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Abstract: The extended target probability hypothesis density (ET-PHD) filter cannot work well if
the density of measurements varies from target to target, which is based on the measurement set
partitioning algorithms employing the Mahalanobis distance between measurements. To tackle the
problem, two measurement set partitioning approaches, the shared nearest neighbors similarity
partitioning (SNNSP) and SNN density partitioning (SNNDP), are proposed in this paper. In SNNSP,
the shared nearest neighbors (SNN) similarity, which incorporates the neighboring measurement
information, is introduced to DP instead of the Mahalanobis distance between measurements.
Furthermore, the SNNDP is developed by combining the DBSCAN algorithm with the SNN similarity
together to enhance the reliability of partitions. Simulation results show that the ET-PHD filters
based on the two proposed partitioning algorithms can achieve better tracking performance with less
computation than the compared algorithms.

Keywords: multiple extended target filter; partitioning algorithm; extended target tracking

1. Introduction

In most multi-target tracking applications, it is assumed that each target produces one
measurement per time step at most. This is reasonable for cases when the target’s extension is
assumed to be negligible in comparison to sensor resolution. However, with the increase in sensor
resolution capabilities, this assumption is no longer valid. In this case, different scattering centers of
one target may give rise to several distinct detections varying from scan to scan, both in its number
and the relative origin location. The correspoding cases can be found in the following situations:
(1) Vehicles use radar sensors to track other road-users. (2) The ground radar stations track airplanes
which are suffificiently close to the sensor. (3) Pedestrians are tracked using laser range sensors in
mobile robotics. In addition, due to the high inner-density of the group target, it is neither practical
nor necessary to track all individual targets within the target group. A group target can be tracked as
a whole, and the problem formulation for tracking the group target is the same as that for tracking
the extended target. Thus, in some works, such as [1–7], the extended target and the group target are
studied together. Moreover, some studies take a group target as an extended target [1,4–6], which is
also applied in this paper.

Extended target tracking has attracted much attention in the last decade. The studies on single
extended target tracking mainly focus on measurement distribution, and the description and estimation
of the target extension [1,6–10]. Multiple extended target tracking is a challenging problem due to
the complexities caused by data association. In [11,12], the random matrix model and mixture RHMs
were integrated into the probabilistic multi-hypothesis tracking (PMHT) framework to track multiple
extended targets, respectively. In [13], the joint probabilistic data association (JPDA) was applied to
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tackle the problem of multiple extended target tracking. A box particle filter was developed to track
multiple extended objects by combining interval-based techniques and the Bayesian framework [14].
Another way is based on a random finite set (RFS), such as the probability hypothesis density (PHD)
filter [15], cardinalized probability hypothesis density (CPHD) filter [16] and multi-Bernoulli Filter [17].
In the work [18], an extended-target PHD (ET-PHD) filter was presented by extending the PHD filter
to multiple extended targets. A CPHD filter for extended targets was proposed in [19], and a
unified CPHD filter was proposed to track extended targets and unresolved group targets [20].
A Gaussian-mixture implementation of the ET-PHD filter was proposed in [21,22], called the extended
target Gaussian-mixture PHD (ET-GMPHD) filter. The generalized labeled multi-Bernoulli filter was
applied to track multiple extended targets based on the gamma Gaussian inverse Wishart model [17].
In [23], the Gaussian surface matrix was introduced into the PHD filter for multiple extended targets.
Though those works based on RFS [17–23] can avoid explicit associations between measurements
and targets, with all possible partitions of the measurement set need to be theoretically considered.
In addition, the number of all possible partitions will grow dramatically with the increase in the
number of measurements. Distance Partitioning (DP) and Distance Partitioning with Sub-Partitioning
(DPSP) were proposed to obtain a reasonable subset of all possible partitions by Granstrom et al. in [22].
A fast partitioning algorithm based on a fuzzy ART model was proposed for the ET-GMPHD filter [24].
The algorithm consumed less computation time than DP without losing tracking performance. Since
many of the cell and Gaussian mixture component pairs will be distant, the effect of updating that part
of the PHD intensity with that cell will be negligible. According to this, Scheel et al. proposed a data
segmentation method to alleviate computational complexity in [25]. The shape selection partitioning
measurement partitioning algorithm was proposed in [26]. The algorithm first calculated potential
centres and shapes of targets, and then combined each centre with different shapes to divide the
measurements into subcells. In [27], the generalised distance partitioning (GDP), which applied the
distance partitioning and Lmax-partitioning, was proposed to reduce the number of partitions and
decrease computational complexity. The DBSCAN algorithm and the relaxed intersection were used to
deal with data association and reduce the computational complexity in the data association process for
a multiple extended target box particle filter [14].

