums, respectively. Results
showed that a simplified model outperformed the original model in forecasting speed, while it only
uses the top five most significant contribution traits. The forecast accuracy reached up to 77.60%,
94.37%, and 90.01% for seedling, vine elongation, and fruit growth stages, respectively. Combining
the imaging phenotypic traits and machine learning technique would provide a robust forecast of
water status around the plant root zones.

Keywords: muskmelon; phenotype; random forest algorithm; cultivation substrate water
status; forecasting

1. Introduction

Netted muskmelon (Cucumis melo L. var. reticulatus Naud.) is a popular fruit in the fresh market
due to its unique netted patterns, esthetically pleasing shape, high sugar content, and good taste, which
makes netted muskmelon a widely planted fruit among growers worldwide. Currently, there are more
than 460,900 hectares of netted muskmelon planted each year [1].

Growing netted muskmelon requires strict cultivation conditions and complex management
strategies, particularly for the water status in the cultivation substrate [2,3]. Inadequate substrate water
status would lead to yield loss, poor quality, low sugar content, and unaesthetic netted patterns [4–6].
Dogan et al. [7] discovered that cultivation substrate water content serves as a critical factor influencing
sugar accumulation and specifically netted patterns formation. Therefore, it is necessary to regulate
and control the substrate water content throughout all growing stages of netted muskmelon for quality
improvement considerations.

Root zone water status is the moisture situation of plant root and is highly correlated to plant
growing status [8]. Monitoring the substrate water status of plant root zone could help to establish an
effective management strategy of precise irrigation in crop production. Several commercialized soil
moisture sensors, such as tensiometer, neutron probes, and time domain reflectometry probes have
been widely used in pot planting but they are limited in detecting the substrate water status because of
the high cost and unreliable data collection. Furthermore, one probe only reflects the substrate water
content of a single point rather than the water statuses of different pots [9–11].
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With the development of sensing technology, real-time monitoring of physiological and ecological
information of the plant itself provides an approach to indicate root zone water status [12]. Many
studies have showed that the phenotypic traits of plant can reflect the water content of plants [13–16].
Phenotypic traits such as leaf area, leaf angle, and thermal temperature show strong correlations with
the root zone water status [17]. Moreover, with the development of plant phenotypic monitoring
technologies, now it is viable to carry out automatic high-throughput monitoring without damaging the
plants, thus quickly acquiring the phenotypic traits and remarkably shortening the test cycle [18–20].
However, most of the plant-based irrigation methods are still at research/developing stage and
little used yet for practice (except for thermal sensing in some situations). Systematical research on
phenotypic traits selection for irrigation has seldom been reported.

A rapid and precise data analysis method is needed for plant-based information acquisition.
The application of machine learning algorithm could be the solution. It is by easy data preparation,
low computation complexity, fewer input factors, and availability to handle uncorrelated characteristics
provides a solution for higher model forecast accuracy and better model adaptability [21]. Therefore,
this algorithm can meet the need of high-throughput real-time monitoring. At present, many modern
agricultural management technologies, such as agricultural internet of things (IOT) decision-making
system [22], agricultural information construction, identification of crop diseases [23], and yield
forecast [24], etc., have been created in aid with machine learning algorithm. Many studies have
reported plant stress phenotyping using machine learning and prediction of plant water status, but few
have focused on phenotyping root zone water stress [25,26]. It is crucial to detect plant water stress
at the early stage before any damage observed with visible wilting, which affect subsequent plant
growth and quality. Correlating root zone water status with plant phenotype to supervise irrigation
system could be a practical way in precision irrigation system with easy operation and quick response.
However, machine learning modeling in analyzing the phenotypic trait of greenhouse crops and
judging their root zone water environment has seldom been used.

In this study, we obtained the phenotypic traits of greenhouse netted muskmelon by
high-throughput phenotypic monitoring technology and built a classification forecast model for
the water status of the netted muskmelon cultivation substrate using the random forest algorithm.
The substrate water status of netted muskmelon at different growth stages can be determined in time,
which offers a novel solution for the real-time irrigation of muskmelon.

