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Abstract: In this paper, we describe a robust method for compensating the panning and tilting
motion of a camera, applied to foreground–background segmentation. First, the necessary internal
camera parameters are determined through feature-point extraction and tracking. From these
parameters, two motion models for points in the image plane are established. The first model
assumes a fixed tilt angle, whereas the second model allows simultaneous pan and tilt. At runtime,
these models are used to compensate for the motion of the camera in the background model. We will
show that these methods provide a robust compensation mechanism and improve the foreground
masks of an otherwise state-of-the-art unsupervised foreground–background segmentation method.
The resulting algorithm is always able to obtain F1 scores above 80% on every daytime video in our
test set when a minimal number of only eight feature matches are used to determine the background
compensation, whereas the standard approaches need significantly more feature matches to produce
similar results.

Keywords: PTZ camera; camera parameters; motion compensation; foreground–background
segmentation

1. Introduction

Pan-tilt-zoom (PTZ) cameras provide maximum coverage of a scene with a single camera.
They expand the level of flexibility, since the operator can select the desired camera viewpoint at
runtime, which is not possible with standard fixed-camera solutions. PTZ cameras are therefore
applied in numerous applications, such as the detection of people in prohibited areas or in the counting
of vehicles.

To further automate these applications, the interesting objects (foreground) first need to be
separated from less interesting ones (background). This process is called foreground–background
segmentation. Many foreground–background (FGBG) segmentation algorithms have been proposed
in the literature and an extensive overview will be presented in Section 2. However, coping with
a panning or tilting camera still poses a challenge for these algorithms, and thus the potential of
automated PTZ camera analysis currently remains unfulfilled.

Most FGBG segmentation methods are built on the following principle: a model of the appearance
of the background is learned and constantly updated. Given this model, a region in the image is
classified as ‘foreground’ in locations where the current appearance differs significantly from the
modeled appearance. As long as the camera position and orientation remain static, the background
model can be locally tuned (whether automatically or not) to handle certain challenging conditions,
such as dynamic backgrounds or changing illumination. However, once the camera starts rotating or
tilting, it becomes difficult to adjust the entire background model to continue detecting foreground
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objects accurately, and standard motion compensation techniques are not sufficiently robust to
overcome this issue [1,2].

The specific, restricted nature of the motion of PTZ cameras offers some interesting solutions
to this problem. In this paper, we show that the apparent motion of points on the image plane
can be described in a rigorous mathematical framework. We will demonstrate that by analyzing
feature correspondences for a given panning camera regarding this framework, a more robust motion
compensation method and thus more reliable foreground masks can be constructed. The three main
contributions of this paper can be summarized as follows:

1. We propose a novel method which automatically determines the parameters that are necessary
to model a panning camera (i.e., the initial tilt angle and focal length) at runtime. No specific
calibration objects (e.g., markers or checkerboard patterns) need to be used. Only feature tracks
corresponding to background objects need to be extracted.

2. We demonstrate two novel camera motion compensation methods, capable of coping with purely
panning or pan/tilt motions of cameras, respectively. These methods estimate the motion between
two successive frames from several matches, by exploiting the calculated camera parameters
mentioned above. We will demonstrate that these compensation mechanisms are very robust,
even when the camera motion is estimated from a low number of feature matches.

3. The panning camera model and compensation frameworks are embedded into the state-of-the-art
FGBG segmentation algorithm described in [3], using it to compensate for the pan/tilt motion in
the background model when necessary. Compared to the original (affine-based) compensation
mechanism and a full 8 degree of freedom homography-based compensation, the proposed
mechanism delivers notably higher F1 scores for a low number of feature matches.

In the next section, we present an overview of relevant methods related to foreground–background
segmentation and camera motion compensation. In Section 3, a description of the camera model
and an overview of the notations used are presented. Then, in Section 4 mathematical models for
a purely panning camera and a simultaneously panning and tilting camera respectively are derived.
The proposed panning camera framework allows us to determine the focal length and (fixed) tilt angle,
which is demonstrated in Section 5. Once these parameters are known, the proposed model can be
used further to compensate for the motion of the camera between successive frames, which is treated
in Section 6. The integration in the FGBG segmentation method is described in Section 7. Experiments
and the evaluation of the algorithm are treated in Section 8.

2. Related Work

Recently, there has been a surge in high-performing semi-supervised video segmentation methods.
These methods typically combine spatiotemporal features and semantic information (e.g., embedded
in a Convolutional Neural Network or a similar deep learning architecture). The segmentation masks
are inherently steered towards more probable foreground objects, such as cars, cyclists or pedestrians,
using networks trained on large databases such as ImageNet [4] as a backbone. This allows them to
achieve very accurate segmentation results in nearly any scenario, given that at least one manually
annotated frame is available [5–7]. Modern unsupervised video segmentation methods are also able to
accurately detect such objects by making additional assumptions about object motion or the camera
setup [8], but still typically require the entire video to be processed before the output is generated.

The segmentation methods described above are suitable for applications such as automatic video
annotation or fine-grained sports analysis. However, for other domains such as automatic surveillance
or obstacle detection in traffic, there is a need for immediate, real-time detection of anything that can be
considered noteworthy, without the possibility to first manually annotate a frame or process an entire
video. An alternative and well-studied foreground-detection approach is background subtraction,
where input frames are compared to a background model that is built over previous samples and
maintained during the entire sequence. This approach is essentially agnostic towards which specific
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foreground object is present in the scene, which means any significant change in the scene can be
detected in real time, regardless of object class. With the aforementioned surveillance and traffic
applications in mind, the foreground–background segmentation algorithm presented in this paper is
based on the background subtraction principle.

Many background subtraction-based foreground–background segmentation algorithms can be
considered to be extensions to the seminal Mixture of Gaussians (MoG) method by Stauffer and
Grimson [9]. The main strategy is to model the background appearance (often color or intensity) as
a mixture of Gaussian distributions per pixel. Static background regions can be modeled with a small
number of significant, narrow Gaussian components, while more dynamic regions are modeled by
a larger number of and/or wider Gaussian distributions. Comprehensive overviews of MoG-based
methods can be found in [10,11].

More recent FGBG segmentation methods diverge from the MoG-based model in favor of a more
efficient representation. The ‘codebook model’ replaces the Gaussians with a collection of codes, each
consisting of the typical color values, and a maximal lightness and hue divergence [12]. This enables a
shorter processing time, while still providing a decent flexibility. Another category of algorithms stores
the model by a collection of samples, rather than by its parameters [13,14]. This category of algorithms
can model background distributions which cannot be represented accurately by a Mixture of Gaussians.
Furthermore, alternative features such as image gradients [15], Local Binary Patterns [16] or derived
versions of them [17–19] provide more robustness when the illumination changes in the scene.

The most recent improvements came in the form of adaptive background maintenance. The basic
idea is to update the model more rapidly and to raise the detection threshold automatically in dynamic
regions. These regions can be identified by a typically larger deviation between the input and the
background model [20] or from the detection of ‘blinky’ foreground pixels [17,18]. When the camera
moves however (e.g., PTZ), the background model cannot be updated in a straightforward manner.
In this scenario, pixels in the input image no longer correspond to their counterparts stored at the same
locations in the background model. Hence, the background model cannot be directly updated from
the locally corresponding input pixels.