When the density of measurements varies with the target, those measurement partitioning
algorithms, which were applied Mahalanobis distance between measurements [28], cannot work well,
such as DP, DPSP and GDP. In this paper, we employ the shared nearest neighbors (SNN) similarity [29],
which can reflect the local configuration of measurements in the measurement space, to propose two
measurement set partitioning approaches. The two approaches, SNN Similarity Partitioning (SNNSP)
and SNN Density Partitioning (SNNDP), are relatively insensitive to variation in measurement density
of extended targets. In SNNSP, the SNN similarity is introduced instead of the Mahalanobis distance
between measurements, and the SNNDP is developed by combining the DBSCAN [30] with the SNN
similarity to enhance the reliability of partitions.

Although it takes some time to calculate the SNN similarity, the ET-PHD filter based on the
proposed partitioning approaches decreases the computational burden due to the less number of
the resulting partitions. Especially in high clutter scenarios, a significant reduction in computational
complexity can be achieved. Simulation results demonstrate that the proposed partitioning approaches
can outperform the compared ones in several typical scenarios, namely, differing densities of
measurements, high clutter and proximity among extended targets.

The rest of the paper is organized as follows. We briefly describe the problem formulation in
Section 2. Section 3 provides a summary of the DP and DPSP, which are proposed in [22]. Section 4
presents two proposed partitioning approaches in this paper. In Section 5, simulation results are
given to compare the performance of the ET-GMPHD filter using proposed partitioning algorithms
with that using the compared algorithms. Section 6 presents concluding remarks and outlines future
research directions.
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2. Problem Formulation

The PHD measurement update equation for the extended target PHD filter, based on the Poisson
multitarget measurement model [31], is derived in [18]. The corrected PHD-intensity, which is given
by the multiplication of the predicted PHD-intensity and the measurement pseudo-likelihood, can be
shown as

υk|k(x) = LZk (x) υk|k−1(x) (1)

where υk|k is the corrected PHD-intensity; υk|k−1 is the predicted PHD-intensity. LZk (x) is the
measurement pseudo-likelihood function which can be defined as

LZk (x) = 1−
(

1− e−γ(x)
)

pD(x)+

e−γ(x)pD(x) ∑
p∠Zk

ωp ∑
W∈p

γ(x)|W|

dW
∏

z∈W

φz(x)
λkck(z)

(2)

where, pD(·) is the detected probability of the target; γ(·) is the mean number of measurements from
one target; λk is the mean number of clutter measurements per scan; ck(z) is the spatial distribution of
the clutter over the surveillance region; p∠Zk means that the partition p partitions the measurement
set Zk into non-empty cells W; W ∈ p denotes that the set W is a cell in the partition p; ωp and dW
are nonnegative coefficients defined for each partition and cell, respectively; φz(x) = f L(z|x) is the
likelihood function for a single target-generated measurement.