2. Materials and Methods

2.1. Materials and Treatments

Experiment I was conducted in the greenhouse of Shanghai Zealquest Technology Co., Ltd,
China (GPS coordinate: 31◦11′N, 121◦36′E) from April to July in 2016. The experiment II as model
validation was conducted in a multiplan greenhouse at Shanghai Jiaotong University, China (31◦11´ N,
121◦36´E) from August to November in 2016, and the glasshouse heating, ventilation, and internal and
external shading were all automatically regulated by Priva Software (Priva Company, Zuid Holland,
the Netherlands) in these two experiments. Two cultivars of netted muskmelon, “Wanglu” with dense
nettings and “Arus” with sparse nettings, were used in these two experiments. The muskmelon
seedlings were first cultivated in plug at greenhouse, and then transplanted to pots at two-leaf and
one-half stage. The muskmelons were vertically planted in pots with a total volume of 16 L of substrate
containing 2:2:2:1 mixture of meteorite/perlite/peat/organic fertilizer. The bulk density and saturated
water content were 0.21 g/mL and 140%, respectively.

For considering the feasibility of moisture level control and plant growth after transplanting, four
relative water content levels were applied to these two experiments. The four water treatments with
alternating 20%~35% relative water content (RWC), 35%~50% RWC, 50%~60% RWC, and 60%~70%
RWC at seedling stage, 30%~40% RWC, 40%~50% RWC, 55%~70% RWC, and 70%~85% RWC at vine
elongation stage, and 35%~45% RWC, 45%~55% RWC, 55%~65% RWC, and 65%~80% RWC at fruit
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development stage (Figure 1). Substrate water status was measured by the relative water content that
was the percent of volumetric water content comparing to field water capacity. Due to the dynamic
change of root zone moisture status, an upper limit was set for the moisture level of root zone. In
other words, irrigation was stopped when the root zone moisture reached the upper limit. In this
study, a Soil-watch Multi-parameter Monitoring System (Soil-Watch, Washington, USA) was used
to measure the relative water content of root zone (%). Five plants of each cultivar were randomly
assigned to every treatment. Irrigation was conducted manually for all plants once a day according to
the monitoring system.
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Figure 1. Substrate relative water content (%) in four treatments at three growing stages of muskmelon.
T1: 20%~35% relative water content (RWC) at seedling stage, 30%~40% RWC at vine elongation stage,
and 35%~45% RWC at fruit development stage. T2: 35%~50% RWC at seedling stage, 40%~50% RWC at
vine elongation stage, and 45%~55% RWC at fruit development stage. T3: 50%~60% RWC at seedling
stage, 55%~70% RWC at vine elongation stage, and 55%~65% RWC at fruit development stage. T4:
60%~70% RWC at seedling stage, 70%~85% RWC at vine elongation stage, and 65%~80% RWC at fruit
development stage.

2.2. Image Acquisition and Trait Extraction

A commercial phenotyping system (Scanalyzer 3D, LemnaTec GmbH, Würselen, Germany) was
used for image acquisition (Figure 2), and imaging was performed every three days during the whole
growth period for experiment I and every week for experiment II. At each imaging day, a total of
40 potted plants were placed at a fixed position under certain lighting conditions in an imaging room,
where the light background was consistent and obtained stable color values, and two types of image
were acquired simultaneously. Phenotypic images taken within the visible and near-infrared spectrums
(Figure 3) were collected from both the top and sides of these plants. A total of 2160 images were
collected during the experiment I and 960 images during the experiment II.

Sensors 2019, 19, x 3 of 12 

 
Sensors 2019, 19, x; www.mdpi.com/journal/sensors 

RWC at fruit development stage (Figure 1). Substrate water status was measured by the relative water 
content that was the percent of volumetric water content comparing to field water capacity. Due to 
the dynamic change of root zone moisture status, an upper limit was set for the moisture level of root 
zone. In other words, irrigation was stopped when the root zone moisture reached the upper limit. 
In this study, a Soil-watch Multi-parameter Monitoring System (Soil-Watch, Washington, USA) was 
used to measure the relative water content of root zone (%). Five plants of each cultivar were 
randomly assigned to every treatment. Irrigation was conducted manually for all plants once a day 
according to the monitoring system. 

 
Figure 1. Substrate relative water content (%) in four treatments at three growing stages of 
muskmelon. T1: 20%~35% relative water content (RWC) at seedling stage, 30%~40% RWC at vine 
elongation stage, and 35%~45% RWC at fruit development stage. T2: 35%~50% RWC at seedling stage, 
40%~50% RWC at vine elongation stage, and 45%~55% RWC at fruit development stage. T3: 50%~60% 
RWC at seedling stage, 55%~70% RWC at vine elongation stage, and 55%~65% RWC at fruit 
development stage. T4: 60%~70% RWC at seedling stage, 70%~85% RWC at vine elongation stage, 
and 65%~80% RWC at fruit development stage. 

