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Abstract: You Only Look Once (YOLO) deep network can detect objects quickly with high precision
and has been successfully applied in many detection problems. The main shortcoming of YOLO
network is that YOLO network usually cannot achieve high precision when dealing with small-size
object detection in high resolution images. To overcome this problem, we propose an effective
region proposal extraction method for YOLO network to constitute an entire detection structure
named ACF-PR-YOLO, and take the cyclist detection problem to show our methods. Instead of
directly using the generated region proposals for classification or regression like most region proposal
methods do, we generate large-size potential regions containing objects for the following deep
network. The proposed ACF-PR-YOLO structure includes three main parts. Firstly, a region proposal
extraction method based on aggregated channel feature (ACF) is proposed, called ACF based region
proposal (ACF-PR) method. In ACF-PR, ACF is firstly utilized to fast extract candidates and then
a bounding boxes merging and extending method is designed to merge the bounding boxes into
correct region proposals for the following YOLO net. Secondly, we design suitable YOLO net for fine
detection in the region proposals generated by ACF-PR. Lastly, we design a post-processing step,
in which the results of YOLO net are mapped into the original image outputting the detection and
localization results. Experiments performed on the Tsinghua-Daimler Cyclist Benchmark with high
resolution images and complex scenes show that the proposed method outperforms the other tested
representative detection methods in average precision, and that it outperforms YOLOv3 by 13.69%
average precision and outperforms SSD by 25.27% average precision.

Keywords: cyclist detection; region proposal extraction; aggregated channel feature (ACF); You Only
Look Once (YOLO)

1. Introduction

In many countries, pedestrians and cyclists are the most vulnerable road users (VRUs) in traffic
crashes. It is easier for cyclists to get involved in traffic crashes because of their relatively fast speed.
In recent years, a lot of research focused on developing Advanced Driver Assistance Systems (ADAS)
for anti-collision of VRUs [1,2]. The detection of VRUs including cyclists and pedestrians is still a
difficult problem, due to the difficulties brought by diverse cyclist postures, small-size, occlusions and
relative fast speed, etc.

Many technologies have been proposed in the past decades. The main technological approaches
for detection can be divided into two major approaches: sensor-based detection methods and
vision-based detection methods. Sensors include liDAR, radar, infrared sensor and so on. Vision-based
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detection methods have been proved to have the ability to solve complex tasks, such as face
detection [3], traffic sign detection [4] and pedestrian detection [5], etc. With cheap price and easy
installment, vision based sensor is a nature solution for detection.

Compared with cyclist detection, pedestrian detection has received much attention for decades.
More than 40 pedestrian detection methods based on machine learning were analyzed in [6].
The AdaBoost and Cascade based detection structure [7] was applied in pedestrian detection in
2003. The milestone Histogram of Oriented Gradients (HOG) and Support Vector Machine (SVM)
based structure [8] was proposed to address pedestrian detection problem. The Deformable Part
Model (DPM) was designed for pedestrian detection in [9]. The ChnFtrs with multiple registered
image channels was proposed for detection in [10]. In 2014, locally decorrelated channel feature
(LDCF) was utilized for pedestrian detection [5]. In addition, Cao et al. [11] proposed two types
of non-neighboring features and applied them to detecting pedestrians. Du et al. [12] applied their
Fused DNN detector to pedestrian detection. Zhang et al. [13] analyzed the performance of Faster
R-CNN in pedestrian detection and made improvements. Paisitkriangkrai et al. [14] introduced a new
structured ensemble learning approach and extracted low-level features based on spatial pooling for
pedestrian detection. Tian et al. [15] designed DeepParts for handling occlusion problem in pedestrian
detection. Although many methods have been proposed, pedestrian detection is still a challenging
task [16]. Compared with pedestrian detection, cyclist detection is a more difficult problem due to
different postures, different riding tools, and blur caused by fast speed, etc. Additionally, because of
the relatively fast speed, it is easier for cyclists to get involved in traffic crashes.

In the recent decade, many cyclist detection methods were proposed. In 2010, Li et al. [17]
designed a detection method that combines local features, global features and linear SVM classifier.
In [18], a two-stage multi-model bicyclist detection method was proposed based on region of interest
(ROI) detection and integral features. In [19], viewpoint-based detector with cascaded HOG features
were built for cyclist detection. Cho et al. [20] introduced multiple patch-based Lucas-Kanade tracker
to HOG and SVM based detector for cyclist detection in consecutive frames. In 2017, Li et al. [21]
presented a detection proposal method for cyclist detection including a cyclist shared salient region
detection part, a redundancy and geometric constraint based detection part, and a deep convolutional
neural network. In the same year, Li et al. [22] presented a unified framework for concurrent pedestrian
and cyclist detection, which includes an upper body detector, a discriminative deep model based on
Fast R-CNN and a postprocessing step.