Image registration between the input and the modeled background provides a solution to
this problem [21]. Currently, the best performing unsupervised method in the literature on the
ChangeDetection.NET 2014 dataset [22], on the full category of PTZ cameras is C-EFIC [3]. To explain
why classical algorithms cannot be used on PTZ cameras, we have a closer look at the adjustment
mechanism it uses to specifically compensate for camera motion: C-EFIC assumes that the bulk
of the scene remains static throughout the sequence. Hence, most optical flow vectors (calculated
between successive frames) represent the motion of the camera. This property is exploited in two
ways. First, camera motion is detected whenever significant flow vectors are found in a large portion
of the current input image. Second, the optical flow vectors are used to determine the best affine
transformation between images in a RANSAC framework. Specifically, C-EFIC combines a static and
a dynamic camera background model. When camera motion is detected, the background images
in the dynamic model are affinely transformed such that they correctly overlap the current input
image, based on feature matches and RANSAC. Hence, the foreground mask is extracted from local
comparison between the input and the transformed background model and this model is also updated
accordingly. When no camera motion is detected, the (non-compensated) static model is used to detect
foreground regions.

Though the C-EFIC method is efficient and the results are good compared to other state-of-the-art
methods [23], the affine approximation only holds for points close to the principal ray [24]. This means
that points near the borders of the image will not be transformed accurately, especially when wide
angle lenses are used. For PTZ cameras, it can be shown that the transformation between two PTZ
frames is well approximated by a homography. This assumption also remains valid in many practical
situations when the distance to the scene is large in comparison with the translations of the camera [25].
Hence, foreground–background segmentation can be improved by incorporating such a transformation
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to compensate for camera motion [26]. The seminal method to calculate a homography transformation
uses the Direct Linear Transformation (DLT) [24]. The basic DLT method computes a homography
estimation by directly solving a set of eight equations, obtained from four image point correspondences.
When significantly more point correspondences are available, a much more robust estimate is found in
a nonlinear optimization framework.

However, such correspondences are not always available in typical applications requiring
FGBG segmentation, e.g., when the background consists of large flat or dynamic regions. Yi et al. [1]
and Kim and Kwon [2] argue that the ‘standard’ approach of estimating the (full 8 degree of
freedom) homography from a set of feature matches as a standalone compensation mechanism
is not sufficiently robust, i.e., such a compensation mechanism is not accurate enough to enable
correct pixel-level comparisons between an input image and a background model in the context of
foreground–background segmentation.

In these situations, reducing the number of degrees of freedom when possible provides a potential
solution. Li et al. [27] exploit the specific nature of pan/tilt camera motion to estimate a new pan/tilt
position from a control point, assuming the camera’s intrinsic parameters and previous position are
known. Chen et al. [28] combine this method with a random forest-based regression learning approach
to accurately estimate the pan/tilt position in the context of a soccer field, using known 3D positions
of line intersections on the playing field. Interestingly, Junejo and Foroosh [29] have shown that by
taking into account the conic structure of the paths on the image plane (see Section 4.2), it is possible to
improve both accuracy and noise resilience for panning or tilting cameras.

In this paper, we will further exploit the conic structure in a fundamental way. We will show
how these paths can be described for a panning and/or tilting camera, even without having any
prior knowledge about the location of points in the scene, the camera parameters or the initial camera
pan/tilt position. By first determining the possible paths in the beginning of the sequence, the focal
length and initial tilt angle of a PTZ camera can be found. This decreases the number of degrees of
freedom to 1 for purely panning and 2 for simultaneous pan and tilt, as opposed to the 8 degrees
of freedom in the DLT method. We will demonstrate that the background model compensation
framework in [3] becomes much more robust when using the proposed techniques.

3. Background and Notations

In accordance with the notations used in [24], a vector (e.g., representing the coordinates of a
point) will always be represented by a bold-faced symbol. Upper case letters will be used for world
coordinates, while lower case letters are used for image coordinates. The projective action of a camera
is described by the following equation:

wx = PX , (1)

where w is a constant, X = (X, Y, Z, 1)T is a point in 3D space in homogeneous coordinates,
x = (x, y, 1)T is the projection of X on the image plane in homogeneous image coordinates and P
is the homogeneous 3 by 4 camera projection matrix. Please note that X can also be described in terms
of spherical world coordinates:

(X, Y, Z, 1)T = (d cos γ sin β, d sin γ, d cos γ cos β, 1)T , (2)

where d is the Euclidean distance from the camera center to X, β is the azimuthal angle and γ is the
polar angle (see Figure 1). Spherical coordinates with respect to the camera center will simplify the
mathematical expressions for a rotating (panning) camera in the next section.
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Figure 1. The pinhole camera model. A point X is projected on the image plane in x. d is the distance
from X to the camera center. β and γ are the azimuthal and polar angles of the ray from X through the
optical center, respectively. f is the focal length of the camera.

For a finite projective camera, P can be decomposed as follows [24]:

P = KR0[I| − C], where K =

 fx s xp

0 fy yp

0 0 1

 , (3)

R0 is a 3d rotation matrix and C is the location of the camera center, expressed in non-homogeneous
world coordinates. For many real camera applications, a few reasonable assumptions [30] and
coordinate choices can be made to simplify (3):

1. The skew s is zero.
2. The pixels are square, i.e., fx = fy = f (the focal length).
3. The principle point is (xp, yp)T = (0, 0)T in non-homogeneous image coordinates.
4. The camera center coincides with the origin of the chosen World Coordinate System,

so C = (0, 0, 0)T = 03
T .

5. The principal axis coincides with the Z-axis, so the rotation matrix R0 = I3, where I3 is the (3 by 3)
identity matrix.

With the above assumptions, (3) simplifies to

P = diag( f , f , 1)[I3|03
T ] . (4)

After this simplification, the mapping of a 3D point onto an image point can be written as

(X, Y, Z)T 7→
(
− f X

Z
,
− f Y

Z

)T
. (5)

The previously described structure is well known as the ‘pinhole camera model’ (see Figure 1).
This model will form the basis for the mathematical description of a panning camera in the next section.
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4. Mathematical Description of Pan and Tilt

4.1. General Pan and Tilt

Most PTZ cameras are constructed such that they have two distinct rotating axes. The first rotating
axis provides the panning motion, while the second one provides tilting. It is important to note here that
the tilting axis is affected by panning. Hence, when the camera is simultaneously panning and tilting,
the model can generally not be described by a rotation about a fixed rotational axis. However, when the
tilt angle remains constant, the rotational axis remains aligned with the panning axis. This special case
will be treated separately in Section 4.2. In this section, we describe the 2 degree of freedom (leaving
pan and tilt angle) function that maps image points at different pan and tilt angles onto each other.

The position of the camera center can be assumed to remain static for a PTZ camera [25]. Hence,
the effect of a general camera rotation on an image point x can be modeled as [24]

x′ = Hx = KRK−1x , (6)

where x′ is the transformed position of x in homogeneous coordinates, K is the intrinsic calibration
matrix which equals diag( f , f , 1) when using the pinhole camera model and R is a general rotation
matrix in 3 dimensions. This matrix can be decomposed into several rotations along the X, Y,
and Z axes.

The camera orientation can be defined by the current panning angle θ and the tilt angle
α. Let x(θ, α) denote the projection of the same 3D point X after panning by θ and tilting by α.
Let x0 = x(0, 0) denote the projection of that 3D point when the camera is at its reference position,
with θ = 0 and α = 0. The effect of a general camera rotation on the projection of X is thus given by

x(θ, α) = KRαRθK−1x0 ,

where



Rα =


cos α 0 − sin α

0 1 0

sin α 0 cos α


Rθ =


1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 .

