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Abstract: The pixel-based adaptive segmenter (PBAS) is a classic background modeling algorithm
for change detection. However, it is difficult for the PBAS method to detect foreground targets
in dynamic background regions. To solve this problem, based on PBAS, a weighted pixel-based
adaptive segmenter named WePBAS for change detection is proposed in this paper. WePBAS uses
weighted background samples as a background model. In the PBAS method, the samples in the
background model are not weighted. In the weighted background sample set, the low-weight
background samples typically represent the wrong background pixels and need to be replaced.
Conversely, high-weight background samples need to be preserved. According to this principle,
a directional background model update mechanism is proposed to improve the segmentation
performance of the foreground targets in the dynamic background regions. In addition, due to the
“background diffusion” mechanism, the PBAS method often identifies small intermittent motion
foreground targets as background. To solve this problem, an adaptive foreground counter was added
to the WePBAS to limit the “background diffusion” mechanism. The adaptive foreground counter can
automatically adjust its own parameters based on videos’ characteristics. The experiments showed
that the proposed method is competitive with the state-of-the-art background modeling method for
change detection.

Keywords: change detection; weighted sample; background model update mechanism; adaptive
foreground counter

1. Introduction

In many computer vision applications such as video surveillance [1], object tracking [2,3], optical
motion capture [4], and anomaly identification [5], precise change detection (also referred to as
foreground segmentation in some works) is a very important step. Change detection is a binary
classification problem. In this problem, the algorithm needs to divide the pixels in each frame into
foreground or background. In change detection, background modeling is a very common method.
The general idea of a background modeling method is to construct a reliable reference model of
the background, and then find the difference between the current frame and the background model.
A location with significant difference can be regarded as the foreground, and the rest of the image as
the background. Foreground objects are generally moving targets. However, not all moving objects
are foreground objects, such as swaying trees. At the same time, not all stationary objects belong to the
background, such as vehicles that are temporarily stationary because of a red traffic light.

The most important step in the background modeling method is the process of extracting the
background representation in a video with various real environments. If the background is stationary,
an effective background model is very easy to obtain. The single Gaussian background model [6] is the
preferred method for dealing with single-modal backgrounds. But in the real world, the background
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often contains tiny movements. So, the background usually has multiple modes. Stauffer and
Grimson et al. [7] use the Gaussian Mixture Model (GMM) to deal with multi-modal backgrounds
in 1999. In the GMM, a background is represented by a set of weighted Gaussian distributions.
Each Gaussian distribution can represent one modality of the background. Because the GMM [7]
cannot adaptively adjust its own parameters, Zivkovic [8] later developed an improved adaptive
Gaussian Mixture Model. The method in paper [8] can automatically choose the appropriate number
of Gaussian distributions. The method in paper [9] can adaptively learn the learning rate parameters
of the Gaussian model using a set of random samples which were recently observed. Due to the
effectiveness of the GMM, many background modeling methods have been implemented based on
it [10,11]. However, the algorithms based on GMM are computationally expensive because they need to
calculate the mean and variance of all Gaussian distributions in each frame. The GMM-based algorithms
generally reduce the number of modalities in the background model in order to reduce computational
costs. But this also reduces the confidence of the background model. Furthermore, Barnich [12] found
that many natural images exhibit non-Gaussian statistics feature. All of the above algorithms can be
called the background modeling method based on probability distribution function (PDF).

To solve these problems, in recent years, sample-based background modeling methods have
become popular. A typical feature of these methods is to directly use the current image sample as
the background model. In the background update phase, these methods directly replace the samples
of the background model with pixel samples. Sample-based background modeling methods do not
have parameters such as mean and variance, which simplifies the calculation. At the same time,
the mechanism of using pixel samples as a background model can effectively process background
pixels with non-Gaussian statistical characteristics.

The following is a brief introduction to some sample-based background modeling methods.
Wang and Hanzi [13] proposed a consensus-based algorithm, referred to as SACON. In this method,
the background model is defined by the N most recently observed pixel values. N is the number of
the samples of the background model. In model updating, SACON replaces the oldest background
model pixel value with the latest observed pixel value. This update mode is called “first in, first out”
strategy. The “first in, first out” strategy ensures that the background model can be updated in time.
However, there is no evidence to suggest the oldest background model is the least reliable. Later, Barnich
and Olivier [12] created the ViBe method. Unlike SACON’s background update strategy, ViBe uses
a random update mechanism. That means the background samples to be updated are randomly
chosen. In addition, a randomly selected neighbor pixel will be “learned” into the background model
(called “background diffusion” in the approach). As before, the updated background samples are
randomly selected. The ViBe algorithm has achieved great success both in terms of running speed
and detection performance. Based on the ViBe algorithm, the PBAS algorithm [14] and the SuBSENSE
algorithm [15] were born. Both algorithms can adaptively adjust their own two key parameters:
distance threshold and learning rate. But ViBe’s “random update” mechanism is not changed in the
two methods. Due to the influence of the “random update” mechanism, the algorithm inevitably
replaces the correct background samples with the fake ones. To alleviate this adverse effect, the PBAS
algorithm and the SuBSENSE algorithm have to increase the number of background samples of
the model. Subsequently, in paper [16], Jiang discussed weighted samples in the ViBe algorithm,
and carried out an experiment on the SuBSENSE algorithm [15]. The experiment finally got good
results. In [16], the algorithm used always updates the background model with the smallest weight
when it executes a background model’s update. However, some low-weight background samples may
be the background which is occluded by the temporarily stationary foreground targets. In the same
year, Zhong et al. [17] introduced the mechanism of foreground counter to improve the performance of
PBAS method in an intermittent object motion scene. However, in the paper [17], the behavior of using
different manually adjusted parameters of the foreground counter for different videos obviously does
not meet the requirement of uniform parameters. At the same time, the introduction of a foreground
counter also reduces the detection effect in dynamic background scenes.
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In the last few years, with the development of deep learning, methods of processing change
detection with Convolutional Neural Networks (CNN) began to appear [18–20]. The CNN-based
change detection methods generally perform better than PDF-based or sample-based background
modeling methods. However, since the CNN-based change detection methods are of supervised
machine learning methods, they need a lot of labeled training sample data. Besides, training CNN
requires some hardware support and a lot of time. More seriously, some CNN-based change detection
methods can only handle specific scenarios [18]. In contrast, PDF-based and sample-based background
modeling methods do not have this problem. Due to the inflexibility of CNN-based methods,
the WePBAS method is not compared with them in the experimental part.