The first summation on the right hand side of (2) is taken over all partitions of the measurement
set Zk. All possible partitions of the measurement set need to be considered in theory. For example,
the measurement set contains three individual measurements Zk = {z1

k , z2
k , z3

k}. All possible partitions
of Zk are shown as follows

p1 = {{z(1)k , z(2)k , z(3)k }} p2 = {{z(1)k }, {z
(2)
k }, {z

(3)
k }}

p3 = {{z(1)k , z(2)k }, {z
(3)
k }} p4 = {{z(1)k , z(3)k }, {z

(2)
k }}

p5 = {{z(1)k }, {z
(2)
k , z(3)k }}

While the number of all possible partitions will grow dramatically with the increase in the number
of sensor measurements. Thus, only considering a reasonable subset of all possible partitions is
necessary to decrease computational complexity.

3. Review of Distance Partitioning and Distance Partitioning with Sub-Partitioning

3.1. Distance Partitioning (DP)

The DP introduced by Granstrom [22] is based on the distance between measurements. Given a
set of measurements Z = {zi}Nz

i=1 and a distance measure d(·, ·), the distances between each pair of
measurements can be calculated as

∆ij , d(zi, zj), for 1 ≤ i 6= j ≤ Nz (3)

Granstrom has proved that there is a unique partition that leaves all pairs (i, j) of measurements
satisfying ∆ij ≤ dl in the same cell. The algorithm is used to generate Nd alternative partitions of the
measurement set Z, by selecting Nd different thresholds

{dl}
Nd
l=1, dl < dl+1, for l = 1, · · · , Nd − 1 (4)

The thresholds {dl}
Nd
l=1 are selected from the set D , {0} ∪ {∆ij | 1 ≤ i < j ≤ Nz} , and the

Mahalanobis distance is selected as the distance measure d(·, ·) in [22]. If one uses all of the elements
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in D to form alternative partitions, |D| = Nz(Nz − 1)/2 + 1 partitions are obtained. In order to reduce
the computational load, partitions are computed only for a subset of thresholds in the set D.

For two target-originated measurements zi and zj belonging to the same target, dM(zi, zj) is χ2

distributed with degrees of freedom equaling to the dimension of the measurement vector. A unitless
distance threshold can be computed as δPG = invchi2(PG) for a given probability PG, where invchi2(·)
is the inverse cumulative χ2 distribution function. Granstrom et al. [21] have illustrated that good
target tracking results are achieved with partitions computed using the subset of distance thresholds
in D satisfying the condition δPL < dl < δPU , for lower probabilities PL ≤ 0.3 and upper probabilities
PU ≥ 0.8.

3.2. Distance Partitioning with Sub-Partitioning (DPSP)

The results given by the ET-GMPHD filter using the DP show the problem with underestimation
of target set cardinality in the situations where two or more extended targets are spatially close [21].
In this situation, the DP will put those measurements from more than one target in the same cell W,
and thus the ET-PHD filter based on the DP will interpret measurements from multiple targets as
originating from the same target. The DPSP was proposed to remedy this problem in [22].

Suppose that a set of partitions using the DP has been obtained. Then, the maximum likelihood
(ML) is applied to estimate the number of targets for each cell Wi

j , denoted by N̂ j
x. If this estimate is

larger than one, split the cell Wi
j into N̂ j

x smaller cells, denoted by {W+
s }

N̂ j
x

s=1. Finally, a new partition,

consisting of the new cells {W+
s }

N̂ j
x

s=1 along with the other cells in pi, will be added to the list of
partitions obtained by the DP. In [22], the K-means++ clustering, which modifies the standard K-means
algorithm to overcome the problem that the cluster result is greatly affected by initial value [32],
is applied to split measurements in the cell.

4. The Proposed SNN Partitioning

The partitions by the DP solely depend on the distances between each pair of measurements,
ignoring the information from the local configuration of measurements. Though the distance thresholds
are limited between δPL and δPH , to reduce the computational load, the number of partitions still grows
dramatically with the increase in the number of measurements. Moreover, a considerable number of
partitions obtained by the DP are unreasonable, but will lead to high computational complexity of the
ET-PHD filter.