(7)

The inverse transform is

x0 =KR−1
θ R−1

α K−1x(θ, α) (8)

=KR−θ R−αK−1x(θ, α) . (9)

Hence, a general PTZ camera motion from (θ, α) to (θ′, α′) can be decomposed as

x(θ′, α′) =KRα′Rθ′K
−1KR−θ R−αK−1x(θ, α) (10)

=KRα′R(θ′−θ)R−αK−1x(θ, α) (11)

=KR(α+∆α)R∆θ R−αK−1x(θ, α) , (12)

where ∆α = α′ − α and ∆θ = θ′ − θ.
In Sections 5 and 6, methods to derive both the fixed-camera parameters and runtime camera

positions will be proposed. The remainder of this section will further elaborate on the important
special case where the tilt angle is fixed.
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4.2. Panning with Fixed Tilt Angle

We first consider a single track of one specific scene point X. When the camera is purely panning
with a fixed tilt angle, the apparent motion of X can be modeled by a rotation about an axis in the
YZ-plane (Figure 1). If the coordinate system is assumed to rotate along with the camera, tilting the
camera is equivalent to rotating points in space in the opposite direction until the rotational axis
becomes aligned with the Y-axis: 

X = X′

Y = Y′ cos α + Z′ sin α

Z = −Y′ sin α + Z′ cos α ,

(13)

where the new world coordinates are defined by X′, Y′ and Z′, and α is the fixed tilt angle. Since the
point X rotates in a plane with fixed Y′ = d sin γ, the apparent motion of X can be described w.r.t these
axes as 

X′ = d cos γ sin θ

Y′ = d sin γ

Z′ = d cos γ cos θ ,

(14)

where d and γ remain fixed (for this scene point) and θ is the parametric rotation angle of the
camera. Please note that (14) is immediately clear if we use spherical coordinates for X (see Section 3).
Combining (5), (13) and (14), the apparent motion of the projection of X on the image plane can be
described parametrically as 

x =
− f cos γ sin θ

− sin α sin γ + cos α cos γ cos θ

y =
− f cos α sin γ− f sin α cos γ cos θ

− sin α sin γ + cos α cos γ cos θ
.

(15)

From this expression, we can derive the implicit equation describing the full trajectory of a point
(see Appendix A):

Acx2 + Bcy2 + Ccy + Dc = 0 ,

where


Ac = 1− cos(2γ)

Bc = − cos(2α)− cos(2γ)

Cc = −2 f sin(2α)

Dc = f 2(cos(2α)− cos(2γ)) .

(16)

This is the equation of a conic in the image plane, which represents the apparent motion of a feature
point in the image when the panning camera rotates. Please note that this observation agrees with the
well known property that the apparent trajectories of points on the image plane, caused by a rotating
camera about an arbitrary axis through the camera center, are described by conics [24,29]. This specific
form of the equation allows us to derive some important geometric properties of the trajectories:

1. The apparent motion is always symmetric regarding the y-axis.
2. If Ac is strictly positive, the conic is a hyperbola whenever Bc < 0, an ellipse when Bc > 0 and

a parabola when Bc = 0, or more specifically when γ + α = π
2 .

3. If Ac = 0 (specifically γ = 0), the conic degenerates to a coincident double line.
4. Non-zero values for Cc indicate a vertical shift.
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One can observe that d does not appear in (15) and (16). The apparent motion is thus independent
of depth. Furthermore, all rays that have the same polar angle γ (with respect to the X’Y’Z’ coordinate
system) are projected to points that lie on a common trajectory.

The remaining parameters in (16) are the focal length f and the tilt angle α. They define the
panning camera model and are thus the same for all scene points for a given camera setup. Please note
that γ also does not change when the camera is panning, but it does depend on the location of
the scene point being tracked. Only points in front of the camera are considered such that γ lies in[
−π

2 − α, π
2 − α

]
. Figure 2 shows notable examples for different values of the tilt angle α. In Section 5,

we will demonstrate how an estimation of these fixed parameters can be obtained from a set of
observed trajectories.

(a) (b) (c)

Figure 2. Examples of the theoretical conic shaped tracks, for different tilt angles α. (a) α = 0,
(b) α = π

4 , (c) α = π
2 .

5. Panning Camera Fixed Parameter Estimation

We will first describe a scenario where the camera is purely panning and the focal length f and tilt
angle α are still unknown. In this scenario, these parameters are both fixed. Once they are determined,
f and α can be used in the composition of the homography for the remainder of the sequence, as will be
demonstrated in Section 6. In our proposed method, the parameters are derived from analysis of feature
tracks in the beginning of the sequence. Features coinciding with static background points should
resemble the structure described by (16), where deviations can be explained by either unmodeled
phenomena (e.g., rotational axis not through optical center, camera vibrations, lens distortion, . . . ) or
measurement noise.

Our algorithm for finding f and α consists of two major steps. The first step is to determine feature
points in every frame, and then track them until no more matches are found. In this work, we chose
SURF features [31], since they provide robust points, while still being relatively computationally
inexpensive. Please note that we expect only very small rotational and scale differences between
successive frames, so in practice, also non-rotation or non-scale invariant features can be used.

Tracking is done by FLANN matching of points in successive frames [32], ending a track when
no match is found. Furthermore, we also estimate the (unconstrained) homography with the DLT
algorithm [24]. Feature correspondences that deviate too far (i.e., more than 1 pixel width) from the
position calculated by the DLT are discarded. When such a large deviation occurs or when no match is
found, the track is ended and stored in memory. Tracks that are too short (i.e., consisting of less than
10 points or spanning less than 10% of the entire image width) are deemed unreliable and omitted
from further evaluation. An example of feature tracking in a panning camera can be found in Figure 3.

The second step consists of a nonlinear optimization to obtain good estimates for f and α,
where the objective function to be minimized is the sum of squared distances between the observed
points and the conics described by (16). Hence, when α and f are known, (16) determines a family of
curves with parameter γ. This family represents all possible feature tracks for a panning camera with
a fixed tilt angle. All points which are part of the same track j will possess the same polar angle γj.
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Figure 3. Example of feature-point tracking using SURF [31] in a panning video. The tracks of distinct
feature points are visualized in different colors. Please note that tracks represent the apparent trajectory
in the image, and not their motion throughout the scene.

Calculating the exact distance from a point to a conic is quite complex in nature [24]. In [33], an
alternative cost function was proposed, which is much simpler to determine, while still providing a
close approximation to the true geometric error.

The conic in (16) can be written alternatively as

xTCx = 0, where C =

Ac 0 0
0 Bc Cc/2

0 Cc/2 Dc

 . (17)

The Sampson approximation to the exact squared geometric distance between a point x and a conic,
described by C, is defined as

g̃2 =
(xTCx)2

4((Cx)2
1) + (Cx)2

2)
, (18)

where (Cx)i denotes the i-th component of the vector Cx. The cost function that we use consists of the
sum of these squared distances (defined by (18) ) from all measured points to the conics, regarding f , α

and γ, where γ = γj for the j-th stored track. Let xi
j for i = 1 . . . Mj be Mj points on the j-th trajectory,

where M distinct point tracks were created in the first step. Our goal is to find α, f and γj for 1 ≤ j ≤ M
such that is minimal.

∑
j=1...M

∑
i=1...Mj

g̃2(xi
j, α, f , γj)) (19)

Theoretically, if there are M distinct tracks, it is possible to simultaneously optimize f , α and
every γj for 1 ≤ j ≤ M. However, nonlinear optimization requires finding a good initial estimate for
all parameters, which is not a straightforward process in this optimization problem. Please note that
this is also the reason we use (16) instead of (15) in our optimization framework, since the parameter θ

(and, thus, the need to optimize its value for every feature point) is eliminated.
Luckily, finding the best estimate of the γj values can be considered to be a distinct problem for

every track, once a good estimation for f and α was found. Finding the best fit for a certain track j
then only requires optimizing one parameter γj. Furthermore, from (16) follows (see Appendix B)

cos(2γj) = sin(2α + φj) , where φj = arctan
f 2 − y2

j

−2yj f
(20)

when x = 0. Thus, given the y-intercept yj of a track and an estimate for f and α, we immediately
obtain an estimate for γj and the fitting cost for this particular track can be determined. All observations
mentioned above are united in Algorithm 1, which we use to determine optimal values for f and α.