The main contributions of this paper are summarized below:

1. The concept of weighted background samples is introduced to build a more reliable background
model. Based on weighted background samples, a directional background model updating
mechanism is proposed. The mechanism consists of two parts. One is a minimum weight
updating strategy, which is used to remove background samples with the minimum weight in the
background model. The other is a shortest matching distance updating strategy, which is used
to fine-tune the background model. The mechanism can effectively improve the segmentation
performance of the foreground targets in dynamic background regions.

2. An adaptive foreground counter is proposed to prevent “background diffusion” mechanism
from reducing the detection performance of small intermittent moving targets. The validity
of foreground counter has been fully demonstrated in [17], where the authors use different
parameters that are manually set for each video. In contrast, the proposed adaptive foreground
counter is able to automatically adjust the counter parameters according to videos’ characteristics.

The WePBAS is tested on the data sets CDnet2012 and CDnet2014 provided by the Change
Detection Challenge website [21,22]. These data sets contain test videos of challenging scenarios in
a large number of real-world. The WePBAS has shown great progress compared to the PBAS algorithm,
and it is competitive with most state-of-the-art methods.

The rest of this article is organized as follows. In Section 2, the proposed method is described in
detail. In Section 3, the specific values of the parameters used in the proposed method are discussed.
The final experimental results of the proposed method are also presented and compared with other
algorithms. In Section 4, the progress and shortcomings of the WePBAS are discussed

2. The Proposed Method

2.1. The Pixel-Based Adaptive Segmenter Method

The pixel-based adaptive segmenter (PBAS) [14] method is based on the ViBe [12] method which
cannot adaptively adjust two important parameters: the distance threshold and the learning rate.
This limits the capabilities of the ViBe method. The PBAS method changes this. Firstly, it records
the value of the minimum matching distance between the pixel and its background model which is
recorded as dmin. The algorithm continuously records dmin for the latest N frames. Then PBAS method
calculate the means of dmin, recorded as dmin. Finally, the method uses dmin to update the distance
threshold and the learning rate in each frame (Equations (5) and (6)). The process diagram of the PBAS
algorithm is shown in Figure 1.

In the PBAS method, the background model is defined as

B(xi)=
{
B1(xi) , B2(xi), . . . , BN(xi)

}
, (1)

where xi means the i-th pixel, and Bk(xi) means the pixel’s k-th background sample of B(xi).
The background model contains N background samples to represent multiple modalities of the
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background. B(xi) is initialized by the N pixel values that are firstly observed by the algorithm. N is a
fixed constant in the PBAS method. B j(xi) consists the pixel’s value v j(xi), gradient value m j(xi):

B j(xi) =
{
v j(xi), m j(xi)

}
, j = 1, 2, . . . , N (2)

The foreground segmentation mask is calculated as:

F(xi) =

{
1, #

{
dist(xi, Bk(xi)) < R(xi)

}
< #min

0, else
(3)

where F = 1 means foreground, otherwise background. Bk(xi) denotes the k-th sample in the background
model. #{...} denotes the number of the background samples which satisfy the condition in the brackets.
dist(xi, Bk(xi)) for each channel is calculated as follows:

dist(xi, Bk(xi)) = |v(xi) − v j(xi)|+ (c/Im) ∗ |m(xi) −m j(xi)| (4)

where c is a fixed parameter. Im is the mean of the gradient values of all pixels in the previous frame.
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Figure 1. Overview of the pixel-based adaptive segmenter (PBAS) method.