In practical applications, there may be a difference in the densities of measurement sources
between different extended targets, and thus the density of measurements varies from target to target.
In this case, reasonable partitions may not be included in the partitions by the DP. For example, Figure 1
depicts measurements from three extended targets with different measurement densities at a certain
time scan. Measurements from the same extended target would be split into several small cells for a
small threshold dl , as shown in Figure 2 (one cell is represented by circles of the same color). On the
other hand, for a slightly bigger threshold dl+1, measurements from two targets are put in one cell as
shown in Figure 3. Indeed, the appropriate distance threshold is unavailable for measurements shown
in Figure 1, and the DP could not achieve the reasonable partition.

The computational complexity of the ET-PHD recursion is strongly dependent on the total number
of cells in the resulting partitions. Since the clutter measurements are usually far away from each other,
they tend to form individual multiple cells by the DP and DPSP. If there is a large amount of clutter
measurements over the surveillance region, the number of cells constituted by clutter measurements is
always far larger than that from targets. Thus, most computation of the ET-PHD filter based on the DP
and DPSP is caused by dealing with the clutter.



Sensors 2019, 19, 2665 5 of 19

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 1. Measurements from three extended targets.
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Figure 2. Partition by DP for a small threshold.

For high clutter and the densities of measurements varing from target to target, we apply the SNN
similarity, which reflects the local configuration of measurements in the measurement space to develop
two measurement partitioning algorithms, SNNSP and SNNDP. The SNNSP only depends on the SNN
similarity to decide whether two measurements are in the same cell or not. To promote the reliability
further, we develop the SNNDP by combining the SNN similarity with the DBSCAN algorithm.
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Figure 3. Partition by DP for a bigger threshold.

4.1. SNN Similarity

The SNN similarity was firstly proposed by Jarvis and Patric [29]. The SNN similarity between zi
and zj is defined as the number of the nearest neighbors shared by the two measurements if and only
if zi and zj have each other in their K nearest neighbor lists, as shown below

S(zi, zj) =
∣∣N(zi) ∩ N(zj)

∣∣ (5)

Otherwise, the SNN similarity between zi and zj is zero. In (5), N(z) is the set of the K nearest
neighbors of z, and |A|means the cardinality of set A. The SNN similarity S(zi, zj) is not larger than
K according to (5).

4.2. SNN Partitioning Algorithm

This section introduces the SNNSP and SNNDP proposed in this paper.

4.2.1. SNNSP

The SNNSP algorithm based on the SNN similarity puts all pairs of measurements satisfying
S(zi, zj) ≥ sl in the same cell, and selects different similarity thresholds to obtain different partitions.
The SNNSP can be described as the following steps.

• Step 1: Select the Mahalanobis distance as the distance measure d(·, ·), and then compute the
distance between each pair of measurements.

• Step 2: Find K nearest neighbors for each measurement, and then compute the SNN similarity
between each pair of measurements.

• Step 3: Decide the similarity threshold set {sl}Ns
l=1. The similarity threshold set can be selected

from its effective range, which is between the minimum and maximum of the SNN similarity,
i.e., belonging to [1 : K]. K is usually small, and so is the number of partitions by the SNNSP.
Note that the neighborhood list size will decide the maximum of the upper similarity threshold.

• Step 4: For each given sl , leave all pairs of measurements satisfying S(zi, zj) ≥ sl in the
same cell. Ns partitions of the measurement set Z can be generated by selecting Ns different
similarity thresholds. Some resulting partitions might be identical, and hence, need to be discarded
so that each partition at the end is unique.
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The SNN similarity reflects the local configuration of measurements in the measurement space,
and has built-in automatic scaling. When measurements are widely spread, the volume containing
K nearest neighborhoods expands, and conversely, the volume shrinks when measurements are
tightly positioned. Therefore, the SNNSP does not critically depend on the distance thresholds, and is
relatively insensitive to variations in density.

4.2.2. SNNDP

To enhance the reliability of partitions further, we propose the SNNDP by combining the SNN
similarity with the DBSCAN algorithm. In the DBSCAN algorithm [30], the density of a point is
obtained by counting the number of points in a specified radius around the point. Points with a density
above a specified threshold are classified as core points. A point considered as a border point is in the
neighborhood region of a certain core point, while points which are neither core points nor border
points are taken as noise points. Noise points are discarded, and the clusters are formed around the
core points. If two core points are neighbors of each other, then their clusters are joined.