Cyclist detection belongs to the object detection problem. In recent decades, some powerful
features, such as Haar [23] and HOG [8], were proposed to express objects. Combined with powerful
features, some efficient detection frameworks, such as cascade [23] and fast pyramid [24], were
proposed to improve the detection performance. Deep learning have made breakthroughs in detection
in recent years. Many algorithms, such as Region Convolution Neural Networks (R-CNN) [25], Fast
R-CNN [26], Faster R-CNN [27], Single Shot MultiBox Detector (SSD) [28] and You Only Look Once
(YOLO) [29], were proposed to address different object detection problems.

As one of the most representative networks, YOLO network can get good performance in
both speed and accuracy and has high potential in the cyclist detection problem. Shortly after
the advent of YOLO, the author of YOLO has improved the network. In 2016, YOLOv2 [30] was
presented. Furthermore, in 2018, YOLOv3 [31] was presented. YOLOv3 has higher accuracy than the
previous version and it is still fast. YOLO has good performance on some datasets, such as PASCAL
VOC [32], KITTI dataset [33], COCO [34] and ImageNet [35]. Furthermore, in recent years, YOLO has
been applied in many fields, such as pedestrian detection [36], license plate detection [37], vehicle
detection [38], and traffic sign detection [39], etc. Therefore, the YOLO network has very high potential
in the cyclist detection problem.

However, though some deep learning based networks such as YOLO and SSD can detect objects in
some detection areas quickly and accurately, these methods usually cannot achieve good performance
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when dealing with the cyclist detection problem. The main reason is that these methods cannot
perform well on detecting small-size objects in high resolution images.

We assume that if the potential regions can be gotten first, the high-resolution images can be
cropped into some regions of interest (ROI). The YOLO or SSD based methods can be performed on
these small regions to achieve better performance. Following this hypothesis, we design a cyclist
detection framework based on YOLO network. The proposed framework has three main parts.

Firstly, in order to extract region proposals from high resolution images, based on aggregated
channel feature (ACF) [40], we propose a region proposal extraction method called ACF based region
proposal (ACF-PR) method. In ACF-PR, we firstly design an ACF based detector to fast extract
candidates, and then a bounding boxes merging and extending method is designed to merge the
bounding boxes into correct region proposals for the following YOLO net. Then, a suitable YOLO net
is designed for fine cyclist detection in the region proposals generated by ACF-PR. Lastly, we design a
post-processing step, in which the results of YOLO net are mapped into the original image outputting
the detection and localization results. The proposed cyclist detection structure is evaluated on the
public Tsinghua Daimler Cyclist Benchmark (TDCB) [41] and it outperforms the other representative
methods in our comparison.

The paper is organized as follows. In Section 2, the proposed cyclist detection structure including
a novel region proposal method, a deep learning network and a specific post-processing step is
presented. Section 3 shows the evaluation results and comparison with other representative detection
methods, and Section 4 gives the final conclusion and future work.

2. Proposed Methods

Images taken by the on-board camera for cyclist detection are usually with high resolution.
However, dealing with high resolution images, the general deep learning algorithms including YOLO,
SSD and Faster-RCNN have relatively poor performance. During experiment, we found that if the
high-resolution image can be cropped into small regions that contain objects, some deep learning
based networks can perform well on these small regions.

Following this methodology, a novel cyclist detection structure is proposed, which contains
three main parts. (1) ACF based region proposal (ACF-PR) method, (2) YOLO based cyclist detection
method, and (3) a post-processing step for fine localization. The overall architecture of the proposed
cyclist detection structure is shown in Figure 1.

Generate potential

regions
YOLOv3Input Images Detection Results

Post-

processing

ACF-PR

Figure 1. Overview of the proposed cyclist detection method. Color images are first processed by
the aggregated channel feature region proposal (ACF-PR) method. The proposed ACF-PR method
utilizes ACF to get region candidates, and then it performs the analysis of these candidates to generate
potential regions. Then the YOLO network utilizes these potential regions as inputs to do fine detection
and localization. At last, to get the final result, a post-processing step is performed to merge and map
the bounding boxes.
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Firstly, the ACF-PR region proposal extraction method is designed. An ACF detector is trained
to detect coarse ROIs containing cyclists. Because the regions generated by ACF usually just contain
parts of cyclists, we design boxes merging and extending method to merge the bounding boxes into
correct region proposals for the following YOLO net. Then, a suitable YOLOv3 net is utilized for fine
detection of cyclists in the region proposals generated by ACF-PR. Lastly, we design a post-processing
step, in which the results of YOLO net are selected and mapped into the original image resulting in the
detection and localization results.