2.2. Image Acquisition and Trait Extraction 

A commercial phenotyping system (Scanalyzer 3D, LemnaTec GmbH, Würselen, Germany) was 
used for image acquisition (Figure 2), and imaging was performed every three days during the whole 
growth period for experiment I and every week for experiment II. At each imaging day, a total of  
40 potted plants were placed at a fixed position under certain lighting conditions in an imaging room, 
where the light background was consistent and obtained stable color values, and two types of image 
were acquired simultaneously. Phenotypic images taken within the visible and near-infrared 
spectrums (Figure 3) were collected from both the top and sides of these plants. A total of  
2160 images were collected during the experiment I and 960 images during the experiment II.  

 

 
(a) 

Figure 2. Cont.



Sensors 2019, 19, 2673 4 of 13Sensors 2019, 19, x 4 of 12 

Sensors 2019, 19, x; www.mdpi.com/journal/sensors 

(a) 

(b) 

(c) 

Figure 2. (a) Test site of plant cultivation, (b) automatic plant conveyors system, (c) Lemnatec 3D 
phenotyping system. 
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Figure 3. Muskmelon images acquired by Scanalyzer 3D (Lemna, Würselen, Germany) within visible
(a) and near-infrared (b) spectra. From left to right of each panel were the images at seedling stage,
vine elongation stage, and fruit development stage, respectively.

Phenotypic image processing steps (Figure 4) and image processing procedure in LemnaGrid
consisted of four main steps shown as the flowchart in Figure 5: (1) image preprocessing, extracting
target images from LemnaBase; (2) segmentation, separating target plant from the background in the
image; (3) feature extraction, analyzing segmentation result and producing phenotypic traits; and (4)
post-processing, summarizing feature extraction results of all target images and exporting as “.xls” file.
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2.3. Model Development of Substrate Water Status

The development of substrate water status discrimination was consisted of three steps: (1) data
preprocessing, data cleaning, data conversion, organizing data for phenotypic analysis; (2) phenotypic
traits screening, removing those phenotypic traits with insignificant difference between treatments of
substrate moisture level; (3) model development, using random forest modeling algorithms to classify
substrate water status. MetaboAnalyst statistical analysis module (http://www.metaboanalyst.ca)
was implemented for data preprocessing and phenotypic traits screening, and R language (windows,
3.3.3 version, R core Team, 2016) was implemented for model development.

http://www.metaboanalyst.ca
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2.4. Data Preprocessing

In MetaboAnalyst statistical analysis module, data of extracted phenotypic traits from each image
were organized into one datasheet by sample number (row) and phenotypic trait (column). Columns
with more than 50% empty cells were removed. In the case of columns with data missing but less than
50% empty cells, the value of these cells were replaced by with a small value (the half of the minimum
positive values in the original data). All the trait values were normalized using an autoscaling method
(mean-centered and divided by the standard deviation of each variable) [12].

2.5. Phenotypic Traits Screening

Among those phenotypic traits extracted by imaging processing, traits which are insignificantly
relevant to treatments may influence the modeling accuracy. In this study, one-way analysis of
variance (ANOVA) was applied to screen traits resulting an optimal set of explanatory variables for
discrimination model development. Traits with P > 0.05 (Fisher’s LSD method) were excluded from
the traits set. In addition, the result of ANOVA presented a preliminary overview of the significance of
each trait to treatments [12].

2.6. Model Development and Forecast Ability Assessment

Random forest is an ensemble classifier that consists of many decision trees and outputs the class
that is the mode of the class’s output by individual trees. Random forest algorithm was developed by
Leo Breiman [27], boasting the advantages in big data processing of excellent performance in datasets,
resistance to overfitting, good noise immunity, and strong adaptability to datasets, fast training speed,
easy realization, among others.

A random forest (RF) algorithm has two parameters, the number of decision-making trees (ntree)
and the number of features that are used to find the best features (Mtry). In the experiment, Mtry = 1, 2,
5, 8 and ntree = 500 were tested for benchmarking the RF models with the highest prediction accuracy.
The random forest package of R language [28] was used for modeling, and the model adopted the
10-fold cross validation that has been repeated for three times for the training.

The total samples of experiment I were selected as the training dataset for model development
and optimization and the experiment II as the test dataset. The data processing was used the IBM SPSS
statistics 20 and the self-compiled script in R language version 3.3.3 (R Core Team). Data mining and
standardization were implemented with the statistical and analytical modules of MetaboAnalyst 3.0
software(https://www.metaboanalyst.ca/). ConfusionMatrix. Train function was used to assess forecast
ability of the random forest model, and the mean value of forecast accuracy for cultivation substrate
water content for all growing stages was obtained.