Let NNi denote the set of the measurements between which zi the SNN similarity is not less than
a given threshold sl . Then, the SNN density of zi can be regarded as the number of the meaurements
in NNi. Since measurements with high SNN densities tend to be generated from extended targets,
they are considered as core measurements, and measurements with low SNN densities are taken as
border measurements. The details of the SNNDP are as follows.

Steps 1–3 are the same as that in the SNNSP. For each given sl , carry out step 4 and step 5 shown
as below.

• Step 4: For a given sl , compute the SNN density of every measurement. Measurements whose
SNN densities are not less than a given SNN density threshold UMP are considered as
core measurements, while those that are less than UMP but larger than 0 are considered as
border measurements.

• Step 5: Leave all pairs of core measurements satisfying S(zi, zj) ≥ sl in the same cell. For the
border measurement zi, if the measurement zj is the nearest core point according to the SNN
similarity, zi will be put in the cell where zj is.

The pseudo-code of the SNNDP is given in Table 1.
As done in the SNNSP, identical partitions must be discarded to ensure that each partition at the

end is unique. It is noted that the SNNDP reduces to the SNNSP under the situation that UMP is 1.
The number of the partitions by the SNNSP and SNNDP is not larger than the neighborhood list

size. Therefore, the computational complexity of the ET-PHD filter using the proposed partitioning
algorithms is much less than that using distance partitioning, especially in the case of a large number
of clutter measurements.

The SNNDP (like the SNNSP) could also handle the situation that the densities of measurements
varies from target to target. Reconsidering measurements shown in Figure 1, the SNNSP and SNNDP
contain the basically correct partition as shown in Figures 4 and 5, respectively, where the neighbor list
size K is 20 and the SNN density threshold UMP is set to 5.
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Table 1. The pseudo-code of the SNNDP.

Require: sl , UMP, S(zi, zj), 1 ≤ i 6= j ≤ Nz
Initialize: CoreBound(i) = 0, CellNumber(i) = 0, 1 ≤ i ≤ Nz l = 0
CellId = 1 the current cell id to 1
% Find the core measurements and boundary measurements
for i = 1 : Nz

num = 0
for j = 1 : Nz

if S(zi, zj) ≥ sl
num = num + 1

end if
end for
if num> UMP

CoreBound(i) = 1
else if

CoreBound(i) = −1
end if

end for
% Find cell numbers for core measurments
for i = 1 : Nz

if CellNumber(i) = 0 & CellBound(i) = 1
CellNumber(i) = CellId
CellNumbers = FindNeigbors(i,CellNumbers,CellId)
CellId = CellId + 1

end if
end for
% Find the cell of boundary measurements
for i = 1 : Nz

if CellNumber(i) = 0 & CellBound(i) = −1
if S(zi, zj) > S(zi, zm)(m 6= j, 1 ≤ m ≤ Nz)

CellNumber(i) = CellNumber(m)
end if

end if
end for
% the function FindNeigbors(·, ·, ·)
function CellNumbers = FindNeigbors(i,CellNumbers,CellId)
for j = 1 : nz

if j 6= i & S(zi, zj) ≥ sl & CellNumber(j) = 0 & CellBound(j) = 1
CellNumber(j) = CellId
CellNumbers = FindNeigbors(j,CellNumbers,CellId)

end if
end for
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Figure 4. Partition by SNNSP for a certain similarity threshold.
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Figure 5. Partition by SNNDP for a certain similarity threshold.