In Equation (3), R(xi) denotes xi’s distance threshold. R(xi) needs to automatically adjust as follows:

(xi) =

{
R(xi) ∗ (1−Rinc/dec), if R(xi) > dmin ∗Rscale
R(xi) ∗ (1 + Rinc/dec), else

(5)

where Rinc/dec and Rscale are fixed parameters in PBAS. R_lower is the lower bound of R(xi). In PBAS,
R_lower is a fixed parameter which is set to 18. The other parameter is learning rate T(xi). The PBAS
method defines the updating rules of T(xi) as follows:

T(xi) =

 T(xi) + Tinc/dmin(xi), if F(xi) = 1
T(xi) − Tdec/dmin(xi), if F(xi) = 0

(6)

where Tinc and Tdec are fixed parameters. The update speed of the background model is inversely
related with T(xi). The range of T(xi)’s variation is specified by the PBAS method to prevent the
background model from being updated too quickly or too slowly.
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2.2. The Proposed Method

The process diagram of the proposed method is shown in Figure 2. In this section, we explain
in detail the similarities and differences between our WePBAS algorithm and PBAS algorithm.
The segmentation decision, background model update mechanism, preprocessing, and reinitialization
part of the WePBAS are introduced in this section.
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Figure 2. Overview of the proposed method.

2.2.1. Segmentation Decision

The goal of change detection is to obtain a binary image in which pixels are divided into foreground
and background. The decision process is performed by comparing the difference between the current
pixel and its background model. In our approach, the background model of the pixel xi is as same as
PBAS’s (see Equation (1)).

A difference between our model and the PBAS algorithm is that each background sample Bk(xi)

consists of three parts: (i) a background pixel value vk(xi); (ii) a background gradient value mk(xi);
(iii) the weight wk(xi). Bk(xi) is represented as:

Bk(xi) =
{
vk(xi), mk(xi), wk(xi)

}
, k = 1, 2, . . . , N (7)

where i is the pixel number, k is the background sample number.
The sum of the weights of all the samples in the background model is not normalized. Each weight

has an upper limit, recorded as max_w, and a lower limit. The lower limit is zero. In our method, if the
number of background samples matched to a pixel is greater than or equal to #min or the sum of the
weight of the matched background model is greater than or equal to wb, the pixel will be judged as the
background point, otherwise it is the foreground point. #min is a fixed parameter which is set to 2 in our
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method, since this valve has been demonstrated in [12] to be capable of resisting noise. wb is a fixed
parameter. Its value will be discussed in the experimental section. The segmentation mask is calculated as:

F(xi) =

{
0, #

{
dist(xi, Bk(xi)) < α∗R(xi)

}
≥ #min or sum(w) ≥ w_b

1, else
(8)

where i is the pixel number, k is the background sample number. #{...} denotes the number of the
background samples which satisfy the condition in the brackets. F = 1 means foreground, otherwise
background. α and w_b is the fixed values which will be discussed in the experimental section. sum(w)

is the sum of the weights of matched background samples. Unlike the PBAS algorithm which uses the
distance of the three channels separately, the distance calculation formula between the pixel and the
background samples of our WePBAS is described as follows:

dist(xi, Bk(xi)) =

√
dr

(
xi, B j(xi)

)2
+ dg

(
xi, B j(xi)

)2
+ db

(
xi, B j(xi)

)2
(9)

where dr, dg, and db represent the calculated distances under the three channels of red, green, and blue,
respectively. Bk(xi) means the k-th background sample of the i-th pixel xi. A matches B if the following
condition is met:

dist(A, B) < R(A) (10)

where R(A) is the distance threshold at pixel A. The distance threshold is calculated by Equation (5).
dr, dg, and db are calculated as follows:

dr/g/b(xi, Bk(xi)) = |v(xi) − vk(xi)|+ β ∗ |m(xi) −mk(xi)| (11)

where xi is the i-th pixel. v(xi) and m(xi) represent the pixel value and the gradient value of xi,
respectively. Bk(xi) is the k-th background sample of xi. vk(xi) and mk(xi) represent the pixel value
and the gradient value of Bk(xi), respectively. β is a fixed parameter which will be discussed in the
experimental section. Equation (11) is a little different from Equation (4). In the experiment, we find
that the effect of Im is slight, but the exist of Im can increase the computational complexity of the
algorithm. Thus, we replaced c/Im with a fixed constant β.

The initialization of the background model is the same as in the PBAS algorithm. The weights
of the samples of the background model at initialization is set to init_w which is a fixed parameter.
The value of init_w will be discussed in the experimental part.

2.2.2. Background-Model Updating

The “random update” strategy inevitably causes the correct samples in the background model to
be replaced by the wrong samples. So, the “random update” strategy causes pixels in the dynamic
background areas to have larger distance thresholds. Larger distance thresholds make it hard for the
algorithm to discriminate the foreground targets of these regions from the background. The weighted
background sample and the directional background model update mechanism we designed can
solve this problem. At the same time, the application of the foreground counter can suppress the
“background diffusion” which make the algorithm identify small intermittent motion foreground targets
as background. The validity of foreground counter has been fully demonstrated in [17]. The foreground
counter of [17] needs to manually set the best parameters for different videos. Our adaptive foreground
counter automatically selects the best parameters based on the videos’ characteristics.

In the proposed method, we introduce not only the concept of weighted background samples in
the background model, but also the adaptive foreground counter. The proposed method is the same as
the paper [17] in the usage of the foreground counter COM. The directional background model update
mechanism is designed to help the algorithm select the background samples that need to be updated.
The mechanism consists of two parts. One is the minimum weight updating strategy, which is used to
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remove the background samples with the minimum weight in the background model. The other is the
shortest matching distance updating strategy, which is used to fine-tune the background model.