2.1. ACF-PR Region Proposal Generating Method

The original ACF method has achieved good performance in some detection problems. In this
paper, we explore the novel use of ACF for region proposal extraction. If ACF is directly performed for
cyclist detection, the detected regions may contain just part of the cyclists and many false positives.
To resolve this problem, we propose the ACF-PR region proposal generating method. In this method,
instead of directly using the generated region proposals for classification like most region proposal
methods do, we generate large potential regions containing objects for the following deep network.
Using this methodology, regions containing only part cyclists can be avoided. The structure of ACF-PR
is shown in Figure 2.
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Figure 2. Structure for ACF-PR region proposal method. To get potential regions, ACF detector first
gets preliminary bounding boxes. Then these bounding boxes are divided into two cases according to
their position for different processes; lastly, potential regions are generated.

Given an input image, the ACF computes several channels, sums every block of pixels, smooths
the resulting lower resolution channels and uses boosting to distinguish objects. ACF builds a fast
feature pyramid P = {p1, p2, ..., pn}, here n represents the number of layers. The channels used are the
same as [40]: normalized gradient magnitude (1 channel), histogram of oriented gradients (6 channels),
and LUV color channels (3 channels), for a total of 10 channels.

The boosting is an integrated learning algorithm that linearly combines weak classifiers into a
strong classifier,

F(x) = sign(
N

∑
i=1

amGm(x)), (1)

where, Gm represents a weak classifier and am is the weight of Gm in strong classifier. sign(x) is the
symbolic function. When training, the classifier produced in the next iteration was trained on the basis
of the previous iteration,

Fm(x) = Fm−1(x) + amGm(x), (2)

where Fm(x) represents the classifier produced in the mth iteration.
The loss function is,

L(Y, f (x)) = exp(−Y f (x)), (3)

where Y represents the label of x, the f (x) represents the result we generate. We determine am

according to the minimum principle of the loss function L(Y, f (x)).
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In this paper, Adaboost is used to train and combine 4096 2-depth decision trees over the
h/4 · w/4 · 10 aggregated features, where h × w is the input window and 4 is the down sample
scale. Based on these parameters, we can get the best performance in our experiments. In the detection
process, multi-scale sliding-window is used to scan the image and generate aggregate channel feature,
and these features are sent into Adaboost.

To adapt to the cyclist sizes in this study, modelDs (model height and width without padding) is
set to (50, 32) and modelDsPad (model height and width with padding) is set to (64, 48). The nNeg (max
number of negative windows to sample) is set to 10, 000 and the nAccNeg (max number of negative
windows to accumulate) is set to 30, 000.

Using these training processes, we train an ACF detector to perform preliminary detection.
Instead of arranging ACF bounding boxes according to the level of confidence like traditional ACF
does, the bounding boxes in this method are reordered from left to right and from top to bottom in
the image.

In detection, one cyclist detected by ACF may have several different bounding boxes, which
causes many false positives in the detection process. During experiments, we found that the distances
between the bounding boxes belonging to one cyclist are not far away. We design a merging method for
merging bounding boxes belonging to the same object. In this process, all bounding boxes are divided
into two cases according to the distances between the bounding boxes. In one case, two bounding
boxes are partially overlapped or the distance is short. In the other case, two bounding boxes are far
away from each other.

• In one case, each detected cyclist instance is marked with several different bounding boxes.
In order to merge bounding boxes into a correct one and get the entire cyclist instance, two small
boxes are merged into one when the distance between them is within a certain range. To show the
merging process intuitively, an example for merging is provided in Figure 3. We use xmin, ymin to
represent the minimum value of the x, y coordinate on two boxes. Then,

xmin =

{
xb1, xb1 < xb2,

xb2, xb1 ≥ xb2,
(4)

ymin =

{
yb1, yb1 < yb2,

yb2, yb1 ≥ yb2,
(5)

where, (xb1, yb1) and (xb2, yb2) are the coordinates of the top-left point of two bounding boxes.
We use xt and yt to represent the maximum distance threshold of two bounding boxes which can
be merged on x, y coordinates. The value of xt and yt should ensure that the potential regions
eliminate the situation where only half of the object is contained. The values of xt and yt are fixed
to ensure that the potential regions contain the whole objects; hence, both xt and yt are set to 832
that is the maximum size of the cyclist instances. (wb1, hb1) and (wb2, hb2) represent the width and
height of two bounding boxes. If xmin + xt and ymin + yt satisfy the condition,{

xmin + xt ≥ xb1 + wb1,
xmin + xt ≥ xb2 + wb2,

(6)