Sensors 2019, 19, 2668 10 of 27

Algorithm 1: Determination of f and α for a panning camera.
Input: Feature tracks, together consisting of n ≥ nmin = 200 feature points
Output: Stable estimates for the focal length f and tilt angle α

initialization: Obtain an initial guess of f and α, e.g., from the camera specifications. If not possible,
try multiple initial guesses and select the solution with the lowest fitting cost after the first pass of the
algorithm.

repeat
conic fitting: Fit a conic to each track and determine the intercept of this conic with the y-axis.
Using (20), determine initial guesses for every γj.

nonlinear optimization: Minimize the cost function in (19) with the algorithm described in [34].
This yields refined estimates for f and α.

until f and α converged;

In our experiments, the algorithm always converged after only two passes, i.e., the optimization
algorithm [34] detected an optimum coinciding with the initial values and, thus, returned the same
values for f and α when more iterations were executed. The full two-pass algorithm had a total
execution time of 0.6s on our hardware setup (desktop computer, single CPU).

The selection for nmin = 200 will be treated in more detail in Section 6.3, but we already briefly
mention the basic idea to arrive at its value: on the one hand, when many feature points are used, a
more robust estimate of the parameters can be found. On the other hand, since the parameters are not
known in the beginning of the sequence, the proposed camera compensation mechanism (see Section 6
and beyond) cannot be used until f and α are known, which potentially sacrifices the benefits of
the proposed method early on if the optimization process can only start after a large portion of the
sequence has already been processed. Furthermore, in the next section we will demonstrate an update
mechanism for f and α, to be used after their values are (initially) determined, enabling fast correction
of a relatively poor initial estimate.

6. Pan/Tilt Camera Position Estimation

6.1. Panning with Fixed Tilt Angle (PFT)

Once they are known, the estimated values for f and α are used to determine the panning angle,
i.e., the amount of azimuthal camera rotation between successive frames (∆θ). If the camera only
rotates about the predefined axis, the γ of any given point also remains constant, and only the θ

parameter varies. Furthermore, the calculated difference of θ between two successive frames should
be the same for all points in the image. These characteristics can be exploited to calculate the panning
angle between two frames, as described further in this section.

To obtain an estimate for ∆θ, we observe that from (15) (see also Appendix A) the values of the
azimuthal angle θ can directly be determined for any given (x, y) position:

tan θ =
x

y sin α− f cos α
. (21)

Thus, for any given pair of feature-point matches, both their panning angles θ can be calculated in
that fashion, which immediately entails an estimate for the angular difference between them. We can
repeat this process for any number of (robust) feature matches, and select the median of all angular
differences as a robust estimate for ∆θ. Hence, Algorithm 2 is used to determine the angle the camera
has panned, between the times the last 2 frames were captured.
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Algorithm 2: Determination of the panning angle between successive frames with fixed tilt.
Input: Input frames captured at t− 1 and t, estimates for f and α

Output: Panning angle between t− 1 and t

optical flow calculation: Calculate sparse optical flow vectors using a pyramidal implementation of
the Lucas–Kanade feature tracker [35]. At a given feature point pi, the flow represents pi - p′i, where
p′i is the location of that point in the next frame.

flow vector selection: Filter the obtained flow vectors in a RANSAC framework, removing vectors
based on the transfer error (distance between observed position and the one calculated from the
calculated homography).

forall Feature-point pairs (pi, pi
′) do

calculate ∆θi: Determine the azimuthal angles for both pi and pi
′ using (21). ∆θi is the angular

difference between pi and pi
′.

end
angle selection: Select the median of all ∆θis as the panning angle.

The estimated panning angle is reliable as long as the camera parameters ( f and α) remain
unchanged. In the following subsection, a model which can handle intermediate camera tilting (change
in α) is explained.

6.2. Simultaneous Pan/Tilt (SPT)

If the tilt angle changes, the previously described rotation angle determination mechanism no
longer works, since a fixed tilt angle was assumed there. In this subsection, a method which can cope
with these changes is proposed, although an additional degree of freedom (related to the changing tilt
angle) needs to be introduced. Note that we still assume an estimate for the initial tilt angle is known.
This estimate can either be calculated with Algorithm 1 (only if the tilt angle remains fixed during this
initialization phase) or requested from the camera software when available.

The goal is to obtain robust estimates for ∆θ and ∆α. (7) describes the position of a projected
point x in terms of of α, θ, f and its projected position x0 for pan and tilt angle equal to 0. A change in
camera pan/tilt results in different values for θ and α, while f is constant. The Jacobian matrix J(θ,α),
derived from this 2D function (see Appendix C for the full derivation) indicates how the position of a
certain point is transformed for small ∆θ and ∆α:

J(θ, α) =

[
dx/dθ dx/dα

dy/dθ dy/dα

]

=

−( f + x2

f ) cos α− y sin α
xy
f

− xy
f cos α + x sin α f + y2

f

 .

(22)

The top and bottom row represent the change in x and y respectively. Through linearization,
approximated values for the optical flow (∆x, ∆y) can be found by combining the effects of ∆θ and ∆γ

as follows: 

∆x ≈ dx
dα ∆α + dx

dθ ∆θ

≈ xy
f ∆α− (( f + x2

f ) cos α + y sin α)∆θ

∆y ≈ dy
dα ∆α + dy

dθ ∆θ

≈ ( f + y2

f )∆α− ( xy
f cos α− x sin α)∆θ .

(23)
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Since the optical flow vectors can be calculated by a separate algorithm (e.g., [35]) and can thus be
considered to be known, only two unknown variables remain in (23), which can be calculated as

∆α ≈ (( f 2 + y2)∆y− xy∆x) cos α + f (x∆x + y∆y) sin α

( f 2 + x2 + y2)( f cos α + y sin α)

∆θ ≈ xy∆y− ( f 2 + y2)∆x
( f 2 + x2 + y2)( f cos α + y sin α)

.

(24)

Thus, at every pixel x, ∆θ and ∆α can be determined in a similar manner to the purely panning
camera, using Algorithm 3.

Algorithm 3: Determination of the panning and tilting angles between successive frames with
simultaneous pan/tilt.

Input: Input frames captured at t− 1 and t, estimates for f and α

Output: Panning and tilting angle between t− 1 and t

optical flow calculation: Calculate sparse optical flow vectors using a pyramidal implementation of
the Lucas–Kanade feature tracker [35]. At a given feature point pi, the flow represents pi - p′i, where
p′i is the location of that point in the next frame.

flow vector selection: Filter the obtained flow vectors in a RANSAC framework, removing vectors
based on the transfer error (distance between observed position and the one calculated from the
calculated homography).

forall Feature-point pairs (pi, pi
′) do

calculate ∆θi and ∆αi: directly from (24).
end
angle selection: Select the medians of all ∆θis and ∆αis as the panning and tilting angles, respectively.