Before describing the background update module in detail, there are two parameters that need to
be introduced in advance—Tf and Tb. Tf and Tb are the parameters of the foreground counter in the
paper [17]. They also exist in the proposed algorithm. Tf controls the time that the algorithm starts to
update the background pixels of an object. Tb controls the time that begins to weaken the diffusion
effect of background updating for an object.

At the beginning of the algorithm, the foreground counter for each pixel is initialized to zero.
The foreground counter records the times that each pixel is continuously identified as the foreground pixel.

When the pixel point is determined as the foreground point, if the value of the foreground counter
COM is greater than Tf, the algorithm uses the information of the current pixel to replace the information
of the background sample with the smallest weight among the corresponding N background samples.
At this time, the background sample added does not match any of the previous background samples.
So, the WePBAS updates the background model with minimum weight update strategy. The minimum
weight update strategy ensures that invalid background samples can be replaced. The matching rule is
shown in Equation (10). Tf is a parameter determined after the preprocessing phase of the algorithm.
The updated background sample’s weight is set to init_w. The algorithm then updates the foreground
counter COM. The update method of the foreground counter COM is the same as that in the paper [17]:

COM(x) = COM(x) + 1 (12)

where x is the pixel that the algorithm is processing.
If the pixel is judged as the background, the pixel value and gradient value of the background

sample which has the smallest matching distance to the current pixel is replaced by that of the current
pixel. This update is only performed with probability p = 1/T(x). At this point, the newly added sample
matches one or several previous background samples. So, the WePBAS updates the background model
with shortest match distance update strategy. The calculation of the matching distance is shown in
Equation (9). The shortest match distance update strategy allows the background model to adapt to
slow changes in the background.

When the pixel point is determined as the background point and the foreground counter COM > Tb,
the algorithm has a probability of 1/T(x) to use a randomly selected neighborhood pixel x′ to update
the x′’s background model’s sample B j(x′) whose weight is the smallest. Here, the WePBAS also uses
the minimum weight update strategy. The value of the parameter Tb has been discussed in detail
in the paper [17], where Tb is set to 20. The updated background samples’ weight is set to init_w.
In paper [14], this behavior of updating the background model of the pixels around the background
points is called “diffusion”.

When pixel x is judged as the background point, COM(x) is set to zero. In paper [17], the validity
of the foreground counter COM has been fully proved

Regardless of whether the current pixel is judged to be foreground or background, the weights of
the background samples are updated as follows:

wk(xi) =

{
wk(xi) + delta_w, if Bk(xi) is matched with pixel xi
wk(xi) − delta_w, otherwise

(13)

where xi is the i-th pixel. Bk(xi) represents the k-th background sample of xi. wk(xi) represents the
weight of Bk(xi). delta_w is a fixed parameter which will be discussed in the experimental section.
In our method, the sum of the weights of the background samples is not normalized. The lower limit
of the weight of the background sample is zero. The upper limit of the weight is max_w which is a
fixed parameter. The value of max_w will be discussed in the experimental part.
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In WeSamBE [16], the weight update occurs only when the current pixel is determined to be the
background point. We experiment with the above two weight update modes on the PBAS algorithm,
and find that the former has a better effect on the PBAS algorithm (Figure 3).
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     𝑤 (𝑥 ) =  
𝑤 (𝑥 ) + 𝑑𝑒𝑙𝑡𝑎_𝑤,    if 𝐵 (𝑥 ) is matched with pixel 𝑥

𝑤 (𝑥 ) − 𝑑𝑒𝑙ta_𝑤,    otherwise                  
 (13) 

where 𝑥  is the i-th pixel. 𝐵 (𝑥 ) represents the k-th background sample of 𝑥 . 𝑤 (𝑥 ) represents 
the weight of 𝐵 (𝑥 ). 𝑑𝑒lta_𝑤  is a fixed parameter which will be discussed in the experimental 
section. In our method, the sum of the weights of the background samples is not normalized. The 
lower limit of the weight of the background sample is zero. The upper limit of the weight is max_w 
which is a fixed parameter. The value of max_w will be discussed in the experimental part. 

In WeSamBE [16], the weight update occurs only when the current pixel is determined to be the 
background point. We experiment with the above two weight update modes on the PBAS algorithm, 
and find that the former has a better effect on the PBAS algorithm (Figure 3). 
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Figure 3. Example of the detection results of our proposed method. (a) Frame in the video. (b) Ground 
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Figure 3. Example of the detection results of our proposed method. (a) Frame in the video. (b) Ground
truth. (c) Results of the proposed method which uses the update mode in weighted pixel-based adaptive
segmenter (WePBAS). (d) Results of the proposed method which uses the weight update mode in WeSamBE.

2.2.3. Algorithm Preprocessing

The algorithm preprocessing only needs to determine the value of Tf, which is the parameter of
the foreground counter.

In paper [17], the foreground counter has two parameters: Tf and Tb. The experiment of paper [17]
has obtained the best value of Tb which is set to 20. However, the value of Tf in paper [17] is uncertain.
In the experiment of the paper [17], the values of Tf of different videos are different.