{
ymin + yt ≥ yb1 + hb1,
ymin + yt ≥ yb2 + hb2,

(7)

then, we can get one large bounding box by merging two bounding boxes. Comparing xb1 + wb1
and xb2 + wb2 to get the maximum x coordinate of two bounding boxes. Based on this maximum
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value, we can calculate the width of merged bounding box. Similarly, yb1 + hb1 and yb2 + hb2 are
discriminated and used to calculate the height of merged bounding box.

xb = xmin, (8)

yb = ymin, (9)

wb =

{
xb1 + wb1 − xmin, xb1 + wb1 > xb2 + wb2,

xb2 + wb2 − xmin, xb1 + wb1 ≤ xb2 + wb2,
(10)

hb =

{
yb1 + hb1 − ymin, yb1 + hb1 > yb2 + hb2,

yb2 + hb2 − ymin, yb1 + hb1 ≤ yb2 + hb2,
(11)

where, (xb, yb) represents the top-left point of the merged bounding box and (wb, hb) represents
the width and height of the merged bounding boxes. After merging two bounding boxes into one
large bounding box that may contain one object or several objects. These merged bounding boxes
are extended as potential regions and as inputs for the following network.

• In the other case, two bounding boxes are far apart from each other, which means that these boxes
are for different instances and do not need to merge. In this case, the bounding box may contain
the entire object instance, and sometimes also may contain part of the object instance or just
background. For fine detection and localization, these bounding boxes also need to be sent into
the following deep network for further detection. If the distance between two bounding boxes is
not within a certain range, these boxes are regarded as two separate objects. In order to contain as
many entire object instances as possible, these bounding boxes are extended as potential regions
and as inputs for the following network.

merge

Figure 3. One example of the process of merging bounding boxes.

Bounding boxes are all extended to m×m pixels to be served as potential regions, which ensures
that the potential regions contain the whole objects. In this study, m is set to 832 that is the maximum
size of the cyclist instances. We crop the potential regions according to the coordinates. The relationship
between the potential region and the bounding box is,

2(xpo − xb) = wb −m,

2(ypo − yb) = hb −m,
(12)

where, (xpo, ypo) indicate the (x, y) coordinates of the top-left point of the potential region in the
original image; (xb, yb) indicate the (x, y) coordinates of the top-left point of the bounding box before
extending; wb and hb indicate the width and height of the bounding box. At last, these cropped
potential regions are sent into the subsequent network.

To illustrate the advantage of ACF-PR, we compare the structures of Fast R-CNN [26], Faster
R-CNN [27], ACF-detection method and our method in Figure 4. Fast R-CNN uses selective search
(SS) method to generate bounding boxes. Experiments in [22] show that SS-FRCN (Fast R-CNN with
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selective search method) needs about 23 s per image (2048× 1024) when detecting. It is too slow for
detection. Hence, SS is not suitable for region proposals extraction in cyclist detection.
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Figure 4. The structure of our method and other methods.

Region proposal methods like region proposal network (RPN) in Faster R-CNN generate and select
bounding boxes directly, and these bounding boxes are used for regression and classification. With high
resolution input images (2048× 1024) and a large range of object sizes from 20 pixels to 800 pixels,
the feature map of convolutional network may lose some details and make it difficult to detect small
size objects. Hence, RPN is not suitable for detecting small-size objects in high resolution images.

Different from RPN, our method only generates potential regions in which cyclists may appear;
then these potential regions are sent into the following network for detection. We extract features from
these potential regions rather than extracting features to generate potential regions. The main function
of ACF-PR is to lessen the detection range. We do not utilize ACF as a region proposal method directly,
because that ACF-detection method shown in Figure 4 usually generates bounding boxes with less
than half of the instance. The experiments show that only approximately 69% cyclists are contained in
the detection results of ACF. If these bounding boxes are sent into detection network, the detection
rate will not be higher than 69%. However, our proposed ACF-PR method can contain 100% cyclists,
which ensures the relatively good detection result. In addition, it only takes about 0.18 s per image
(2048× 1024) with Central processing unit (CPU) to generate potential regions, which ensures the
relatively fast speed of detection.

Hence, our proposed ACF-PR method is more suitable for cyclist detection than the other region
proposal methods, when dealing with images with high resolution.

