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Abstract: According to the IEEE 802.15.6 standard, interference within each wireless body area
network (WBAN) can be well addressed by the time division multiple access (TDMA)-based media
access control (MAC) protocol. However, the inter-WBAN interference will be caused after multiple
WBANs are gathered together. This paper proposes a priority-aware price-based power control
(PPPC) scheme for mitigating the inter-WBAN interference. Specifically, to maximize the transmission
data rate of sensors and control the aggregate interference suffered by coordinators, a Stackelberg
game is established, in which the coordinators issue interference prices and the active sensors adjust
their transmission power accordingly. On the other hand, since the information about the identities
of the active sensors in a specific time slot is kept private, a Bayesian game is designed to model
the interaction among sensors. Moreover, the timeliness and reliability of data transmission are
guaranteed by designing the sensors’ priority factors and setting a priority-related active probability
for each sensor. At last, a power control algorithm is designed to obtain optimal strategies of game
players. Simulation results show that compared with other existing schemes, the proposed scheme
achieves better fairness with a comparable network sum data rate and is more energy efficient.

Keywords: WBANs; interference; power control; Stackelberg game; Bayesian game

1. Introduction

As a promising solution for pervasive and remote health monitoring, wireless body area networks
(WBANs) have attracted substantial attention in recent years. Generally, a WBAN consists of a set of
biosensors that are implanted in or placed on or around the human body to collect the physiological
parameters and a coordinator, e.g., a tablet or a smartphone, for gathering the sensed information
and delivering it to remote medical centers via wireless communication technologies, such as WiFi
and 4G [1–4]. Due to users’ mobile nature, WBANs are very likely to encounter one another. Thus,
inter-WBAN interference will occur, which will degrade the intra-WBAN communication quality and
quickly drain the sensors’ batteries [5]. This issue is more challenging in medical applications in which
data transmission failure can be life-threatening.

Coexistence state prediction methods based on machine leaning models for co-located WBANs
have been proposed in [6,7], which facilitate detection and processing of the inter-WBAN interference
in time. Moreover, a few inter-WBAN interference mitigation schemes were proposed in previous
works [8–10], especially those based on resource allocation, e.g., time slot assignment methods,
channel allocation approaches, and power control schemes. Specifically, time slot assignment methods

Sensors 2019, 19, 2664; doi:10.3390/s19122664 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-0235-2507
http://www.mdpi.com/1424-8220/19/12/2664?type=check_update&version=1
http://dx.doi.org/10.3390/s19122664
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 2664 2 of 17

that adopt graph coloring algorithms were proposed in [11–14], in which the available time slots were
mapped to colors and the adjacent nodes were assigned slots of different colors to avoid interference.
The authors in [15–18] proposed channel allocation approaches, in which the interfering WBANs
switched to different channels to alleviate the interference among WBANs. However, these methods
will cause long time delays or co-channel interference when the number of co-located WBANs is large.

Power control schemes are considered effective methods of compensating for the aforementioned
deficiencies [19]. The authors in [20,21] proposed power control schemes that were based on traditional
non-cooperative game models. By adjusting the transmission power, the active sensor nodes attempt
to maximize their own utilities, which are composed of their achievable data rate and consumed power.
However, these methods are implemented based on the assumption that the private information about
which sensor is active in the time slot of interest within a WBAN is exactly known by all its neighbors,
which is not feasible in practice. On account of this, the authors in [22] proposed a Bayesian game
mode-based power control (which we name BGPC in this paper) scheme for co-located WBANs, in
which the WBANs act as players and the active links are taken as the types of players. The expected
payoff of each player, which is defined as the difference between the throughput and the cost, where
the cost is equal to the power price multiplied by the transmission power, is maximized. However,
in the BGPC scheme, the power prices are fixed, and there is no dynamic pricing mechanism for
controlling the aggregated interference at the coordinators.