3. Results

3.1. Subsection

3.1.1. Extraction of Phenotypic Traits

There were 2160 images captured at different growth stages throughout the experiment, and
29 traits of three categories were extracted (Figures 3–5 and Table 1). These traits include 9 morphological
traits and 6 color traits, 14 near-infrared feature traits, which were acquired from visible and
near-infrared spectrums, respectively.

https://www.metaboanalyst.ca/
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Table 1. Phenotypic traits extracted from collected images of muskmelon.

Trait No. Description

Difference among Four Water Treatments 1

Seedling Stage
Vine

Elongation
Stage

Fruit
Development

Stage

Morphology
Projection area 1 Area of plant projection (mm2) * * *

Object Extent X 2 Minimum width of plant projection (mm) * * *

Object Extent Y 3 Minimum height of plant projection (mm) * * *

DBX area 4 Minimum external polygonal area of plant
projection (mm2)

* * *

Convex hull
circumference 5 mm * * *

Diameter 6 Circumscribed circle diameter of plant
projection (mm) NS * *

Min rectangle area 7 Minimum external rectangle area of plant
projection (mm2)

* * *

Compactness 8 Square of the object perimeter to object area NS * *

Eccentricity 9 The ratio of the distance between the foci to
the length of the major axis NS * *

Invisible light

Mean blue index 10 Mean blue index of muskmelon image within
RGB color space NS * *

Variance of mean
blue index 11 Variance of mean blue index of muskmelon

image within RGB color space NS * *

Mean green index 12 Mean green index of muskmelon image
within RGB color space

* * NS

Variance of mean
blue index 13 Variance of mean green index of muskmelon

image within RGB color space
* * *

Mean red index 14 Mean red index of muskmelon image within
RGB color space

* * *

Variance of mean
red index 15 Variance of mean red index of muskmelon

image within RGB color space NS * *

Near-infrared
(NIR)

A1 16 Number of plant pixels with NIR intensity in
122–138 NS * *

R1 17 Ratio of plant pixels with NIR intensity in
122–138 NS * *

A2 18 Number of plant pixels with NIR intensity in
154–170

* * *

R2 19 Ratio of plant pixels with NIR intensity in
154–170

* * *

A3 20 Number of plant pixels with NIR intensity in
170–186

* * *

R3 21 Ratio of plant pixels with NIR intensity in
170–186 NS * *

A4 22 Number of plant pixels with NIR intensity in
186–202

* * *

R4 23 Ratio of plant pixels with NIR intensity in
186–202

* * *

A5 24 Number of plant pixels with NIR intensity in
202–218

* * *

R5 25 Ratio of plant pixels with NIR intensity in
202–218

* * *

A6 26 Number of plant pixels with NIR intensity in
218–234

* * *

R6 27 Ratio of plant pixels with NIR intensity in
218–234

* * *

A7 28 Number of plant pixels with NIR intensity in
234–250

* * *

R7 29 Ratio of plant pixels with NIR intensity in
234–250

* * NS

1, the underlined *, *, indicates the trait used in simplified random forest model. ”NS” means no significant diffrences.
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3.1.2. Analysis of Phenotypic Traits

Phenotypic data were analyzed by one-way analysis of variance (ANOVA). As shown in Table 1,
at the seedling stage, 9 traits (diameter, compactness, eccentricity, mean blue, mean color blue variance,
and mean color red variance, A1(Number of plant pixels with NIR intensity in 122–138), R1(Ratio
of plant pixels with NIR intensity in 122–138) and R3(Ratio of plant pixels with NIR intensity in
170–186) showed no significant differences among four water treatments. At the fruit development
stage, only two traits, mean color green and R7(Ratio of plant pixels with NIR intensity in 234–250),
had no significant difference. At the vine elongation stage, all traits showed significant differences, and
three traits, B6(Ratio of plant pixels with NIR intensity in 218–234), B3 (Ratio of plant pixels with NIR
intensity in 170–186) and diameter, had the largest F-value among all treatments.