4.3. Parameterizations

The neighborhood list size K and the SNN density threshold UMP are two important parameters.
If the neighborhood list size K is too small, the resulting partitions tend to focus on local variations,
and thus, measurements from one extended target would be broken up into multiple cells even with
the minimum similarity threshold. Conversely, if the neighborhood list size K is too large, the resulting
partitions tend to neglect local variations, and thus, measurements from different extended targets
would be put in one cell even with the maximum similarity threshold. The SNN density threshold
UMP is usually set to be greater than 1 by the SNNDP, due to the SNNDP reducing to the SNNSP
under the situation that UMP is 1. If the threshold SNN density UMP is too large, measurements from
extended targets would be considered as clutter. UMP could be selected according to K, since the
appropriate value of UMP mainly depends on K for given measurements and a given threshold sl .

Simulation experiments are carried out to analyze the effect of K and UMP on the resulting
partitions. The number of measurements is set to follow the Poisson distribution, and measurements
from extended targets follow the uniform distribution and Gaussian distribution, respectively. Actually,
there is no significant difference in the experimental results between Gaussian distribution and uniform
distribution. Tables 2 and 3 illustrate the range of K and UMP, when the resulting partitions contain
the correct partition or basically correct partition.

Table 2. Desirable range of the neighborhood list size.

Expected Number of Desirable Range
Measurements per Target of K

10 4–6
15 6–12
20 6–16
30 6–16
40 6–18
50 6–22

100 8–45
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Table 3. Desirable range of the SNN density threshold.

Value of K Desirable Range
K of UMP

8 2–5
12 2–8
16 2–10

As can be seen from Table 2, the more the expected number of measurements per target
is, the looser the requirement for the neighborhood list size K is. An appropriate value of the
neighborhood list size K could be obtained even when there is a big difference in the expected
numbers of measurements between different extended targets. From Table 3, it can be observed that
the desirable range of UMP is large. In addition, the SNNSP and SNNDP wouldn’t work well if the
expected number of measurements per target is small.

5. Simulation Results

In this section, simulation results are given to show the performance of the ET-PHD filter using
the proposed partitioning approaches compared to using the compared algorithms. Here, we apply the
Gaussian-mixture implementation of the ET-PHD filter (ET-GMPHD) proposed in [21,22]. Section 5.1
presents the simulation setup for tracking multiple extended targets. In Section 5.2, performance
comparisons are conducted among the SNNSP, SNNDP, DP, DPSP and Distance Density Partitioning
(DDP). The DDP applies the DBSCAN algorithm to cluster measurements and selects different specified
radii to generate different partitions.

5.1. Simulation Setup

For illustration purposes, we consider a two-dimensional scenario over the surveillance region
[−1000, 1000]× [−1000, 1000] (in m). The kinematic state of each extended target xk = [xk, yk, vx

k , vy
k ]

T

consists of the corresponding position components (xk, yk) and velocity components (vx
k , vy

k).
[·]T denotes the transpose of a matrix [·].

The dynamic evolution of each target state x(i)k is assumed to follow a linear Gaussian model

x(i)k+1 = Fk x(i)k + Gk w(i)
k (6)

for i = 1, ..., Nx,k, where Fk is the state transition matrix, Gk is the noise gain, w(i)
k is Gaussian white

noise with the covariance Q(i)
k , and Nx,k is the number of extended targets.

The sensor measurements from target j are generated according to the following linear
Gaussian model

z(j)
k = Hk x(j)

k + v(j)
k (7)

where Hk is the observation matrix, and v(j)
k is white Gaussian noise with covariance R(j)

k . Each target
is assumed to give rise to measurements independently of the other targets.

The parameters in the dynamic and measurement models are shown as follows,

Fk =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 , Gk =


T2

2 0
0 T2

2
T 0
0 T


Hk =

[
1 0 0 0
0 1 0 0

] (8)
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with sampling time T = 1 s, covariance matrices for process noise and measurement noise
Qk = (2 m/s2) I2 and Rk = (20 m)2 I2, respectively. I2 is 2× 2 identity matrix.