2.2. YOLO Network for Cyclist Detection

YOLO has proved to have the ability to handle complex tasks, such as pedestrian detection [36],
license plate detection [37], vehicle detection [38], and traffic sign detection [39], etc. YOLO is a
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single deep network which can get predicted bounding boxes and class probabilities at the same time,
achieving high accuracy and extremely fast speed.

In this study, we designed a suitable detector based on YOLOv3 net for fine detection and
localization. YOLOv3 has 106 layers, including successive 3 × 3 and 1 × 1 convolutional layers,
shortcut connections, up-sample layers, route layers and detection layers. Figures 5 and 6 show that
almost all of the sizes of cyclists in this study are less than 832, so the input size of YOLOv3 is set to
832× 832. The structure is shown in Table 1. Shortcut connections have similar construction with
ResNet [42]. The route layers are to combine two feature maps or get the feature map of a previous
layer. The function of the up-sample layer is to up-sample the feature map with a stride of 2 via
bilinear interpolation. In addition, batch normalization layer [43] is utilized to make improvements in
convergence. We do not list this layer in Table 1, because each convolutional layer is followed by a
batch normalization layer.
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Figure 5. The K-means clustering result of training set. The x-axis and y-axis represent the width and
height of bounding boxes in pixels. The blue point represents the instance and the red point represents
the clustering point.
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Figure 6. The distribution of cyclist instances in test set. The x-axis and y-axis represent the width and
height of the ground-truth in pixels. One blue point represents one cyclist instance.
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Table 1. The structure of the YOLOv3 net.

Type Filters Size Output

conv 32 3× 3 832× 832
conv 64 3× 3/2 416× 416

conv 32 1× 1 416× 416
1× conv 64 3× 3 416× 416

shortcut 416× 416

conv 128 3× 3/2 208× 208

conv 64 1× 1 208× 208
2× conv 128 3× 3 208× 208

shortcut 208× 208

conv 256 3× 3/2 104× 104

conv 128 1× 1 104× 104
8× conv 256 3× 3 104× 104

shortcut 104× 104

conv 512 3× 3/2 52× 52

conv 256 1× 1 52× 52
8× conv 512 3× 3 52× 52

shortcut 52× 52

conv 1024 3× 3/2 26× 26

conv 512 1× 1 26× 26
4× conv 1024 3× 3 26× 26

shortcut 26× 26

3× conv 512 1× 1 26× 26
conv 1024 3× 3 26× 26

conv 18 1× 1 26× 26
detection

route
conv 256 1× 1 26× 26

upsample 2× 52× 52
route

3× conv 256 1× 1 52× 52
conv 512 3× 3 52× 52

conv 18 1× 1 52× 52
detection

route
conv 128 1× 1 52× 52

upsample 2× 104× 104
route

3× conv 128 1× 1 104× 104
conv 256 3× 3 104× 104

conv 18 1× 1 104× 104
detection

Unlike the previous version, YOLOv3 predicts boxes at three different scales. From Table 1,
the three detection layers are designed to preform prediction at three different scales. The similar
concept of feature pyramid networks [44] is used to extract features from these three scales. It means
that YOLOv3 divides the input image into three different sizes of grid: S1 × S1, S2 × S2, S3 × S3. If the
center of an object is in a grid cell receptive field, this grid cell is responsible for detecting this object.
Each grid cell predicts three bounding boxes. Thus, the number of YOLOv3 anchors is 9 and the
number of bounding boxes it can get is (S1 × S1 + S2 × S2 + S3 × S3) ∗ 3. These bounding boxes are
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analyzed and selected to get final detection results. Comparing with the previous version, YOLOv3
can get much better detection performance and the speed of it is still fast.

In order to get the anchors that YOLOv3 needs, K-means clustering is utilized to determine
bounding box priors. We set our anchors on the clustering result of K-means. In this network,
the number of anchors is set to 9, which is the same as [31]. At each scale, each cell uses three anchors
to predict three bounding boxes.

The distribution of cyclist instances in the training set and test set are shown in Figures 5 and 6
respectively. The coordinate x and y indicate the width and height of the ground-truth. Each blue
point indicates one instance. Comparing the data in Figures 5 and 6, the distributions of these two sets
are similar. We use K-means method to get nine clusters and set anchors according to the results of
K-means. The result is shown in Figure 5, each red point indicates one clustering point. In this work,
the nine clusters are: (33, 84), (62, 143), (93, 221), (129, 333), (177, 464), (244, 620), (252, 258), (384, 378),
(557, 623).