Given all these considerations, we propose a priority-aware price-based power control (PPPC)
scheme based on Stackelberg and Bayesian game models for inter-WBAN interference mitigation
in this paper. Typically, the time division multiple access (TDMA) scheduling method is adopted
within each WBAN to manage the intra-WBAN communication, while the information about which
sensor is active in the time slot of interest is unknown to other WBANs. For the purpose of exposition,
we assume there is a virtual player in each WBAN and that it takes the active sensor within the WBAN
as its type. Briefly, the main intellectual contributions of this paper are summarized as follows:

• To control the power of the interference suffered by the coordinators and maximize the
transmission data rate of sensors, a price-based power control scheme is proposed based on the
Stackelberg game, in which the coordinators act as leaders by setting optimal interference prices,
whereas the virtual players act as followers by adjusting their transmission power according to
the received prices. In addition, both the leader-level game and the follower-level game are based
on the non-cooperative game structure, in which the players aim to maximize their individual
utilities selfishly.

• Due to the incomplete information caused by the privacy of time allocation in each WBAN,
the competition among followers is modeled by a Bayesian game, in which each virtual player
adopts different strategies for different types to maximize its own expected payoff.

• The sensors’ priorities are guaranteed by introducing the priority factors into the utility functions.
Furthermore, the active probability of each sensor is proportional to its priority factor, to improve
the timeliness and reliability of critical data transmission and prolong the network lifetime.

• A power control algorithm is designed to obtain the optimal strategies of game players.
Simulations are conducted to evaluate the effectiveness of the proposed PPPC scheme in terms
of the total network data rate, energy efficiency, and fairness among sensors by comparing with
other existing schemes.

The remainder of this paper is organized as follows: Section 2 presents a brief review of the related
work. Section 3 provides the system model and problem formulation. The proposed priority-aware
price-based power control scheme is analyzed in Section 4. Section 5 evaluates the performance of
the proposed scheme. Finally, the conclusions of the paper are presented in Section 6. The important
notations used in this paper are provided in Table 1.
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Table 1. Notation table.

Symbol Definition

N Number of co-located WBANs
m Number of sensors in each WBAN
Bi ith WBAN
Vi ith virtual player
Sij jth sensor in Bi
Ci Coordinator in Bi
hk

ij Channel gain from Sij to Ck
pij Transmission power of Sij
Pmax Maximum transmission power of sensors
γij SINR of Sij
ϕij Maximum data rate of Sij
W Available bandwidth
ρi Interference price set by Ci
Ii Interference power suffered by Ci
UL

i Utility of Ci
UF

i Expected utility of Vi
uij Utility of Vi when Sij is active
ϑij Priority factor of Sij
Prij Active probability of Sij
V Set of virtual players
Ti Type set of Vi
Pi Strategy set of Vi
λij,τij,ηi Lagrange multiplier

2. Related Work

Inter-WBAN interference results in decreased network performance and quick energy
consumption. Power control schemes that have the capability of mitigating the interference and
improving the energy efficiency have been studied in many works. The authors in [20,21,23–25]
proposed power control schemes based on the traditional non-cooperative game model, in which the
active nodes determine their transmission powers selfishly to maximize their own utilities, which are
composed of the transmission rate and the required power. Specifically, a reinforcement learning
method was introduced in [23] to allow WBANs to improve their performance by learning from
experience. A quality of service (QoS)-driven power control approach was proposed in [24], in
which the satisfaction degree of each sensor with its signal-to-interference plus noise ratio (SINR)
and the energy consumption are considered in the utility function. Additionally, the power control
scheme proposed in [25] was based on the users’ interaction information, in which Bluetooth and
acoustic wave technologies are used to estimate the distance between WBANs. Moreover, in our
previous work [26], a QoS-aware power control scheme based on the Nash bargaining game model
was proposed, where the interfering nodes adjust their transmission powers cooperatively according
to the diverse QoS requirements.