In our experiments, we find that the optimal value of Tf is closely related to the distribution of the
distance threshold R(x) of all pixels of the current image. This relationship is actually easy to understand.
The larger the Tf value, the less likely the information of the foreground pixel is to be learned by
the background model, and the better the detection effect of the algorithm for the objects which are
moving intermittently. The smaller the Tf value, the easier it is for the foreground pixel information to
be learned by the background model, and the better the noise suppression of the algorithm on the
dynamic background regions. So, we can draw a simple inference: the larger the proportion of the
dynamic background area in the image, the smaller value of Tf is needed. This inference is also fully
confirmed in our experiments. It should be noted that the distance threshold R(x) of the pixels of the
dynamic background area is generally large to suppress the noise that often occurs.

In the algorithm, the histogram of the distance threshold of all pixels in an image is constructed
by setting the number of bins to 3. Note distance threshold R(x)’s lower bound is R_lower (R_lower is
set to 18 in PBAS method). The first bin’s R(x) is equal to R_lower. The second bin’s R(x) is in the range
of (R_lower, 3*R_lower] The third bin’s R(x) is in the range of (3*R_lower, +∞). There is an example of
the proportional distribution histogram of R(x) of an image (Figure 4).
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the pixel represents the larger R(x). (c) The proportional distribution histogram of R(x) in the input image.
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We can get a percentage distribution histogram from each input image. The normalized histogram
can be written as a ternary vector form:
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In the experiment, we find that if the background does not change drastically, the data
of this histogram is basically no longer changed after the algorithm has processed 300 frames.
Therefore, when the algorithm reaches the 300th frame, the optimal Tf value of the algorithm will be
determined according to the histogram of the distance threshold. When the algorithm processes the
first 300 frames, because the algorithm cannot determine the optimal Tf value, we set the Tf to 200
at this stage. This stage is called the algorithm preprocessing stage. How to get the best value of Tf
according to the ternary vector will be discussed in the experimental part.

2.2.4. Model Reinitialization

In actual scenes, the lighting may suddenly change. This situation can lead to the collapse of the
background model. So, the algorithm must identify this situation and quickly update the background
model to fit this situation.

A frame-level analysis model similar to the one in the paper [23] is added to the proposed method.
In paper [23], the authors believe that when the percentage of pixels (disp) that are significantly different
between the current video image and the background image exceeds 50%, the illumination can be
considered to have changed. For the sake of simplicity, the proposed method directly treats the
percentage of foreground pixels as disp.

From the experiment we observed that the illumination change does not significantly affect the
optimal value of Tf. Intuitively, this is easy to understand: the lighting change does not make the
static background become the dynamic background. So, after detecting the illumination change,
the proposed algorithm does not recalculate the optimal value of Tf.

When the algorithm detects a change in illumination, the algorithm will set Tf to 30 in the next
100 frames to quickly update the background model. After 100 frames, Tf reverts to its original value.

The proposed method is summarized in Algorithm 1.

Algorithm 1: A Robust Background Modeling Updating Algorithm.

Input: A frame
Output: A binary image
Initialization: First N frames are used to initialize the N samples of the background model. Foreground
counter COM is set to 0. Weight w(x) is set to init_w. Learning rate T(x) and distance threshold R(x) is
initialized to 18, just like in the PBAS method. The algorithm sets Tf to 200 when processing the first 300
frames. After the algorithm has processed 300 frames, the value of Tf will be determined by the distribution
histogram of the distance threshold R(x) at the 300th frame.
Procedure:
1. Pixel x is classified as a foreground pixel or background pixel;
2. If x is classified as a background pixel
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(a) There is a 1/T(x) probability of this happening that the algorithm uses x to update the background sample
B(x) whose matching distance to x is the smallest;

(b) If COM(x) > Tb, randomly select the x’s neighboring pixel p and use pixel p to update background
sample B(p) whose weight is the smallest;

(c) Counter COM(x) is set to 0;

3. If pixel x is classified as a foreground pixel

(a) Update COM(x) using Equation (12);
(b) If COM(x) > Tf, update the background sample B(x) whose weight is the smallest one;

4. Update R(x) and T(x) using Equation (5) and Equation (6);
5. Update each background sample’s weight using Equation (13).

3. Experimental Results and Analysis

In this section, the performance of the proposed method is shown. Firstly, the common evaluation
criteria and the benchmark test datasets on which we evaluate the proposed method are introduced.
Secondly, the values of the various parameters of the proposed method are discussed. Finally, the results
of the proposed method are compared with that of other algorithms on the benchmark data sets.

3.1. Test Dataset and Evaluation Metrics

The two test datasets used in the experiment are Change Detection Challenge 2012 (CDnet2012) [21]
and Change Detection Challenge 2014 (CDnet2014) [11]. The CDnet2012 dataset has 31 videos of six
categories including baseline, dynamic background, camera jitter, shadow, intermittent object motion,
and thermal. The CDnet2014 dataset is an expanded version of the dataset CDnet2012. In addition to
all six categories of videos in CDnet2012, CDnet2014 supplements 22 videos in five categories: bad
weather, low frame-rate, night video, PTZ (Pan/Tilt/Zoom), and turbulence. The metrics used to
quantify the detection results are as follows:

(1) Recall (Re):TP/(TP + FN)
(2) Specificity (SP):TN/(TN+FP)
(3) False Positive Rate (FPR): FP/(FP + TN)
(4) False Negative Rate (FNR): FN/(TP + FN)
(5) Percentage of Wrong Classifications (PWC):100 * (FN + FP)/(TP +FN +FP +TN)
(6) F-Measure:2*Pr * Re/(Pr + Re)
(7) Precision (Pr): TP/(TP + FP)

Here, TP is the number of correctly detected foreground pixels. TN is the number of correctly
detected background pixels. FP is the number of background pixels that are incorrectly marked
as foreground pixels. And FN is the number of foreground pixels that are incorrectly marked as
background pixels.