The inputs of YOLOv3 we used are outputs of ACF-PR. Therefore, the size of potential regions m
is set to 832, which is equal to the size of input size of YOLOv3. The outputs of YOLOv3 are inputs of
the post-processing process.

2.3. Post-Processing

The detection results of YOLOv3 are based on potential regions, and need to be mapped into
the original image. Because some potential regions may be partially overlapped when potential
regions are generated, several bounding boxes may be generated for one same object. In order to solve
this problem, a post-processing process including boxes mapping and non-maximum suppressing
is designed. The coordinates of bounding boxes from YOLOv3 are based on potential regions and
potential regions are gotten from original images. To get final detection results, the bounding boxes
should be mapped from potential regions into original images. The relationship between coordinates
of bounding boxes in potential regions and final coordinates in the original images is,

xb = xbp + xpo,

yb = ybp + ypo,
(13)

where, (x, y) indicate the x and y coordinates; the subscript b is for the bounding boxes in the original
image; the subscript bp is for the bounding boxes in the potential regions; the subscript po is for the
potential regions in the original image. The width, height and class of bounding boxes do not change
when they are mapped into the original image.

After mapping, overlapping detections may appear. One cyclist instance may have a number of
bounding boxes associated with it. Non-maximum suppression (NMS) is utilized to eliminate repeated
detections. b1 and b2 represent two bounding boxes. t represents the threshold. IoU(b1, b2) is defined,

IoU(b1, b2) =
b1∩ b2
b1∪ b2

, (14)

where, b1∩ b2 means the area of overlap, b1∪ b2 means the area of union. If IoU(b1, b2) > t, the NMS
step retains the bounding box with the highest score as the detection result. After this process,
the detection results of YOLOv3 are mapped into the original image.

3. Experiments

3.1. Dataset and Evaluation Protocol

Comparing with pedestrian detection, cyclist detection receives far less research attention.
The public challenging cyclist datasets is rare. Before 2016, only the KITTI object detection benchmark
has cyclist instances; however, the number of cyclist instances is less than 2000, which is insufficient
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for cyclist training and testing. In 2016, the public Tsinghua-Daimler Cyclist Benchmark (TDCB) [41]
was proposed, which contained more than 10,000 annotated cyclists.

As the only public cyclist detection dataset, TDCB still has some problems. Firstly, some cyclists
in this dataset are invisible even to human eyes because of high similarity with background, small-size
or occlusions. Secondly, some small cyclists cannot be distinguished from small motorcyclists. Thirdly,
the samples in its training set were captured under similar weather and light conditions, and cannot
cover very different weather and light conditions in the test set. These three problems may result in
bad generalization ability. Hence, in our experiments, we rebuilt the training set, the validation set
and the test set.

We firstly merge the original test and validation sets to a merged set. The 2758 images in
the merged set are randomly selected to form the new test set. The new rebuilt training set has
10,000 images, including 380 images randomly selected from the merged set and 9620 images in the
original training set; the rest of the images in the merged set form the new validation set. In this way,
the weather and light conditions in these three rebuilt sets do not show many differences. After sets
rebuilding, the percentages of the new training set, test set and validation set are approximately 70%,
20% and 10% respectively.

The method used in the PASCAL object challengers [32] is utilized here to show the relationship
between precision and recall rate. Here, we use P to represent precision and R to represent recall.
The precision and recall are calculated as,

P =
TP

TP + FP
, (15)

and,

R =
TP

TP + FN
, (16)

where, TP indicates the number of true positives, FP indicates the number of false positives and FN
indicates the number of false negatives.

The average precision (AP) is used here to represent the performance of detector. AP is defined as,

AP =
∫ 1

0
P(R)dR, (17)

where, R represents recall and P represents precision, both of which are between 0 and 1. P(R) here
represents the curve composed of P and R. Figure 7 is an example. A larger value of AP means better
performance. The PASCAL measure is used to assign the detection results to ground-truth objects,
which means that the area of IoU overlap must exceed the threshold of 0.5. IoU is used here to measure
the accuracy of detecting a corresponding object. IoU is defined as,

IoU =
DR ∩ GT
DR ∪ GT

, (18)

where, DR represents the detection region, GT represents the ground-truth region. DR ∩ GT means
the area of overlap, DR ∪ GT means the area of union. The threshold of IoU is set to 0.5, which means
that if IoU is larger than 0.5, this object is considered as a successful detection.