In the aforementioned power control schemes, there is no dynamic pricing mechanism for
controlling the power of the interference suffered by the coordinators. As an effective tool for
formulating the pricing mechanism, the Stackelberg game model [27] has been implemented in
many other fields. The authors in [28,29] studied the implementation of the Stackelberg game model
in cooperative communication networks, in which the relay nodes set prices and get paid for helping
users forward signals and the sources pay for the power of the relay nodes. Stackelberg game-based
power allocation schemes for femtocell networks were proposed in [30–32], where the macrocell
base station protects itself by pricing the interference from femtocell users. In cellular networks,
the operators set an interference penalty price for each user to avoid intolerable interference at the
WiFi access point, which can be formulated by the Stackelberg game model [33]. The authors in [34]
formulated a Stackelberg game model for capturing the interactions between the energy management
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centers and the devices in smart grids, where the former offer virtual retail prices and the latter
are supposed to purchase energy. Additionally, the authors in [35,36] studied the Stackelberg game
model-based incentive mechanism in peer-to-peer networks.

However, these methods assume that each player has exact information about the other players
in the network, which may not be feasible in practice. To solve this problem, a few previous
works [22,37–39] have studied the application of the Bayesian game in wireless networks with
uncertainty. Specifically, Stackelberg and Bayesian game model-based power control schemes have
been proposed for an anti-jamming network [38] and a two-tier cellular network [39]. However,
these schemes cannot be applied to WBANs directly due to the specific features of WBANs. Thus,
we propose a tailored Stackelberg and Bayesian game-based power control scheme for interference
mitigation in co-located WBANs, in which the distinct parameters of sensors are considered to improve
the network QoS.

3. System Model and Problem Formulation

In this section, we first introduce the system model, including the interference model and the
channel model. Then, the problem formulation based on the Stackelberg and Bayesian game models
is presented.

3.1. System Model

In this paper, we consider a spectrum-sharing scenario with N co-located WBANs, which is
denoted by B = {B1, B2, . . . , BN}, where Bi represents the ith WBAN. Within each WBAN, there is
a star topology, which consists of m sensor nodes that measure the physiological parameters of
the human body, such as EEG, ECG, and body temperature, and a coordinator for collecting
the sensed data from its sensors. The sets of sensors and coordinators are denoted by S ={

Sij
∣∣ i = 1, 2, . . . , N, j = 1, 2, . . . , m

}
and C = {Ci| i = 1, 2, . . . , N}, respectively, where Sij denotes the

jth sensor in the ith WBAN and Ci is the coordinator of the ith WBAN. We assume that the TDMA
scheduling is introduced within each WBAN to mitigate the intra-WBAN interference. However,
inter-WBAN interference may be incurred by sensors that are working simultaneously in co-located
WBANs. The interference model is illustrated in Figure 1. We focus on the uplink communication
in this paper. Specifically, there are two types of links, namely the on-body intended link between a
sensor and its corresponding coordinator and off-body interference links between different WBANs,
which are denoted by the solid lines and dotted lines, respectively.

Without loss of generality, we assumed that the involved channels were block-fading; i.e.,
the channels are invariant in each time slot, but may vary across successive slots. The channel
gain of the link from sensor Sij to coordinator Ck is denoted by hk

ij, which is a function of the distance
between the transceivers. Thus, the SINR of sensor Sij can be formulated as follows:

γij =
pijhi

ij

Ii + N0
(1)

where pij is the transmission power of sensor Sij, Ii represents the power of aggregated interference
that is suffered by coordinator Ci, and N0 denotes the Gaussian white noise power. Then, based on
Shannon’s formula, the maximum transmission data rate of sensor Sij is given by:

ϕij = Wlog2
(
1 + γij

)
(2)

where W indicates the available bandwidth.
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Figure 1. Interference model among co-located WBANs.