6.3. Increasing Robustness by Selective Parameter Updates

Up to this point, we assumed the focal length f and tilt angle α were perfectly estimated, and
that f always remains unchanged throughout each sequence. For ‘fixed tilt’ sequences, we naturally
also assumed α is always fixed. However, for robust practical usage it is useful to update these
parameters further in the sequence. There are two main reasons to perform such an update at runtime,
each requiring a different update approach:

1. These parameters can unexpectedly change (slightly) further in the sequence. The fixed tilt angle
could e.g., be altered due to occurring vibrations. The focal length could for example change
slightly due to refocusing on the PTZ camera itself. These parameters are now again (temporarily)
‘fixed’, but at different values from before. Since these alterations potentially occur at any given
point in the sequence, it makes sense to use constant update ratios.

2. The estimated parameters generally become more accurate as more feature points are used in the
optimization framework (see Section 5). However, this also leads to a slower estimation of the
fixed parameters, while yielding only marginal accuracy gains at runtime from a certain point
on. When the parameters are estimated more roughly and refined later, they can already provide
small robustness gains earlier in the sequence. These refinements can be most effectively executed
shortly after the parameters are initially estimated.

To avoid a full iterative re-estimation of f and α as is done in Algorithm 1, we propose an
update mechanism for the fixed parameters with a much lower computational load. The general
idea is to check whether better estimates for f and α can be found close to their current values,
while the update mode can change in each frame. The objective function is the symmetric transfer
error, i.e., the combined distance between the observed feature locations in the current frame and the
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calculated feature locations, estimated from transforming the previously observed feature points with
the homography (obtained as described in Sections 6.1 and 6.2) and vice versa.

Let t be the current frame and t0 the frame on which the initial parameter estimation was done.
The update mechanism is governed by ft = ft−1 + e f

(
D f ,c + a f r(t−t0)

f

)
αt = αt−1 + eα

(
Dα,c + aαr(t−t0)

α

)
,

(25)

where D f ,c, Dα,c, a f , aα, r f and rα are constants. e f and eα are selected from {−1, 0, 1}. This mechanism

yields either a negative, no or a positive step with sizes D f ,c + a f r(t−t0)
f and Dα,c + aαr(t−t0)

α for ft and
αt respectively, such that the objective function is minimal. Hence, only 9 calculations of the objective
function, and no computationally expensive function gradient or step size calculations are required.

One major benefit of this updating framework is its well-defined behavior. The following
observations can be made:

1. If the current estimates are already sufficiently close to the optimum, e f = eα = 0 and the estimates
for f and α will not be altered. Otherwise, by choosing values of ±1 for e f and/or eα, the values
for f and α that provide the lowest symmetric transfer error are selected.

2. The constant terms D f ,c and Dα,c are primarily used to compensate changes to the ’fixed’
parameters themselves, typically taking place after the initialization period (t� t0). The updating
mechanism (25) then simplifies to {

ft = ft−1 + e f D f ,c

αt = αt−1 + eαDα,c .
(26)

The magnitudes of D f ,c and Dα,c should thus be close to the magnitude of ’typical’ changes that
occur to these parameters, or slightly lower for a more refined (but potentially slower) update.
These deviations can of course differ for various camera setups. In our experiments, D f ,c = 1 and
Dα,c = 0.04◦.

3. The other terms are modeled as a geometric progression, where r f , rα ∈ ]0, 1[. The first terms
in these rows should be of the same order of magnitude as a typical necessary step in the
optimization process. Furthermore, the sums of all elements in the row (equal to a f/(1−r f ) and
aα/(1−rα))should be sufficiently high to compensate the maximum remaining parameter error after
the initial estimation phase. These parameters can again be optimized for different scenarios.
We set a f = 50, aα = 2.00◦ and r f = rα = 0.95.

We shall demonstrate in Section 8 that the proposed method is notably more robust than the
DLT homography technique for a relatively low number of available feature correspondences. Hence,
as noted in Section 5, the earlier this benefit can be exploited, the better the overall performance of
the FGBG segmentation algorithm will be. However, if the initial fixed parameters must be estimated
from a limited number of (spread out) feature tracks in the optimization phase, the quality of the
estimated parameters in Algorithm 1 will suffer. In that scenario, the compensation framework will
provide poor results, even with the updating/refinement mechanism. Hence, a trade-off needs to
be made between initial accuracy and early completion of the initialization phase. As mentioned
earlier (see Algorithm 1), we found that the fixed parameter estimation framework could optimally
be initiated with tracks consisting of a total number of nmin = 200 feature points in our experiments.
Depending on the dataset, selecting a different number can yield slightly better overall results.

7. Integration into FGBG Segmentation

The proposed techniques can be used to extend many (classical) FGBG segmentation methods
that assume the camera position remains static, by transforming the background model according
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to the transformation formulas obtained in Sections 5 and 6. Since C-EFIC [3] currently achieves the
highest F1 score of any unsupervised method on the full PTZ category for the ChangeDetection.NET
2014 dataset [22], but still uses a different compensation mechanism (based on affine transformation),
we will demonstrate our approach by incorporating the proposed methods to that model. This also
allows for a fair evaluation of the performance of the PTZ compensation method itself, as opposed
to other potential improvements such the use of alternative image features. An overview of the full
foreground–background segmentation method is shown in Figure 4.

. . .

. . .

capture
input frame

detect camera
motion

camera
motion

detected?

camera
model
built?

build camera
model

α =?

f =?

determine
homography

(DLT)

determine
homography
(proposed)

refine camera
parameters

compensate
camera
motion

determine
dynamic
FG mask

update
dynamic

BG model

determine
static FG

mask

update static
BG model

yes

no

yes

no

Figure 4. Flowchart demonstrating the internal operation of the foreground–background segmentation
algorithm. The camera model is presented in Sections 3 and 4. Building the camera model is described
in detail in Section 5. The estimation of the homography and camera parameter refinement are treated in
Section 6. The other blocks are handled as described in [3] and [24]. Transitions from one block to another
are denoted in solid lines, whereas dashed lines refer to internal or external input/output operations.

C-EFIC uses two distinct background models, both combining RGB color and LTP (Local Ternary
Pattern [36]) feature samples, stored at every pixel location individually. Pixel locations where not
enough (< 2) background samples are close (up to a distance threshold) to the current input in feature
space are considered to be foreground, as was first proposed in [13].
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The first model assumes a static camera, and is built over a relatively long period. 25 feature
samples of both RGB and LTP features are stored locally. The learning rate decreases over time, while
dynamic regions (e.g., swinging tree branches) are also detected automatically and updated faster than
static ones (e.g., empty street). This model has the benefit that complex distributions of background
appearances can be stored, but it cannot cope with dynamic camera viewpoints.

The second, dynamic model is only used when camera motion is detected. The dynamic model
consists of fewer samples (3 instead of 25 in our experiments), and is transformed after every frame.
Please note that in C-EFIC, the foreground-detection step explained above also checks the background
model for all pixels in the 8-neighborhood surrounding that pixel. This method can cope with small
transformation errors, but slowly removes (static) true foreground objects from the mask as a downside.
This mechanism was not necessary in our proposed method thanks to the superior compensation
mechanism, whereas it did prove beneficial for C-EFIC.

In the original C-EFIC method, a reliable transformation is determined using RANSAC to estimate
an affine transformation matrix. One benefit of this method is that no prior information concerning the
camera is required. However, this transformation is not able to accurately transform the model when
the camera is panning or tilting, as was explained in Section 2. In our proposed method, we replace
the affine compensation with the DLT homography compensation during the initialization phase.
As soon as a camera motion is detected, tracks of SURF features are stored as described in Section 5.
The available tracks are then analyzed and the fixed parameters are estimated. After this, in every
frame, the panning angle (Section 6.1) or both the panning and tilting angle (Section 6.2) of the camera
can be estimated, depending on which is selected by the user. To ensure a robust estimate, the
initialization phase only stops when enough feature tracks are found, consisting of a total of at least
nmin points.