3.1.3. Machine Learning Modeling and Forecast Ability Assessment of Phenotypic Traits

Further, the traits showing significant difference (P < 0.05) were standardized and imported to
machine learning model, which included 18 traits at the seedling stage, 29 traits at the vine elongation
stage, and 27 traits at the fruit development stage. Then, a random forest classification model was
created to forecast cultivation substrate water content (Table 2). The forecasting accuracy from traits
at seedling stage, vine elongation stage, and fruit development stage were 78.5%, 95.7%, and 99.5%,
respectively. Among three growing stages of muskmelon, forecasting accuracy of random forest model
at fruit development stage was the highest, while it took the longest forecast time costing 136.16 s due
to input of a large number of traits.

Table 2. Random forest model parameters at the three growing stages of muskmelon.

Stage

Random Forest Model
Original Simplified

Mtry Accuracy
(%) Kappa Time-Consuming (s) Mtry Accuracy

(%) Kappa Time-Consuming
(s)

Seedling stage 2 78.50 0.710 31.08 2 77.60 0.698 12.88
Vine elongation stage 5 95.70 0.941 136.16 5 94.40 0.922 17.44

Fruit development
stage 5 99.50 0.993 30.46 1 90.00 0.846 11.14

Confusion matrix was implemented to validate the developed models, and the average forecast
accuracies of cultivation substrate water contents for all growing stages were obtained (Table 3). Among
three growing stages of muskmelon, the lowest forecast accuracy of substrate water content was at
seedling stage given the phenotypic traits, which was 78.48%, while the highest forecast accuracy was
obtained at fruit development stage based on the phenotypic trait data, which reached up to 99.55%.
Also, the forecast accuracy based on traits at vine elongation stage reached up to 95.74%. All the
accuracies from three growing stages could meet the needs of predicting substrate water content. The
lowest forecast accuracy at seedling stage might be due to the less traits with significant difference
among four water treatments.



Sensors 2019, 19, 2673 9 of 13

Table 3. Forecasting accuracy of substrate water content using Confusionmatrix.train function in
random forest model at three growing stages of muskmelon.

Stage Random Forest Model

Original Simplified

Seedling stage
T1 20.5 1.2 0.6 1.2 19 1.5 1.8 2.7
T2 2.1 16.4 2.4 1.2 1.5 15.8 2.7 2.4
T3 2.4 0.3 25.9 4.2 2.4 0.3 25.9 4.2
T4 0.0 2.7 3.3 15.8 0.0 2.7 3.3 15.8

Mean 0.785 0.776
Vine elongation stage

T1 9.8 0.8 0.0 0.0 9.8 1.0 0.0 0.0
T2 0.3 24.6 0.4 0.0 0.3 24.0 1.1 0.2
T3 0.7 0.7 29.6 0.5 0.7 0.7 28.8 0.5
T4 0.0 0.5 0.3 31.8 0.0 0.7 0.5 31.6

Mean 0.957 0.944
Fruit development stage

T1 - - - - - - - -
T2 - 24.0 0.5 0.0 - 17.6 3.7 0.0
T3 - 0.0 40.6 0.0 - 6.4 37.4 0.0
T4 - 0.0 0.0 34.9 - 0.0 0.0 34.9

Mean 0.995 0.900

-, not fruit set on the plant due to drought. Data were mean value of forecasting accuracy using three 10-fold
crosscheck validation.

3.1.4. Trait Contribution Analysis and Model Simplification

In order to check the possibility of reducing phenotyping cost and model training time but
without substantially decreasing the prediction accuracy, a sensitivity analysis was conducted to assess
the contribution of each trait in the developed models. A simplified model with less explanatory
variables was developed based on the contribution evaluation of traits for the model implemented
in substrate water status detection. At the seeding stage of muskmelon, the top five most significant
contribution traits for random forest modeling were the projection area, the number of plant pixels with
near-infrared (NIR) intensity in 170–186 (A3), the number of plant pixels with NIR intensity in 186–202
(A4), the number of plant pixels with NIR intensity in 202–218 (A5), and the ratio of plant pixels with
NIR intensity in 218–234 (R6). The top five most significant contribution traits at vine elongation
stage refer to the minimum height of plant projection (min height), the convex hull circumference,
the circumscribed circle diameter of plant projection (diameter), the number of plant pixels with NIR
intensity in 122–138 (A1), and the ratio of plant pixels with NIR intensity in 170–186 (R3). However, the
top five most significant contribution traits were all morphology traits at fruit development stage, and
they were the minimum width of plant projection (min height), the minimum external polygonal area
of plant projection (min EP projection area), the convex hull circumference, the circumscribed circle
diameter of plant projection (diameter), and the minimum external rectangle area of plant projection
(min rectangle area) (Table 1). Thus, the top five traits in terms of contribution values were used in the
simplified random forest modeling (Table 1), and they are varied among different growth stage models.
Although the model was simplified, the forecasting accuracy of substrate water content remains high
value for all the three growing stages of muskmelon.