The probability of survival is set to pS = 0.99, and the probability of detection is pD = 0.99.
The birth intensity in the simulations is

υb(x) = 0.1N
(

x; m1
b, Pb

)
+ 0.1N

(
x; m2

b, Pb

)
(9)

with

m1
b = [250, 250, 0, 0]T (10)

m2
b = [−250, 250, 0, 0]T (11)

Pb = diag([100, 100, 25, 25]) (12)

The spawn intensity is
υβ(x) = 0.05N

(
x; ξ, Pβ

)
(13)

where Pβ = diag([100, 100, 400, 400]), and ξ is the target from which the new target is spawned.

5.2. Scenarios and Results

In this section, two scenarios are used to validate the performance of the SNNSP and SNNDP.
The neighborhood list size K is set to 10. The density threshold UMP of the SNNDP and DDP is set
to 3. To keep the number of Gaussian components at a computationally tractable level, the pruning
and merging algorithm is performed as in [33]. After pruning and merging, the ET-GMPHD filter
selects the means of the Gaussian components that have weights greater than some threshold, e.g., 0.5,
as multiple extended target state estimates.

The OSPA distance makes a comprehensive evaluation for the estimated number of targets
and estimates of kinematic states. It was considered as a metric for performance evaluation of the
multitarget filter in [34,35] and is widely applied in recent several years [20–22,36]. However, the OSPA
distance is not suitable for comparing the performance of the ET-PHD filter with different partitioning
approaches. If the cut-off parameter of the OSPA distance is relatively small, the big error in the
estimated kinematic states could not be reflected adequately. On the contrary, if the cut-off parameter is
set to a big value, the OSPA distance stresses the error of the estimated number of targets, ignoring the
estimation error of kinematic states.

In this paper, the performance of the multi-target filter on kinematic states is evaluated by the
mean error based on an L2−Wasserstein metric, which is defined as

E(X, X̂) =

(
1
M

M

∑
j=1

(
1
m

min
π∈Πn

m

∑
i=1

d(xi, x̂π(i))
2

))1/2

if m ≤ n

E(X, X̂) = E(X̂, X) if m > n

(14)

where, X = {xi}m
i=1 is the set of kinematic states; X̂ = {x̂i}n

i=1 is the set of estimates of kinematic states;
M is the number of Monte Carlo runs; d(·, ·) is Euclidian distance; Πn represents the set of permutations
of length m with elements taken from {1, 2, . . . , n}. To analyse the computational complexity of the
ET-GMPHD filter with different partitioning algorithms, the number of partitions, the number of cells,
computational time of the partitioning algorithm, and computational time of the ET-GMPHD filter
recursion per scan are given. They are obtained by averaging over 100 Monte Carlo runs, respectively.

5.2.1. Differing Densities

There are two extended targets with different measurement density in the surveillance region,
and their trajectories are shown in Figure 6. Each extended target generates measurements per scan
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with Poisson rate 20. The density of measurements from target 2 is about five times that from target 1,
and measurements from extended targets follow Gaussian distribution. Clutter measurements per
scan are generated with Poisson rate 10, and uniformly distributed over the surveillance region.

−400 −300 −200 −100 0 100 200 300 400
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200
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300
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y
(m

)

target 1target 2

Figure 6. Trajectories of extended targets (’o’ is the start point, ′�′ is the end point).

As seen from Figures 7 and 8, the DPSP only exhibits very slightly better than the the DP.
The mean error of kinematic states estimated by the ET-GMPHD filter using the SNNSP and SNNDP
is smaller than that using the DP, DPSP and DDP, and with a better estimate of the number of
targets. The advantages are more evident when the two extended targets are spatially close at 45–60 s.
The reason for this is that the SNN similarity measure reflects the local configuration of measurements
in the measurement space, and thus is relatively insensitive to variations in density. In addition,
due to the DDP and SNNDP incorporating the density information of the individual measurement,
the ET-GMPHD filter with the DDP behaves better than that with the DP and DPSP, and the ET-GMPHD
filter using the SNNDP outperforms that using the SNNSP, likewise.
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Figure 7. Sum of weights.
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Figure 8. Mean error of estimated kinematic states.