Our proposed region proposal method of ACF-PR was designed based on the latest version of
Dollár’s Computer Vision MATLAB Toolbox [40]. When training the detector, the cyclist instances
were extracted from training set with bounding boxes higher than 60 pixels and fully visible, and the
negative samples were from non-VRU set. YOLOv3 is open source. We trained our network based on
the pre-trained model on ImageNet [35]. Batch size is 64. The value of max-batches is set to 206,000,
and we used a learning rate of 0.0001 for 95,000 batches, and 0.00001 for the next 111,000 batches.
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Figure 7. Precision versus recall curves of various detectors with different settings in Tsinghua-Daimler
Cyclist Dataset. The average precision (AP) is listed before the name of each method. ACF-PR-YOLO
is the proposed method.

3.2. Evaluation of the ACF-PR Method

In this experiment, we compare ACF-PR with traditional ACF to show the efficiency and
improvement of the proposed ACF-PR method.

ACF-PR is designed to generate potential regions in high resolution images. The potential regions
are expected to contain all cyclist instances. The more cyclist instances in the potential area, the better
the detection results can be. In this experiment, a cyclist instance with more than 50% area in the
extracted potential regions is considered a region containing cyclist instances.

Table 2 shows that ACF-PR can generate potential regions that contain 100% cyclist instances
while ACF can only contain 69.22% cyclist instances. The result means that the potential regions
extracted from our ACF-PR contain 100% cyclist instances, which ensures the relatively good detection
performance of the following detection process. The detection rate of 69.22% gotten from ACF
means that the following detection rate will only be equal with or lower than 69.22%. In this
study, 832× 832 size potential regions are sent to YOLOv3 network for computing localization and
classification; in this case, the average ratio of the area of all potential regions to the area of original
images is 78%. The main reason why ACF-PR has such a large advantage is that it has the mechanism
of boxes merging and extending, which largely reduces the cyclist instances that are half detected
or missed.

Table 2. The cyclist detection rate with different region proposal methods.

Region Proposal Method Detection Rate (%)

ACF-PR 100%

ACF 69.22%
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3.3. Comparisons with Other Detection Methods

To evaluate the effectiveness of the proposed method, we compare the performance of our
proposed method ACF-PR-YOLO with some other methods including YOLOv3 [31], SSD [28], LDCF [5]
and ACF [40]. ACF-PR-YOLO represents the proposed method which utilizes ACF-RP for region
proposal and YOLO for detection. YOLOv3 and SSD are two representative one-stage deep learning
based detection methods. For YOLOv3, the class number is 1 and the other parameters are the same
as [31]. The bone net of SSD we used was VGG16 and the input size of it was 300× 300. LDCF and
ACF are popular traditional detection methods. Due to the limited computer memory problem, we
use 3798 images when training ACF and LDCF detectors. Though Li et al. has used TDCB dataset for
cyclist detection, we did not compare with them because there was an additional large training set for
training in [22] which is not publicly available.

The curves in Figure 7 show the overall detection performance of all detectors tested on the
TDCB dataset. From Figure 7, we can find that ACF-PR-YOLO outperforms YOLOv3 by 13.69% AP
and outperforms SSD by 25.27% AP. These results mean that the representative YOLOv3 and SSD
nets have poor performance in the cyclist detection problem; the main reason is that the YOLOv3
and SSD nets have relatively poor performance in detecting small-size objects in high-resolution
images. The proposed ACF-PR-YOLO outperforms by at least 13.69% better AP than these two
methods. From the comparison of ACF-PR-YOLO and YOLOv3, it can also be concluded that the
ACF-PR-YOLO has better AP than that of YOLOv3, because of using the proposed ACF-PR to generate
proposal regions.

Figure 7 also illustrates that the proposed ACF-RP-YOLO method outperforms LDCF and ACF
by 36.45% and 41.68% AP respectively. From experiments, we found that the LDCF and ACF methods
usually extract just part of the objects or extract inaccurate object regions, which is the main reason for
resulting in poor performance. This is also the reason why we use ACF to extract region proposals
instead of directly using ACF for detection.

From the data in Figure 7, it can be concluded that the proposed ACF-PR-YOLO outperforms other
methods in comparison. This achievement has three main reasons. Firstly, the ACF-PR can generate
potential regions that contain 100% cyclists in the region proposal extraction process; this process
can segment a high-resolution image into small potential regions, which can effectively avoid the
poor performance of YOLOv3 on high-resolution images. Secondly, on the segmented small-size
images, the YOLO can do fine detection achieving high performance on average precision. Thirdly,
the designed post-processing method is designed to select the most suitable bounding boxes and to
map them into a correct one.