3.2. Tf Setting in Algorithm Preprocessing

At the end of the Section 2, we introduce the algorithmic preprocessing of the proposed method.
The algorithm preprocessing selects the most appropriate value of Tf based on the distance threshold
histogram of the 300-th image of the videos. The distance threshold histogram can be written as
a ternary vector: (bin1, bin2, bin3). We first use the clustering algorithm to divide all videos of
the CDnet2012 dataset into four categories based on the most appropriate Tf value of the videos.
The specific division results are as follows:

(a) Fully static background videos: office, PETS2006, corridor, diningRoom, lakeSide, library.
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(b) Static background videos: sofa, abandonedBox, parking, streetLight, tramstop, pedestrians,
bungalows, copyMachine, cubicle.

(c) General videos: fountain01, fountain02, canoe, boats, overpass, winterDriveway, highway,
badminton, boulevard, sidewalk, traffic, backdoor, busStation, peopleInShade, park.

(d) Dynamic background videos: fall.

After experimentally measuring the histograms of R(x) of all the videos of CDnet2012 at the 300th
frame, we analyzed the relationship between the histogram and the optimal value of Tf by plotting.
We find that bin1 and bin3 are very helpful for dividing video categories (Figure 5).Sensors 2019, 19, x FOR PEER REVIEW 11 of 16 
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Figure 5. (a) The distribution of (bin1, bin2, bin3) of videos in CDnet2012. (b) The distribution of
(bin1, bin3) of videos in CDnet2012. (c) Part of the distribution of (bin1, bin3) of videos in CDnet2012.

According to the principle of maximum separation, the videos can be divided like this:

(a) Fully static background videos: bin1 ≥ 0.99
(b) Static background videos: 0.94 ≤ bin1 < 0.99
(c) General videos: bin1 < 0.94, and bin3 ≤ 0.08
(d) Dynamic background videos: bin3 > 0.08

The bin2 is not used as a basis for classification because, according to Figure 6, bin2 is not a good
feature to distinguish videos.

The above division criteria are used to divide the 22 videos of CDnet2014 dataset into four
categories, and the results is:

(a) Fully static background videos: tunnelExit, tunnelExit_0_35fps
(b) Static background videos: blizzard, tramCrossroad_1fps, turnpike_0_5fps, fluidHighway,

streetCornerAtNight, winterStreet, intermittentPan.
(c) General videos: skating, wetSnow, port_0_17fps, bridgeEntry, busyBoulvard, tramStation,

continuousPan, twoPositionPTZCam, turbulence0, turbulence1, turbulence2, turbulence3.
(d) Dynamic background videos: zoomInZoomOut.

The partitioning criteria performs well on CDnet2014, except on the PTZ dataset. This is because
the camera is moving in the PTZ data set. However, the basic assumption of the background modeling
method is that the camera is basically in a stationary state. For each type of video, the best value of Tf
is tested on the CDnet2012 dataset (Figure 6).
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Figure 6. FM performance of the proposed method on different categories of videos of the CDnet2012
data set with changing Tf setting. (a) Fully static background videos. (b) Static background videos.
(c) General videos. (d) Dynamic background videos.

According to the experimental results on CDnet2012, the values of Tf of the four types of videos
are set as follows:

(a) Fully static background videos: Tf = 3500.
(b) Static background videos: Tf = 1200.
(c) General videos: Tf = 200.
(d) Dynamic background videos: Tf = 30.

3.3. Other Parameter Settings

In this section, the values of other key parameters are discussed. First of all, except for the number
of samples in the background model, the values of the parameters that exist in both WePBAS method
and PBAS method [14] are the same. The parameters are tested on CDnet2012 [21] dataset (Figure 7).Sensors 2019, 19, x FOR PEER REVIEW 12 of 16 

 

 
Figure 7. FM performance of the proposed method on different categories of videos of the CDnet2012 
data set with changing parameter setting. (a) N = 29: N is the number of samples in the 
background model. In PBAS method, the background samples’ number is larger to 
suppress noise generated by random updates. (b) w_b = 5: w_b is the parameter in Equation 
8 which is used to distinguish the foreground and background. (c) α= 2: α is the parameter 
in Equation 8. (d) β= 0.35: β is the parameter in Equation 11. (e) init_w = 0.7: init_w is the 
initial value of the weight of the background sample. (f) delta_w = 0.05: delta_w is the 
increment when the weights are updated. (g) max_w = 10: max_w is the upper limit of the 
weights.  