The background model needs to be transformed after every frame to compensate for the pan and
tilt motion between the last two frames. Areas which were previously outside of the field of view
are automatically added to the background model. Lanczos resampling is used for storing the new
background samples, since this method preserves the image content better than classical interpolation
methods such as nearest neighbor or bilinear interpolation [37]. Once the panning motion stops, the
samples in the dynamic model are copied into the static model, and the learning rate is reset.

The full algorithm is coded in C++ and runs at approximately 3 fps for 640 by 480-pixel
video sequences on a desktop computer, using a single CPU. We will demonstrate that both
proposed compensation mechanisms (used in their respective applications) are superior to the affine
compensation in our experiments. Compared to an unconstrained homography, our proposed method
is also able to produce better results when a low number of feature matches is used, as we will
demonstrate in the following section.

8. Experiments

The pan/tilt compensation mechanisms are evaluated against unconstrained affine and
homography estimation techniques. Next, the proposed algorithm is embedded into the
foreground–background segmentation framework described in [3], and the algorithm is tested on 10
different scenarios. An overview of the parameters used in all experiments is given in Table 1.

8.1. Pan/tilt Camera Position Estimation

For these experiments, we first recorded 6 videos, looking onto a static scene. Hence, all image
points can be considered background. All tests were performed on real images, recorded from
a mounted Axis P5624-E camera. The camera was tilted downward with angles of 0◦, 5◦, 10◦, 15◦, 20◦

and 25◦. These values were set using the camera software. The zoom factor was kept constant in all
sequences, although autofocusing was enabled. On these sequences, our proposed methods for both
panning with fixed tilt and simultaneous pan/tilt were evaluated. f and α are first estimated online by
using the techniques described in Section 5.
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Table 1. Overview of the values of all parameters mentioned in this manuscript and used in our
experiments. For the parameters related to the C-EFIC method, we refer to [3].

Parameter Value

nmin 200

D f ,c 1
a f 50
r f 0.95
Dα,c 0.04◦

aα 2.00◦

rα 0.95

Furthermore, we recorded 4 additional sequences: 1 where the panning angle remains constant
and only tilt changes occur and 3 where a human operator was given the instruction to pan and tilt
randomly. In these last 3 videos, the operator was also given the instruction to use either slow, medium,
or fast camera movements, respectively. Since the tilt angle is no longer fixed, we omit the method
described in Section 6.1 from the analysis here.

Theoretically, all evaluated methods, except the affine compensation, should be able to fully
compensate for a purely panning camera or a simultaneously panning and tilting camera, respectively.
In practice, the observed feature-point matches (Section 6) diverge from the models they use, e.g., due
to image noise or motion blur. Errors made by the compensation mechanisms can be partially mitigated
by considering more feature points to estimate the transformation. However, this leads to slower
processing, but more importantly it cannot be guaranteed that enough stable discriminative features
can be found in the scene (e.g., in scenes where large regions contain little texture). Thus, compensation
methods become robust if they can produce reliable results when the number of calculated feature
matches is low.

For selecting feature points in the compensation step, the feature detector described in [38] is
used. The transformation between all successive input frame pairs (I(t), I(t− 1)) is estimated using
our proposed method, the unconstrained homography calculated by the direct linear transformation
(DLT, described in [24]) with nonlinear optimization refinement and the affine transformation as used
in [3], each resulting in a separate transformation matrix. Then, I(t− 1) is transformed by the obtained
matrices, and compared with I(t) pixelwise. If the difference is larger than a fixed threshold, this
pixel is marked as an erroneous transformed pixel. The best camera motion compensation method
obviously has the lowest number of badly transformed points. Please note that the threshold is chosen
equal to the RGB difference threshold in the FGBG segmentation method described in [3]. In that
fashion, the number of erroneous transformed pixels is directly related to the number of false positive
pixels expected to occur in the eventual foreground images. Furthermore, to ensure a realistic and fair
comparison between the different methods, RANSAC (based on the estimated pan + tilt homography,
cfr. Algorithm 3) was first applied to filter all obtained feature correspondences, and the exact same
remaining pairs were used as input for each method (see Figure 5). Results for the fixed tilt angle
sequences can be found in Figure 6, while Figure 7 demonstrates results for the variable tilt sequences.

In general, the more feature points are available, the lower the number of erroneous pixels for all
methods will be. However, the marginal gains decrease exponentially as more feature points are used.
For the fixed tilt sequences, the proposed method for simultaneous pan and tilt (SPT) demonstrates
slightly better performance than the fixed tilt method (PFT). This leads us to the conclusion that the
addition of a degree of freedom for the change in tilt angle is slightly beneficial regarding the PFT
method, even if the camera software was only given the instruction to pan the camera. This can be
attributed to vibrations that occur in real camera setups, and to potential small errors in the distortion
removal process: when camera distortion is not fully or correctly removed, feature tracks will also
be distorted and one additional d.o.f. can partially overcome compensation errors accompanying
this scenario. The unconstrained DLT homography method [24] performs notably worse than both
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proposed methods when few feature matches are available. In 5 sequences, this is clearly visible in
the results for less than 50 matches and below 30 matches in the remaining 0◦ tilt sequence for the
SPT method, and below 25 matches for the PFT method. When more feature points are used, the
performance differences between the proposed SPT method and the DLT homography are negligible,
with a slight advantage for the DLT homography.

Figure 5. Example of matches found through sparse optical flow matching [35], where the features are
selected through the feature detector described in [38]. Points coinciding with foreground locations in
the previous frame are discarded immediately. RANSAC is then used to further eliminate outliers (red).
The remaining matches (green) are employed to determine the panning/tilting motion of the camera.
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Figure 6. Percentage of erroneous pixels in fixed tilt sequences where feature points are selected by
using the algorithm described in [38]. The proposed panning for fixed tilt (PFT) method and the
simultaneous pan and tilt (SPT) method are compared to the DLT homography method [24] for 6
sequences: (a) 0◦ tilt, (b) 5◦ tilt, (c) 10◦ tilt, (d) 15◦ tilt, (e) 20◦ tilt, (f) 25◦ tilt. Please note that the number
of erroneous pixels is significantly above 0.5% of the total number of pixels for a low number of feature
correspondences, and cannot be clearly depicted on these graphs.
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Figure 7. Percentage of erroneous pixels in variable tilt sequences where feature points are selected
by using the algorithm described in [38]. The proposed panning for simultaneous pan and tilt (SPT)
method is compared to the DLT homography method [24] for 5 sequences: (a) pure tilt, (b) equal
pan and tilt, (c) random pan/tilt (slow), (d) random pan/tilt (medium), (e) random pan/tilt (fast).
Please note that the number of erroneous pixels is significantly above 0.5% of the total number of pixels
for a low number of feature correspondences, and cannot be clearly depicted on these graphs.

For the variable tilt sequences, we compared our SPT method with the DLT homography. Similar
conclusions can be drawn as for the fixed tilt sequences, with one notable exception. When the camera
pan/tilt speed is relatively high (0.8◦ of rotation on average per frame, see Figure 7 e), the performance
of our proposed method is notably worse than the DLT homography’s above 50 feature matches.
This can be attributed to the usage of linearization (see Section 6.2): the bigger the distance between
the matched point pairs, the worse these expressions approximate the true feature tracks. For a lower
number of feature points, the proposed method still clearly outperforms the DLT homography.