3.2. Problem Formulation

Since the co-located WBANs work non-cooperatively, the time allocation within each WBAN
is private information that is unknown to others; i.e., the WBANs have no knowledge about which
nodes are selected in other WBANs to transmit in the time slot of interest. Given the incomplete
information, a Bayesian game is employed, in which players adopt different strategies for different
types. In this paper, we assume there is a virtual player in each WBAN with m types. Thus, the game
can be characterized as follows:

• The set of the virtual players is denoted as V = {Vi| i = 1, 2, . . . , N}
• The type set of player Vi consists of the m sensors within the ith WBAN and is denoted by Ti,

where tij = Sij, tij ∈ Ti implies that sensor Sij is active in the considered time slot.
• The strategy of player Vi is its transmission power, which is a function of its type. Specifically,

pij is player Vi’s transmission power when its type is tij = Sij. The strategy set of player Vi is Pi,
i.e., pij ∈ Pi, ∀j.

• The probability that Sij is active in the considered time slot is Prij, which is common knowledge
among all players.

Each sensor tries to maximize its own data rate selfishly by increasing its transmission power,
which will result in quick energy depletion of the sensor and cause severe interference to other WBANs
that are active simultaneously. To guarantee the network QoS, the interference pricing mechanism is
employed, in which the coordinators have the privilege of taking actions first to set the interference
prices to maximize their profits. Then, the active sensors update their transmission powers according to
the received prices to maximize their payoffs. The two-stage game can be formulated by the Stackelberg
game model, where the coordinators act as the leaders and the virtual players are the followers.

Specifically, as the types of followers within a particular time slot are unknown, the profit of
leader Ci is given by:

Ui
L = ∑

N−i

ρi IiPr(N−i) (3)
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where ρi is the interference price that is set by Ci, N−i is a stochastic set that is composed of the
active sensors in all WBANs except Bi, and Pr (N−i) is the occurrence probability of concurrently
transmitting set N−i.

Moreover, the expected payoff of virtual player Vi is given by:

Ui
F =

m
∑

j=1
uijPrij

=
m
∑

j=1

{
∑
N−i

[
ln(1 + ϑij pijhi

ij)− Ii −
N
∑

k=1,k 6=i
pijhk

ijρk

]
Pr(N−i)

}
Prij

(4)

where uij is the payoff of sensor Sij and ϑij is the priority factor of sensor Sij. Referring to [26], ϑij can
be defined as follows:

ϑij = e
|ζij−ζij,0|

ζij,0 −
Eij

E0
(5)

where ζij is the sensed value of a particular physiological signal, ζij,0 is the corresponding normal
value of the signal, Eij is the energy that has been consumed by sensor Sij, and E0 is the initial energy.

The first term of ϑij (e
|ζij−ζij,0|

ζij,0 ) indicates the abnormality of the data sensed by Sij. The second term of

ϑij (
Eij
E0

) reflects the energy efficiency of Sij.
In Formula (4), the first term (ln(1 + ϑij pijhi

ij)) estimates the benefit obtained by sensor Sij,
which provides an incentive for the sensor to enhance its transmission power level. The second
term (Ii) captures the negative impact that other sensors’ strategies have on Sij. Finally, the last term

(
N
∑

k=1,k 6=i
pijhk

ijρk) represents the cost that Sij has to pay for generating interference with other WBANs.

4. Analysis of the Priority-Aware Price-Based Power Control Scheme

The backward induction method was employed to analyze the PPPC scheme. That is, the followers
first maximize their utilities by adjusting their transmission powers based on any given interference
prices. Then, the leaders set optimal interference prices according to the perceived responses of the
followers. Thus, this section analyzes both the follower-level game and the leader-level game and
presents the implementation of the PPPC scheme.

4.1. Follower-Level Game

Based on the prices issued by the leaders, the followers compete with one another
non-cooperatively to maximize their individual payoffs. Because of the incomplete information,
the competition among followers is modeled by a Bayesian game. The Bayesian Nash equilibrium
(BNE) is the solution of the Bayesian game, which is defined as a mapping from the type set to the
strategy set, i.e., fi : Ti → Pi, ∀i. To achieve the BNE of the follower game, the following optimization
problem should be solved:

P1:
max Ui

F

s.t. 0 ≤ pij ≤ Pmax, ∀j
(6)

where Pmax is the maximum transmission power of sensors. Because the active probability of each
sensor is non-negative, i.e., Prij ≥ 0, ∀i, j, and the sensors within a WBAN determine their strategies
independently, the above problem can be simplified as follows:

P2:
max uij
s.t. 0 ≤ pij ≤ Pmax

(7)
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Moreover, since the co-located WBANs work independently, the payoff of Sij can be rewritten as:

uij = ln(1 + ϑij pijhi
ij)−

N

∑
k=1,k 6=i

m

∑
j=1

pkjhi
kjPrkj −

N

∑
k=1,k 6=i

pijhk
ijρk (8)

Proposition 1. The best response of follower Vi when performing action pij is:

pij =
1

N
∑

k=1,k 6=i
hk

ijρk + λij − τij

− 1
ϑijhi

ij
(9)

Proof. The second-order derivative of uij with respect to pij is given as:

∂2uij

∂pij
2 = −

(
ϑijhi

ij

)2

(
1 + ϑij pijhi

ij

)2 ≤ 0 (10)

Thus, problem P2 is a convex optimization problem. The unique optimal solution can be achieved
using the Lagrange multiplier method. The Lagrange function is given by:

L = ln(1 + ϑij pijhi
ij)−

N

∑
k=1,k 6=i

m

∑
j=1

pkjhi
kjPrkj −

N

∑
k=1,k 6=i

pijhk
ijρk − λij

(
pij − Pmax

)
+ τij pij (11)

Taking the first-order derivative of (11) with respect to pij and setting it to zero, we obtain the
following equation:

∂L
∂pij

=
ϑijhi

ij

1 + ϑij pijhi
ij
−

N

∑
k=1,k 6=i

hk
ijρk − λij + τij = 0 (12)

Thus, the optimal solutions of followers can be derived.

It can be observed from Formula (9) that a sensor with a larger priority factor will enhance its
transmission power to improve the reliability and timeliness of data transmission. In contrast, a sensor
with a smaller priority factor will decrease its transmission power to save energy. Moreover, a sensor
will lower its transmission power when the received interference prices are higher to decrease its cost.

4.2. Leader-Level Game

The leaders get paid for suffering interference that is generated by followers in other WBANs.
Based on Formulas (3) and (9), the profit of coordinator Ci can be reformulated as:

Ui
L = ρi

N
∑

k=1,k 6=i

m
∑

j=1
pkjhi

kjPrkj

= ρi
N
∑

k=1,k 6=i

m
∑

j=1

 1
N
∑

q=1,q 6=k
hq

kjρq+λkj−τkj

− 1
ϑkjhk

kj

 hi
kjPrkj

(13)

In the leader-level game, each leader aims at maximizing its own profit, which can be expressed
as follows:

P3:
max Ui

L

s.t. ρi ≥ 0
(14)



Sensors 2019, 19, 2664 8 of 17

Proposition 2. The best response of leader Ci is given by:

ρi =

N
∑

k=1,k 6=i

m
∑

j=1

 1
N
∑

q=1,q 6=k
hq

kjρq+λkj−τkj

− 1
ϑkjhk

kj

 hi
kjPrkj + ηi

N
∑

k=1,k 6=i

m
∑

j=1


(

hi
kj

)2
Prkj(

N
∑

q=1,q 6=k
hq

kjρq+λkj−τkj

)2


(15)

Proof. It can be proven that the objective function of P3 is a concave function of ρi, i.e., ∂2Ui
L

∂ρi
2 < 0.

Thus, problem P3 is a convex optimization problem and can be solved by the Lagrange multiplier
method, where the Lagrange function is expressed as follows:

L0 = ρi

N

∑
k=1,k 6=i

m

∑
j=1

 1
N
∑

q=1,q 6=k
hq

kjρq + λkj − τkj

− 1
ϑkjhk

kj

 hi
kjPrkj + ηiρi (16)

Taking the first-order derivative of Formula (16) with respect to ρi and setting it to zero,
the following equation can be obtained:

∂L0

∂ρi
=

N

∑
k=1,k 6=i

m

∑
j=1


N
∑

q=1,q 6=k
hq

kjρq + λkj − τkj − ρihi
kj(

N
∑

q=1,q 6=k
hq

kjρq + λkj − τkj

)2 −
1

ϑkjhk
kj

 hi
kjPrkj + ηi = 0 (17)

Then, the optimal solutions of coordinators can be derived.