3.4. Experimental Results on CDnet2012 and CDnet2014 

In Table 1, the test results of WePBAS on the CDnet2012 [21] and CDnet2014 [22] are shown. On 
the CDnet2012 dataset, we present the comparison of the WePBAS, PBAS [14], Zhong2017[17], GMM-
Zivkovic [8], GMM-Stauffer and Grimson [7], ViBe [12], and CDPS [24](see Table 2). The experimental 
data of the comparison is derived from the results of the original paper or the authors’ online 
publication. As can be seen from Table 2, the proposed method has the highest FM in most scenarios 
of CDnet2012. And the average FM of the WePBAS in all scenes of CDnet2012 is the highest. 

Table 1. The evaluation results of WePBAS on the CDnet2012 and CDnet2014. 

Category Re Sp FPR FNR PWC F-Measure Pr 

Baseline 0.975 0.9966 0.0034 0.025 0.4211 0.9271 0.8853 

Camera jitter 0.8577 0.9778 0.0221 0.1423 2.6650 0.7495 0.6782 

Dynamic 
background 

0.8255 0.9986 0.0014 0.1745 0.3623 0.7808 0.7791 

Intermittent 
object motion 

0.7195 0.9483 0.0517 0.2805 5.9417 0.6058 0.5915 
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Figure 7. FM performance of the proposed method on different categories of videos of the CDnet2012
data set with changing parameter setting. (a) N = 29: N is the number of samples in the background model.
In PBAS method, the background samples’ number is larger to suppress noise generated by random
updates. (b) w_b = 5: w_b is the parameter in Equation (8) which is used to distinguish the foreground and
background. (c) α= 2: αis the parameter in Equation (8). (d) β= 0.35: βis the parameter in Equation (11).
(e) init_w = 0.7: init_w is the initial value of the weight of the background sample. (f) delta_w = 0.05: delta_w
is the increment when the weights are updated. (g) max_w = 10: max_w is the upper limit of the weights.
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3.4. Experimental Results on CDnet2012 and CDnet2014

In Table 1, the test results of WePBAS on the CDnet2012 [21] and CDnet2014 [22] are shown.
On the CDnet2012 dataset, we present the comparison of the WePBAS, PBAS [14], Zhong2017 [17],
GMM-Zivkovic [8], GMM-Stauffer and Grimson [7], ViBe [12], and CDPS [24] (see Table 2).
The experimental data of the comparison is derived from the results of the original paper or the authors’
online publication. As can be seen from Table 2, the proposed method has the highest FM in most
scenarios of CDnet2012. And the average FM of the WePBAS in all scenes of CDnet2012 is the highest.

Table 1. The evaluation results of WePBAS on the CDnet2012 and CDnet2014.

Category Re Sp FPR FNR PWC F-Measure Pr

Baseline 0.975 0.9966 0.0034 0.025 0.4211 0.9271 0.8853

Camera jitter 0.8577 0.9778 0.0221 0.1423 2.6650 0.7495 0.6782

Dynamic background 0.8255 0.9986 0.0014 0.1745 0.3623 0.7808 0.7791

Intermittent object motion 0.7195 0.9483 0.0517 0.2805 5.9417 0.6058 0.5915

Shadow 0.8735 0.9935 0.0065 0.1265 1.1971 0.8684 0.8703

Thermal 0.6351 0.9966 0.0034 0.3649 1.9896 0.721 0.9059

Bad weather 0.7201 0.9987 0.0013 0.2799 0.6414 0.7994 0.9062

Low framerate 0.8227 0.9896 0.0104 0.1773 1.2468 0.6918 0.6181

Night video 0.6741 0.9704 0.0296 0.3259 3.7228 0.4452 0.3985

PTZ(Pan/Tilt/Zoom) 0.7274 0.8960 0.1041 0.2726 10.55 0.2340 0.1812

Turbulence 0.7354 0.9999 0.0001 0.2646 0.1888 0.8235 0.9722

Average (2012) 0.8144 0.9852 0.0148 0.1856 2.0961 0.7704 0.7851

Average (2014) 0.7787 0.9787 0.0213 0.2213 2.6296 0.6924 0.7079

Table 2. Comparison of our WePBAS to several state-of-art methods on CDnet2012.

Algorithm Our
WePBAS PBAS [14] GMM-Zivkovic

[8]
GMM-Stauffer

and Grimson [7]
ViBe
[12]

Zhong2017
[17] CDPS [24]

FMoverall 0.7704 0.7532 0.6596 0.6624 0.668 0.6447 0.7281

FMbaseline 0.9271 0.9242 0.8382 0.8245 0.870 0.8743 0.9208

FMcam. jit 0.7495 0.7220 0.5670 0.5969 0.600 0.4935 0.4865

FMdyn.bkg 0.7808 0.6829 0.6328 0.6330 0.565 0.3007 0.7495

FMinterm.obj 0.6058 0.5745 0.5325 0.5207 0.507 0.8244 0.7406

FMshadow 0.8684 0.8597 0.7319 0.7370 0.803 0.6489 0.8092

FMthermal 0.7210 0.7556 0.6548 0.6621 0.665 0.7266 0.6619

On the CDnet2014 dataset, we present the comparison of WePBAS, PBAS [14], GMM-Zivkovic [8],
GMM-Stauffer and Grimson [7], ViBe [12], SBBS [25], and Zhong2017 [17] (see Table 3). Since the ViBe
method and the PBAS method have not published the experimental results on CDnet2014, we use the
test results of the two methods on the CDnet2014 dataset which can be got in the paper [17] and the
paper [26]. Other results are derived from the original paper or the results published by the authors on
the web. As can be seen from Table 3, the FM of the proposed method on the CDnet 2014 data set is
the highest. Although the precision of WePBAS is 1.42% lower than that of SBBS [25], the recall of
WePBAS is 7.14% higher than that of SBBS.
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Table 3. Comparison of our WePBAS to several state-of-art methods on CDnet2014. GMM: Gaussian
Mixture Mode.