A processing speed comparison between the different compensation methods is shown in
Figure 8. When only 4 feature points are used in the calculation, all methods have similar processing

times. Above that, the DLT homography method (OpenCV implementation) must perform additional
calculations to estimate the homography in a nonlinear framework, which explains the big jump in
processing time beyond 4 feature points, where both proposed methods are notably faster. For more
than 500 calculated feature matches, the homography method becomes faster than the proposed
method, although in practical applications far fewer feature matches are typically available (or used)
as noted before. The differences between both proposed methods are small, with the fixed tilt method
being marginally faster, most notably for a high number of feature-point matches. One can observe that
the overall processing time for the compensation step is still very low (3 orders of magnitude smaller
for 250 feature points) compared to the overall foreground background segmentation algorithm, which
runs at approximately 3 frames per second on the same hardware setup.
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Figure 8. Average homography calculation time per frame, as a function of the number of feature
points used in the calculation.

8.2. Foreground–Background Segmentation

The full foreground–background segmentation method was tested on 9 different self-captured
videos and one publicly available sequence, which will be treated separately. The authors plan to make
the self-captured dataset available on request.

Out of the self-captured videos, the tilt angle was kept fixed in 4 sequences. These sequences
consist of 3 indoor videos with people walking around in a computer class environment and 1 outdoor
video. For the indoor sequences, the camera was tilted to 5◦, 15◦ and 25◦. The outdoor sequence is
notably challenging, as it was captured at a parking lot at night, containing reflections and generally
difficult illumination conditions. Camera distortion was calculated with the algorithm described in [39]
and removed as a preprocessing step. Visual examples can be found in Figure 9. For every sequence,
one frame was manually annotated as ground truth for every second of video. In total, 229 frames
were annotated and successively analyzed. Results for the proposed fixed tilt compensation method as
well as for the DLT and original affine compensation [3] can be found in Figure 10.

Input Ground truth C-EFIC DLT Homography Proposed

Figure 9. Foreground–background segmentation result for two handpicked fixed tilt panning
frames, using 12 feature points per frame. Top row: indoor sequence, bottom row: outdoor night
sequence input.



Sensors 2019, 19, 2668 20 of 27

0 20 40 60 80 100
# feature points (frame)

0.0

0.2

0.4

0.6

0.8

1.0

F 1
 s
co
re

Proposed, SPT
Proposed, PFT
DLT homography
Affine C-EFIC

(a)

0 20 40 60 80 100
# feature points (frame)

0.0

0.2

0.4

0.6

0.8

1.0

F 1
 s
co
re

Proposed, SPT
Proposed, PFT
DLT homography
Affine C-EFIC

(b)

0 20 40 60 80 100
# feature points (frame)

0.0

0.2

0.4

0.6

0.8

1.0

F 1
 s
co
re

Proposed, SPT
Proposed, PFT
DLT homography
Affine C-EFIC

(c)

0 20 40 60 80 100
# feature points (frame)

0.0

0.2

0.4

0.6

0.8

1.0

F 1
 s
co
re

Proposed, SPT
Proposed, PFT
DLT homography
Affine C-EFIC

(d)

Figure 10. F1 scores for the full FGBG segmentation method in the fixed tilt sequences. The proposed
methods for panning with fixed tilt (PFT) method and the simultaneous pan and tilt (SPT) method are
compared to the DLT homography method [24] and the affine compensation mechanism used before in
C-EFIC [3] for 4 sequences; (a) classroom 5◦ tilt, (b) classroom 15◦ tilt, (c) classroom 25◦ tilt, (d) parking
outdoor night.

The proposed methods are again notably more robust for a low number of feature matches,
as can be expected from the results in Section 8.1. However, the differences between the individual
methods are much less pronounced in the F1 score. Also, for 4 feature matches, the PFT method is
superior to the SPT method, but above that the SPT method yields slightly better results. Once above
20 feature-point matches, the compensation error differences between the individual homography
methods become negligible compared to the inherent F1 score fluctuations introduced by the random
background update mechanism. However, compared to the original C-EFIC method, the proposed
methods are clearly superior for any given number of feature matches. Please note that the difficult
night sequence yields lower F1 scores overall compared to the other sequences.

The self-captured simultaneous pan/tilt sequences again captured different scenarios where
people are walking around in a classroom environment indoor (3 videos). Furthermore, 2 outdoor
sequences were recorded, where the camera monitored a street at daytime and a parking lot at
night, respectively. 430 frames were annotated and analyzed in total. Numerical results of the
foreground–background segmentation can be found in Figure 11. Visual results are shown in Figure 12.

Similar to the scenario where the camera is only panning, the proposed pan/tilt method and
the DLT-based method show superior performance compared to the original C-EFIC affine method
in the processed sequences. Also, the proposed method is again superior to the DLT method for a
low number of feature points, while comparable results can be obtained when the number of feature
matches becomes larger.

Finally, the proposed method was evaluated on the most relevant sequence in the public
ChangeDetection.NET 2014 dataset, i.e., the fixed tilt ‘continuousPan’ sequence. Unlike in the
self-captured videos, camera distortion was not removed, because the dataset only provides the
undistorted test video and no distortion parameters. A fixed number of 50 feature points was
selected in every frame. The proposed PFT method is compared to relevant state-of-the-art methods
(both supervised and unsupervised) for whom the resulting foreground masks were available. We note
that when using 50 feature points, using the DLT Homography or the proposed SPT method should
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yield very similar performance metrics. Quantitative results can be found in Table 2. A visual example
is demonstrated in Figure 13.
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Figure 11. F1 scores for the full FGBG segmentation method in the variable tilt sequences. The proposed
method for simultaneous pan and tilt (SPT) is compared to the DLT homography method [24] and the
affine compensation mechanism used before in C-EFIC [3] for 5 sequences; (a) classroom pan/tilt 1,
(b) classroom pan/tilt 2, (c) classroom pan/tilt 3, (d) street outdoor day (e) parking outdoor night.

Input Ground truth C-EFIC DLT Homography Proposed

Figure 12. Foreground–background segmentation result for three handpicked simultaneous pan/tilt
frames, using 12 feature points per frame. Top row: indoor sequence, middle row: outdoor day
sequence, bottom row: outdoor night sequence.
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Table 2. Comparison of Precision, Recall and F1 scores obtained by the proposed method and
state-of-the-art methods on the ’continuousPan’ sequence of the public ChangeDetection.NET 2014
dataset. These scores were obtained with the software provided by the creators of the dataset.
Supervised methods are denoted with an ‘S’. Links to other methods can be found on the
ChangeDetection.NET website ([22]).

Method Precision Recall F1 Score

Proposed 0.8827 0.8894 0.8860

FgSegNet_S (S) 0.9688 0.9889 0.9787
BSPVGAN (S) 0.8673 0.9776 0.9191
cascade CNN (S) 0.8421 0.9666 0.9001
DeepBS (S) 0.1037 0.9103 0.1862

C-EFIC 0.7133 0.6432 0.6764
MBS 0.7907 0.5257 0.6315
CwisarDRP 0.2952 0.6082 0.3975
PAWCS 0.1953 0.7316 0.3083
IUTIS-5 0.1814 0.4922 0.2651

Input Ground Truth C-EFIC BSPVGAN (supervised) Proposed

Figure 13. Foreground–background segmentation results for a handpicked frame from the publicly
available ‘continuousPan’ sequence. Links to other methods can be found on the ChangeDetection.NET
website ([22]).

At the moment of writing, the proposed foreground–background segmentation method currently
produces the best F1 score of any unsupervised method currently available for this sequence.
Furthermore, the performance for this sequence is only slightly inferior to the one submitted for
two state-of-the-art supervised methods. Only FgSegNet_S [40] still performs significantly better,
though it should be noted that this method was trained from a manual selection of ground truth
images contained in the dataset itself.