Confusion matrix was implemented to validate the simplified random forest model. Results
showed that the mean value of forecasting accuracy for cultivation substrate water content decreased
by 0.90%, 1.30%, and 9.50% at seedling stage, vine elongation stage, and fruit development stage,
respectively (Table 3). Although the forecasting accuracy had a little decline, it still meets the needs for
forecasting of substrate water content in real practice.
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4. Discussion

This study developed a forecast method of substrate water status during plant growth by
integrating phenotyping and machine learning techniques, and using muskmelon plants. Different
phenotyping traits were from three growth stages and two muskmelon cultivars, three types of
phenotyping traits, such as morphological traits, color traits, and near-infrared traits, were acquired as
the inputs for the model. The model had high accuracy at three different stages, with the highest value
as 94.37% at vine elongation stage, but the contribution of phenotyping traits to the model were varied
among the three growth stages.

At the seedling stage of muskmelon, almost all the traits that are sensitive to water status and
have a significant contribution value to random forest model are related to image-gray-level and can be
acquired by near-infrared monitoring. Therefore, it can be concluded that under all water treatments,
the morphology differences among muskmelons are too minor to be easily captured by the sensor,
while the difference in image-gray-level under near-infrared monitoring was significant. This result
is consistent with the findings by Chen et al. [29] and Story and Kacira [21] that the changes of leaf
cell demonstrate the powerful reflectivity within the near-infrared region, and are consistent with
the research results by Yang et al. [30] and Buddenbaum et al. [31] that indicated the NIR has the
potential to provide for rapid, non-destructive assessment of the leaf water potential in plant seedlings.
Therefore, forecasting of the plant substrate water status can be implemented through the near-infrared
image data at seedling stage of muskmelon, but cannot be implemented at the other two growth stages.

The traits that were sensitive to the substrate water status and contributing a significant value to
the random forest model are nearly all morphology traits at fruit development stage. This indicates that
water has a significant effect on the morphology traits of melon, whose morphology traits contribute
greatly to the random forest model. Therefore, it is possible to forecast the substrate water status by
using the morphology traits at the fruit development stage. At the vine elongation stage, most of the
sensitive traits refer to morphology and near-infrared spectrum traits. This result is consistent with the
findings reported in the area of spectroscopy and remote sensing imaging, such as Möller et al. [28],
Veysi et al. [32], Shivers et al. [33], Chen et al. [34], and Chen et al. [35], that the water stress and canopy
water status of field crop can be effectively monitoring using optical imaging technology.

This study demonstrates the potential of the machine learning approach in forecasting the substrate
water status based on complex plant phenotyping traits. This method could promote the plant-based
irrigation decision-making and implementation in practice. Therefore, the accumulative effect of water
stress on plant growth during the growing period should be minimized with real-time discrimination to
control the potential yield loss. Our presented work is capable of serving as a basis and supporting for
intelligent greenhouse management, especially for irrigation management. Population phenotyping
and water status discrimination are also worth further study due to plant canopy mutual occlusion
and growth competition. In this study, plant images and other phenotypic traits were taken under
controlled light and background colors to ensure prediction consistency. In real practice, however, the
lighting condition and background color are not as consistent, which impose severe interferences for
the image acquisition consistency. Therefore, further research with on-site traits collection is needed.

5. Conclusions

In this study, the cultivation substrate water status of greenhouse muskmelon at different growing
stages were predicted based on melon morphology, color, and near-infrared feature traits as the input
parameters for the random forest classification model. Prediction reached high speeds of 12.88, 17.44,
and 11.14 s and high accuracies of 77.60%, 94.36%, and 90.01% at the seedling, vine elongation, and
fruit development stages, respectively. The melon root rhizosphere water status of substrate can be
forecasted through the minor changes of muskmelon phenotypic trait, thus providing a solution to the
limited probe sensors monitoring area, instable data, and weak instantaneity. Therefore, phenotypic
imaging combining machine learning modeling can effectively forecast the substrate water status of
muskmelon at different growing stages. This demonstrates that monitoring plant phenotypic traits



Sensors 2019, 19, 2673 11 of 13

can be used to determine substrate water status, and the forecast of substrate water status can be
implemented with random forest model.
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