4.3. Implementation of the Proposed PPPC Scheme

To avoid encountering the NP-hard problem that results from using the traditional optimization
algorithms, the fixed-point method is applied to solve the proposed problem [27]. The iteration steps
are as follows:

ρi (t + 1) =

N
∑

k=1,k 6=i

m
∑

j=1

 1
N
∑

q=1,q 6=k
hq

kjρq(t)+λkj(t)−τkj(t)
− 1

ϑkjhk
kj

 hi
kjPrkj + ηi (t)

N
∑

k=1,k 6=i

m
∑

j=1


(

hi
kj

)2
Prkj(

N
∑

q=1,q 6=k
hq

kjρq(t)+λkj(t)−τkj(t)

)2


, ∀i (18)

λij (t + 1) = max

λij (t) +

 1
N
∑

k=1,k 6=i
hk

ijρk (t) + λij (t)− τij (t)
− 1

ϑijhi
ij
− Pmax

 , 0

 , ∀i, j (19)

τij (t + 1) = max

τij (t)−

 1
N
∑

k=1,k 6=i
hk

ijρk (t) + λij (t)− τij (t)
− 1

ϑijhi
ij

 , 0

 , ∀i, j (20)
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ηi (t + 1) = max {ηi (t)− ρi (t) , 0} , ∀i (21)

where t denotes the iteration number.
Specifically, to improve the timeliness of critical data transmission, we assume that the active

probability of each sensor is proportional to its priority factor, which is defined as follows:

Prij =
ϑij

m
∑

l=1
ϑil

, ∀i, j (22)

Here, a power control algorithm is designed to implement the proposed PPPC scheme,
as described in Algorithm 1.

Algorithm 1 Power control algorithm.

1: Input: hq
kj, ϑkj, Prkj, λkj (t), τkj (t), ηi (t), ρq (t), k = 1 · · ·N, k 6= i, q = 1 · · ·N, q 6= k, j = 1 · · ·m,

i = 1 · · ·N
2: Output: optimal interference prices, transmission power
3: Initialization: ρq (t) = 0.5, λkj (t) = τkj (t) = ηi (t) = 10
4: Compute the ρi (t + 1), λij (t + 1), τij (t + 1) and ηi (t + 1) according to Formulas (18)–(21)
5: While ∃i, |ρi (t + 1)− ρi (t)| > ε, do
6: ρi (t) = ρi (t + 1)
7: λij (t) = λij (t + 1)
8: τij (t) = τij (t + 1)
9: ηi (t) = ηi (t + 1)

10: Update ρi (t + 1), λij (t + 1), τij (t + 1), ηi (t + 1) according to Formulas (18)–(21)
11: end
12: ρi (t + 1) , ∀i is the optimal interference prices, and compute the transmission power based on

Formula (9)

5. Performance Evaluation

In this section, the simulation results are presented. The simulation was designed on the MATLAB
platform. We set up a network with N WBANs that were randomly deployed in a 1.6 m × 1.4 m
rectangular area (Plane size of the passenger elevator car). For simplicity, each WBAN was mapped
to a rectangle with length 0.5 m and width 0.3 m [26]. In each WBAN, there were two sensors, i.e.,
m = 2, which were randomly placed in the rectangle, and a coordinator was placed in the center of the
rectangle for effective communication with its sensors.

In the simulation, as an example, the channel gain hk
ij =

(
dk

ij

)−2
, where dk

ij is the distance between
sensor Sij and coordinator Ck [22], the maximum transmission power Pmax = 0 dBw, and the available
bandwidth W = 4 kHz. The parameters in the simulation are listed in Table 2, and the priority factor
of each sensor, which is generated randomly, is given in Table 3.