8.3. Discussion

The previous sections demonstrate that the proposed methods are superior to the unconstrained
DLT homography for a low number of feature points, both in processing speed and compensation
reliability. For a higher number of feature points (e.g., in a textured region), the DLT homography
(with additional nonlinear optimization) yields comparable compensation results, or slightly superior
ones when the camera rotation speed is high. Furthermore, the proposed SPT method (see Section 6.2)
is slightly superior the PFT method even for fixed tilt sequences, although this is not fully noticeable in
the F1 scores for the full foreground background segmentation method.

This demonstrates that imposing constraints and reducing the number of degrees of freedom from
8 to 2 (representing pan + tilt) can definitely increase the robustness of a camera motion compensation
framework. The second degree of freedom (related to tilt) should probably not be discarded for a
panning camera and for most practical applications, the SPT method should be preferred.

In comparison to other FGBG segmentation methods, the proposed method demonstrates
state-of-the-art unsupervised performance on a publicly available test sequence, and still achieves
near state-of-the-art results when compared to the tested supervised segmentation methods.
This experiment also demonstrates that even without offline camera distortion removal, the proposed
pan/tilt camera motion model can still be robust. In such an event, the (initial) camera parameter
estimation step in our proposed algorithm estimates a ‘distorted’ focal length and initial tilt angle,
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such that it matches the image content better. For this sequence, the deviation from the theoretical
model due to distortion was largely mitigated in that manner.

It should be noted that is still possible to improve segmentation results for background
subtraction-based methods in general by also taking semantic information into account, as was
demonstrated by Braham et al. [41]. This should yield a more accurate segmentation of typical
foreground objects, such as pedestrians, bicycles, and cars. Finally, the segmentation masks resulting
from unsupervised methods can still serve as initializations to high-performing semi-supervised
methods, as was noted by Wehrwein and Szeliski [8]. The foreground mask of the proposed method
could replace the (otherwise necessary) manually annotated masks, potentially leading to a similar
performance if the selected foreground masks are accurate.

9. Conclusions and Future Work

In this paper, we demonstrated a method to compensate a panning and tilting camera motion,
used in the application of foreground–background segmentation. A mathematical framework of the
camera motion was constructed, using the pinhole camera model. Next, feature tracks obtained in the
beginning of a sequence are used to determine the necessary intrinsic parameters. From that point in
time, the model can be used to accurately estimate the camera motion occurring between two frames.

A first compensation method assuming panning with fixed tilt (PFT) was shown to robustly
compensate for the motion of a panning camera, especially compared to affine motion compensation.
For a small number of used feature matches, this proposed algorithm is also able to compensate the
background model notably better than the full 8 degree of freedom DLT homography method.

Furthermore, a framework for a simultaneously panning and tilting (SPT) camera was proposed,
which yields even slightly better results with respect to the fixed panning method. When a high number
of feature points is used, the SPT method still yields a performance similar to the DLT homography
method. In the context of foreground–background segmentation, these tendencies are visible in
the obtained F1 scores. When the proposed framework is used to replace the affine compensation
mechanism, that algorithm’s performance is notably increased for any given number of feature matches
in our experiments. The full foreground–background segmentation method achieves state-of-the-art
unsupervised results on the ‘continuousPan’ sequence of the publicly available ChangeDetection.NET
2014 dataset. When supervised methods are taken into account, the F1 scores are still close to those
that state-of-the-art methods are capable of.

In principle, the method can be extended to incorporate the zooming function, which translates
to varying values for f in the camera model. Since any combination of such a rotation and zooming
can still be compensated by a homography, it is possible to determine the parameters in a similar
manner to the one described in this paper. However, the compensation mechanism will likely be more
complex, since additional parameters need to be introduced.

Situations where the camera center is moved throughout the scene (e.g., in cameras mounted on
vehicles) need a different approach. Though similar equations of feature tracks for particular motions
can be constructed, the homography can no longer be used and effects such as parallax need to be
taken into account.
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Abbreviations

The following abbreviations are used in this manuscript:

PTZ Pan-Tilt-Zoom
FGBG Foreground–Background
MoG Mixture of Gaussians
DLT Direct Linear Transformation
PFT Panning with Fixed Tilt
SPT Simultaneous Pan/Tilt

Appendix A. Derivation of Panning Camera Equation

Starting from the parametric Equation (15), the canonical equation of the apparent trajectory of a
point can be derived as follows:

x =
− f cos γ sin θ

− sin α sin γ + cos α cos γ cos θ

y =
− f cos α sin γ− f sin α cos γ cos θ

− sin α sin γ + cos α cos γ cos θ

(A1)

⇔


cos θ =

(y sin α− f cos α) sin γ

(y cos α + f sin α) cos γ

sin θ =
x sin γ

(y cos α + f sin α) cos γ
.

(A2)

Using the trigonometric identity (cos2 θ + sin2 θ = 1), the parameter θ can be eliminated:[
(y sin α− f cos α) sin γ

(y cos α + f sin α) cos γ

]2

+

[
x sin γ

(y cos α + f sin α) cos γ

]2
= 1 . (A3)

Reworking this equation further yields:

x2[sin2 γ] + y2[sin2 α sin2 γ− cos2 α cos2 γ]− y[2 f sin α cos α] + f 2(cos2 α sin2 γ− sin2 α cos2 γ) = 0 (A4)

⇔ x2[1− cos(2γ)]− y2[cos(2α) + cos(2γ)]− y[2 f sin(2α)] + f 2(cos(2α)− cos(2γ)) = 0 (A5)

⇔ Acx2 + Bcy2 + Ccy + Dc = 0 , where


Ac = 1− cos(2γ)

Bc = − cos(2α)− cos(2γ)

Cc = −2 f sin(2α)

Dc = f 2(cos(2α)− cos(2γ)) .

(A6)

Appendix B. Derivation of γ from y-Intercept, f and α

Starting from (A6), cos(2γ) can be isolated as follows:

cos(2γ) =
x2 + ( f 2 − y2) cos(2α)− 2y f sin(2α)

x2 + f 2 + y2 (A7)

=
x2 +

√
( f 2 − y2)2 + (−2y f )2 sin(2α + φ)

x2 + f 2 + y2 (A8)

=
x2 + ( f 2 + y2) sin(2α + φ)

x2 + f 2 + y2 , (A9)

where φ = arctan f 2−y2

−2y f . Thus, if x = 0, the previous equation simplifies to
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cos(2γ) = sin(2α + φ) . (A10)

Appendix C. Derivation of Pan/Tilt Camera Jacobian

From (7):

x(θ, α) = KRαRθK−1x0 , where



Rα =


cos α 0 − sin α

0 1 0

sin α 0 cos α


Rθ =


1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 .

(A11)

Expressions for x and y can be derived:
x = f

x0 cos θ − sin θ

(cos θ + x0 sin θ) cos α− y0 sin α

y = f
(cos θ + x0 sin θ) sin α + y0 cos α

(cos θ + x0 sin θ) cos α− y0 sin α
.

(A12)

The inverse transformation yields:
x0 =

( f cos α + y sin α) sin θ + x cos θ

( f cos α + y sin α) cos θ − x sin θ

y0 =
y cos α− f sin α

( f cos α + y sin α) cos θ − x sin θ
.

(A13)

Hence, by taking partial derivatives of (A12) and inserting the expression for x0 and y0 in (A12),
the Jacobian matrix J can be calculated:

J(θ, α) =

[
dx/dθ dx/dα

dy/dθ dy/dα

]
(A14)

=

−( f + x2

f ) cos α− y sin α
xy
f

− xy
f cos α + x sin α f + y2

f

 . (A15)
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