Table 3 lists the detailed comparison with other popular detection methods including
YOLOv3 [31], SSD [28], LDCF [5] and ACF [40], using parameters of AP, code type and consuming
time per frame. In Table 3, the popular methods achieve relative low APs ranging from 41.01% to
69.00% in cyclist detection, while the proposed ACF-PR-YOLO can detect cyclists in a high AP of
82.69% and with an average consuming time of 0.35 s. Hence, the proposed ACF-PR-YOLO method
can detect cyclists with high precision of 82.69% AP and small consuming time of 0.35 s. Our proposed
method, running on a 3.20-GHz i5 CPU processor and a TITAN X GPU processor, needs about 0.35 s
per image (2048× 1024). The time consumption of these three parts is listed in Table 4. ACF-PR is
written via Matlab and runs on a 3.20-GHz i5 CPU. It costs about 0.18 s per image. YOLO is written
via C and it runs on a TITAN X GPU. The time it costs is about 0.164 s. The post-processing step is
written in Matlab and runs in CPU. It costs 0.003 s.

Some results of performing our detector on the TDCB dataset with different scenarios are shown
in Figure 8. Figure 8 illustrates that our detector can have good performance in different scenarios. Our
method can not only detect cyclists in complex backgrounds and dense crowds, but also can separate
cyclists from pedestrians.
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Table 3. Comparison with other popular detection methods.

Method Code type AP (%) Time (s)

ACF-RP-YOLO MATLAB+C 82.69% 0.35

YOLOv3 [31] C 69.00% 0.03

SSD [28] PYTHON 57.42% 0.15

LDCF [5] MATLAB 46.24% 1.5

ACF [40] MATLAB 41.01% 0.18

Table 4. The consuming time and code type of each part of ACF-RP-YOLO.

Parts of ACF-PR-YOLO Time (s) Code Type

ACF-RP 0.18 MATLAB

YOLOv3 0.164 C

post-processing 0.003 MATLAB

(a) (b)

(c) (d)

(e) (f)

Figure 8. Cont.
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(g) (h)

Figure 8. Some results of performing our detector on “Tsinghua-Daimler Cyclist Benchmark” with
different scenarios. The images from (a) to (h) are the detection results in complex environments.
In order to have a better visual effect, the contrast and brightness of the images above are enhanced for
display. Blue bounding boxes represent detected cyclists.

4. Conclusions

Some representative fast deep networks including YOLO and SSD usually cannot achieve
high precision when dealing with small-size objects and high resolution images. To overcome this
problem, a framework for cyclist detection in large high-resolution images is presented in this paper.
The framework contains an ACF-PR region proposal method, a YOLOv3 net for cyclist detection and a
post-processing step.

In order to extract potential regions from high resolution images, the region proposal method of
ACF-PR is proposed. In ACF-PR, an ACF detector is firstly utilized to fast extract candidates; then a
bounding boxes merging and extending method is designed to merge the bounding boxes into correct
region proposals for the following YOLO net. Then a suitable YOLOv3 net is designed to do detection
in the potential regions generated by ACF-PR. The YOLOv3 net has a better performance on small-size
potential regions rather than that on high-resolution original images. Lastly, a post-processing step
is performed to select the most suitable bounding box and to map it into original images with
high resolution. We evaluate our method on the public TDCB dataset and compare it with other
representative methods. The experiments demonstrate that it outperforms the representative methods
in our comparison, and that it outperforms YOLOv3 by 13.69% average precision and outperforms
SSD by 25.27% average precision.

Although our algorithm is designed for cyclist detection, it has great potential for other object
detection. In the future, in order to improve detection performance, we plan to develop an efficient
detection algorithm that can adapt to more complex scenarios. Instead of designing a single frame
detector, we plan to do detection based on video and do research on the feature relationship between
consecutive video frames.
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Abbreviations

The following abbreviations are used in this manuscript:

ACF Aggregated channel feature
ACF-PR Aggregated channel feature based region proposal method
YOLO You only look once
TDCB Tsinghua-Daimler cyclist benchmark
ADAS Advanced driver assistance systems
VRU Vulnerable road users
HOG Histogram of oriented gradients
SVM Support vector machine
DPM Deformable part model
LDCF Locally decorrelated channel feature
ROI Region of interest
R-CNN Region based convolutional network
Fast R-CNN Fast region based convolutional network
Faster R-CNN Faster region based convolutional network
Fused DNN fused deep neural network
SSD Single shot multibox detector
LUV CIELUV color space
modelDs Model height and width without padding
modelDsPad Model height and width with padding
nNeg max number of negative windows to sample
nAccNeg max number of negative windows to accumulate
NMS Nom-maximum suppression
VGG16 Visual geometry group network with 16 layers
AP Average precision
GPU Graphics processing unit
CPU Central processing unit
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