Table 2. Simulation parameters.

Parameter Value

Size of the simulation area 1.6 m × 1.4 m

Size of each WBAN 0.5 m × 0.3 m

The number of sensor nodes in a WBAN 2

The maximum transmission power 0 dBw

The available bandwidth 4 kHz
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For comparison, the following schemes were simulated:
OPTIMALscheme [29]: it aims to maximize the network sum data rate.
EVENscheme [39]: the sensors within a WBAN are activated with equal probability.
BGPC scheme [22]: the Bayesian game-based power control scheme with a fixed interference price.

Table 3. Logarithms of the priority factors of the sensors.

S11 S12 S21 S22 S31 S32 S41 S42 S51 S52

0.1 0.6 0.5 0.8 0.2 0.7 0.1 0.9 0.5 0

S61 S62 S71 S72 S81 S82 S91 S92 S101 S102

0 0.7 0.3 0.5 0.7 0.1 0 0.9 0.8 0.1

5.1. Feasibility of the PPPC Scheme

Figures 2 and 3 show the players’ optimal strategies as the number of co-located WBANs increases
from 2–10. As more WBANs become clustered together, the competition among them becomes
increasingly fierce. In this case, according to Figure 2, each leader decreased its price to maximize its
profit, which complies with the rules in an economic market, and each follower lowered its expected
transmission power to decrease its total cost, as depicted in Figure 3.

Figure 2. Optimal strategies of leaders vs. the number of co-located WBANs.

Specifically, based on the knowledge of the best responses of sensors, the coordinators understand
that the sensor with a larger priority factor is certain to increase its transmission power to enhance the
received signal strength. Therefore, the neighbor coordinators of the sensor will raise their interference
prices to obtain more profits, as illustrated in Figure 2.

It can be observed from Figure 3, though the received prices are higher, the sensor with a higher
priority level will increase its transmission power at any cost to improve the reliability and timeliness
of abnormal data transmission, which is applicable to WBAN collecting life-critical physiological data.

Mathematically, the above phenomena can be analyzed based on Formulas (9) and (15).
SINR reflects the timeliness and reliability of data transmission [40]. Figure 4 depicts the SINRs

of sensors with different priority levels when there were 10 co-located WBANs. It can be seen that
there is a positive correlation between the sensors’ priority factors and their obtained SINRs. When the
sensed data were abnormal, that is when the corresponding sensor had a large priority factor, it would
enhance its SINR by increasing its transmission power to improve the timeliness and reliability of
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critical data transmission. In contrast, when the sensor had consumed much energy, that is when it had
a small priority factor, the sensor would lower its transmission power to prolong its lifetime, which
resulted in decreased SINR.

Figure 3. Optimal strategies of followers vs. the number of co-located WBANs.

Figure 5 shows the sum utilities of the leaders and followers as functions of the number of
co-located WBANs. The sum utility of the leaders increased as more WBANs joined the network.
Moreover, when the number of co-located WBANs increased from 2–4, the sum utility of the followers
increased. However, the sum utility of the followers decreased when there were more than four
WBANs. The reason is that the followers must pay more leaders and suffer from more severe
interference in this case, which decreased their utilities dramatically.

S11 S12 S21 S51S41S32S22 S31 S42 S52 S61 S62 S101 S102S92S91S81S72S71 S82

Figure 4. SINR of each sensor.
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Figure 5. Sum utility of players vs. the number of co-located WBANs.

In the proposed PPPC scheme, the optimal strategies of coordinators were achieved iteratively,
as analyzed in Section 4.3. According to Figure 6, the interference prices that were set by coordinators
would converge quickly under scenarios with different numbers of co-located WBANs, which indicates
the feasibility of the proposed scheme.

Figure 6. Convergence performance of the proposed scheme.