The number of partitions by the DP, DPSP and DDP grows rapidly with the increase in the number
of measurements, while the number of partitions by the SNNSP and SNNDP mainly depends on
the neighbor list size K which is a relatively small value. Therefore, as can be seen from Figure 9,
the number of partitions by the SNNSP and SNNDP is smaller than that by the DP, DPSP and DDP.
The number of cells is even less, about one-tenth, as shown in Figure 10. Updating one Gaussian
component of the predicted PHD intensity by measurements in one cell, will form that of the posterior
PHD intensity. Thus, the computational complexity of the ET-GMPHD recursion is strongly dependent
on the number of cells in the resulting partitions. As can be seen from Figure 11, the computational
time of the ET-GMPHD filter recursion using the SNNSP and SNNDP is dramatically smaller than
that using DP and DDP. Although the SNNSP and SNNDP need to compute the SNN similarity for
each pair of measurements, the computational time cost is usually less than that cost by DP and DDP
due to the less number of their partitions, as shown in Figure 12. While the time required by DPSP is
significantly longer because of adding partitions by Sub-Partitioning. Note that the simulations are
implemented by Matlab2010 on Inter Core i5-4570 3.20 GHz processor and 4 GB RAM.
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Figure 9. Number of partitions.
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Figure 10. Number of cells.
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Figure 11. Computational time of the ET-GMPHD filter.
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5.2.2. High Clutter

In this scenario with high clutter, the trajectories of two extended targets are the same as in the
above scenario (shown in Figure 6). Clutter measurements per scan are generated with Poisson rate 40
(four times the clutter level in the first scenario). Each extended target generates measurements per
scan with Poisson rate 20, and the densities of measurements from two targets are set to be the same.

Because clutter measurements are distributed randomly in the surveillance region, the number of
distance thresholds increases greatly in the presence of high clutter measurements. As can be seen
from Figures 13 and 14, the number of partitions and the number of cells obtained by the DP, DPSP
and DDP are significantly larger, about ten and thirty times, respectively, than that by the SNNSP and
SNNDP. As a result, the ET-GMPHD filters based on the SNNSP and SNNDP approaches indicate an
evident decrease in computational time as shown in Figure 15, and the time of partitioning shows the
same trend as shown in Figure 16.
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Figure 15. Computational time of the ET-GMPHD filter.
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Figure 16. Computational time of Partitioning.

The DP and DPSP tend to leave clutter measurements to individual multiple cells, and thus
the extended target PHD filter may consider the clutter as a target in the high clutter environment.
Consequently, the number of targets is overestimated when using DP and DPSP as shown in Figure 17.
As shown from Figure 18, the mean error of the kinematic states given by the ET-GMPHD filter
based on the proposed approaches is smaller than the one using DP, DPSP and DDP, especially in the
situation that extended targets are spatially close.
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Figure 17. Sum of weights.

t (s)

0 10 20 30 40 50 60 70 80 90 100

M
e

a
n

 E
rr

o
r 

(m
)

0

20

40

60

80

100

120

140

DP

DPSP

DDP

SNNSP

SNNDP

Figure 18. Mean error of estimated kinematic states.

6. Conclusions

This paper proposes two measurement set partitioning approaches for the ET-PHD filter based on
the SNN similarity. The SNN similarity, which can reflect the local configuration of measurements in
the measurement space, is applied to handle the situation that the density of measurements varies from
target to target. To promote the reliability further, the SNNDP is developed by combining the SNN
similarity with the DBSCAN algorithm. The resulting ET-PHD filter based on the proposed partitioning
approaches decreases computational burden due to the smaller number of partitions. Especially in
high clutter scenarios, a significant reduction in computational complexity can be achieved. Moreover,
better estimates about the target number and the kinematic states can also be achieved in some
challenging scenarios, such as differing densities of measurements, high clutter and proximity among
extended targets. We will discuss the extension of the developed approaches for the extended target
with complex shape, and extend our current result to the multi-sensor case with appropriate sensor
management strategies [37,38] in our future work.
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