Algorithm Our
WePBAS

PBAS
[14]

ViBe
[12]

GMM-
Zivkovic [8]

GMM-Stauffer and
Grimson [7]

SBBS
[25]

Zhong2017
[17]

Recall 0.7787 0.6397 0.3072 0.6604 0.6846 0.7073 0.7603

Precision 0.7079 0.4559 0.6322 0.5973 0.6025 0.7221 0.5161

FM 0.6924 0.5323 0.4134 0.5566 0.5707 0.6711 0.6148

We compared the PBAS and our WePBAS method with some better methods (see Table 4).
In Table 4, the speed refers to the speed when the algorithm is processing 320 × 240 images. Algorithm
speed test is performed on the third generation Intel i5 CPU. Because the WePBAS algorithm needs to
process additional weight information, its processing speed is slower than the PBAS algorithm. Due to
the limitations of the PBAS method, our WePBAS did not achieve higher F-Measure values.

Table 4. Comparison of the PBAS and our WePBAS to several better methods on CDnet2012.

Algorithm Our WePBAS PBAS [14] SuBSENSE [15] WeSamBE [16] W4CD [23]

FM 0.7704 0.7532 0.8260 0.8197 0.5707

Speed (FPS) 7 41 45 2 4.8

An example of the comparison results of foreground segmentation between different algorithms
is shown in Figure 8.

Sensors 2019, 19, x FOR PEER REVIEW 14 of 16 

 

FM 0.6924 0.5323 0.4134 0.5566 0.5707 0.6711 0.6148 

 
We compared the PBAS and our WePBAS method with some better methods (see Table 4). In 

Table 4, the speed refers to the speed when the algorithm is processing 320 × 240 images. Algorithm 
speed test is performed on the third generation Intel i5 CPU. Because the WePBAS algorithm needs 
to process additional weight information, its processing speed is slower than the PBAS algorithm. 
Due to the limitations of the PBAS method, our WePBAS did not achieve higher F-Measure values. 

Table 4. Comparison of the PBAS and our WePBAS to several better methods on CDnet2012. 

Algorithm 
Our 

WePBAS 
PBAS [14] 

SuBSENSE 
[15] 

WeSamBE [16] 𝑾𝟒𝑪𝑫 [23] 

FM 0.7704 0.7532 0.8260 0.8197 0.5707 

Speed 
(FPS) 

7 41 45 2 4.8 

 
An example of the comparison results of foreground segmentation between different algorithms 

is shown in Figure 8. 

 

 

 

 

 

 
 

(a) (b) (c) (d) (e) 

Figure 8. Example of foreground-segmentation results from the videos of CDnet2012 dataset. (a) 
Input video frame, (b) ground truth, (c) our proposed method, (d) PBAS [14], and (e) CDPS [24]. 

The method proposed in this paper uses 9 × 9 median filtering as post-processing just like PBAS 
method. When processing video of different resolutions, our method firstly resizes the videos to  
320 × 240 then detects the foreground. After the algorithm obtains the foreground detection binary 
image whose resolution is 320 × 240，the detected image is restored to the original resolution by the 
nearest neighbor resize. 

4. Discussion 

In this paper, based on PBAS, we propose a weight-pixel-based adaptive segmenter method 
named WePBAS for change detection. One of our innovations is to introduce the concept of weighted 

Figure 8. Example of foreground-segmentation results from the videos of CDnet2012 dataset. (a) Input
video frame, (b) ground truth, (c) our proposed method, (d) PBAS [14], and (e) CDPS [24].

The method proposed in this paper uses 9 × 9 median filtering as post-processing just like PBAS
method. When processing video of different resolutions, our method firstly resizes the videos to
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320 × 240 then detects the foreground. After the algorithm obtains the foreground detection binary
image whose resolution is 320 × 240, the detected image is restored to the original resolution by the
nearest neighbor resize.

4. Discussion

In this paper, based on PBAS, we propose a weight-pixel-based adaptive segmenter method
named WePBAS for change detection. One of our innovations is to introduce the concept of weighted
background samples for PBAS method, and design a reasonable weight update mechanism according to
the characteristics of PBAS. The proposed method updates the background model by minimum weight
update strategy and shortest match distance update strategy. In addition, we introduce the mechanism
of the foreground counter and make the algorithm adaptively adjust the relevant parameters of the
foreground counter according to the videos’ characteristics. The application of the foreground counter
in background model update phase can improve the detection performance in intermittent motion
scenarios. Our approach performed much better on the CDnet2012 and CDnet2014 datasets than
the PBAS algorithm. On the dynamic background dataset, our algorithm achieves an improvement
of f-measure close to 10% compared with the PBAS method. On the intermittent motion dataset,
our algorithm achieves an improvement of f-measure close to 3% compared with the PBAS method.
Our method does not run faster than the PBAS method.
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