5.2. Comparison of PPPC with Other Schemes

Figures 7 and 8 compare the proposed PPPC scheme with the EVEN scheme and the OPTIMAL
scheme in terms of the network sum data rate and the fairness among sensors. Specifically, the fairness
among sensors was quantified by Jain’s fairness index [41], which is defined as:

Fairness index =

(
N
∑

i=1

m
∑

j=1
xij

)2

Nm
N
∑

i=1

m
∑

j=1
x2

ij

(23)

where xij is the achievable data rate of sensor Sij.
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It can be figured out from Figure 7 that the PPPC scheme outperformed the EVEN scheme in
terms of the data rate by 3.5%, on average. Although the sum data rate of the OPTIMAL scheme was
5.05% higher than that of the PPPC scheme, the OPTIMAL scheme resulted in the smallest fairness
index, as shown in Figure 8. The reason is that the OPTIMAL scheme neglected the requirement of
sensors for fairness, while maximizing the sum data rate. Conversely, the EVEN scheme aimed to
guarantee the fairness by sacrificing the data rate. Thus, the fairness of the EVEN scheme was slightly
higher than that of the PPPC scheme. However, the proposed PPPC scheme achieved a good tradeoff
between the network sum utility and the fairness among sensors by setting the priority-level-related
active probability for each sensor.

PPPC

Figure 7. Sum data rate vs. N under schemes with different active probabilities of sensors. PPPC,
priority-aware price-based power control.

PPPC

Figure 8. Fairness among sensors vs. N under schemes with different active probabilities of sensors.

Figures 9–11 depict the comparison between the PPPC scheme and BGPC scheme. The prices
of the BGPC scheme were set to 0.5 and 1 in the simulation; these cases are denoted as BGPC-0.5
and BGPC-1.



Sensors 2019, 19, 2664 14 of 17

It can be drawn out that the average price of the PPPC scheme decreased as the number of
co-located WBANs increased, as analyzed in Figure 2. Compared with the BGPC-1 scheme, the PPPC
scheme achieved a 5.41% higher sum data rate by sacrificing 0.02 W of power. Further, compared with
BGPC-0.5, the PPPC scheme obtained a 3.47% higher sum data rate with 62.57% lower transmission
power. It can be concluded that the BGPC scheme limited the space for improving the network
performance by setting a fixed interference price in advance, while the PPPC scheme with adjustable
prices was more flexible and was more energy efficient.

PPPC

Figure 9. Average prices vs. N under schemes with different pricing mechanisms. BGPC, Bayesian
game mode-based power control.

PPPC

Figure 10. Average expected transmission power vs. N under schemes with different
pricing mechanisms.
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PPPC

Figure 11. Sum data rate vs. N under schemes with different pricing mechanisms.

6. Conclusions

In this paper, a priority-aware price-based power control scheme was proposed to mitigate the
inter-WBAN interference, which was based on the Stackelberg and Bayesian game models. Since
the TDMA-based MAC protocol was adopted within each WBAN, while the specific time allocation
was private, we assumed there was a virtual player in each WBAN that took the active sensor of
the WBAN as its type. Thus, in the game, the coordinators were leaders and set the interference
prices, whereas the virtual players were followers and adjusted their transmission powers based on
the received prices. There was a non-cooperative game structure at both the leader-level and the
follower-level, in which the players aimed to maximize their own expected utilities selfishly. Due to
the special features of WBANs, the sensors’ priority factors were considered in the design of the utility
functions, and the active probability of each sensor was set to be proportional to its priority factor.
Finally, a power control algorithm was designed to obtain the optimal solutions. Extensive simulation
results showed that the sensors based on the proposed PPPC scheme could adjust their transmission
powers according to their priority levels to improve the timeliness and reliability of critical data
transmission and prolong the network lifetime. Moreover, the proposed scheme converged quickly
in different scenarios. Furthermore, compared with the OPTIMAL and EVEN schemes, the PPPC
scheme achieved a good tradeoff between the network sum data rate and the fairness among sensors.
In addition, it was more energy efficient than the existing BGPC scheme. Thus, the proposed PPPC
scheme is applicable to mobile WBANs that monitor various physiological parameters with limited
energy.
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