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Abstract: Sericulture is traditionally a labor-intensive rural-based industry. In modern contexts,
the development of process automation faces new challenges related to quality and efficiency. During
the silkworm farming life cycle, a common issue is represented by the gender classification of the
cocoons. Improper cocoon separation negatively affects quantity and quality of the yield resulting in
disruptive bottlenecks for the productivity. To tackle this issue, this paper proposes a multi sensor
system for silkworm cocoons gender classification and separation. Utilizing a load sensor and a digital
camera, the system acquires weight and digital images from individual silkworm cocoons. An image
processing procedure is then applied to extract significant shape-related features from each image
instance, which, combined with the weight data, are provided as inputs to train a Support Vector
Machine-based pattern classifier for gender classification. Subsequently, an air blower mechanism
and a conveyor system sort the cocoons into their respective bins. The developed system was trained
and tested on two different types of silkworm cocoons breeds, respectively CSR2 and Pure Mysore.
The system performances are finally discussed in terms of accuracy, robustness and computation time.

Keywords: multi-sensor; image processing; support vector machine; pattern recognition

1. Introduction

Silk is the most distinguished textile in the world. It has a natural luster and is popularly known as
the “Queen of Textiles” [1]. Silk is a product of sericulture, which is produced from silkworm or Bombyx
mori, which means “silkworm of the black mulberry tree” [2,3]. Like most insects, the silkworm life
cycle has four stages of development, respectively egg, larva, pupa, and adult moth (Figure 1a). A pair
of male and female fully-grown adult moth mate with each other, and the female subsequently lays
eggs and dies. The egg hatches and emerges out as a larva (also called a caterpillar), which feeds on
mulberry leaves and grows for a period of 4 weeks. Once the larva stops feeding it enters the pupal
stage, where it uses its secretion to form a protective outer shell called a cocoon [4]. After 3 weeks,
the chrysalis emerges from the cocoon as a moth, it mates, and the female lays eggs permitting the life
cycle to restart. Among these four stages, cocoons are of commercial importance since a continuous
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filament of raw silk is directly produced from cocoons by terminating the growth of the caterpillar
while inside the cocoon.
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The sericulture industry is labor intensive, mostly rural-based, and multidisciplinary in nature.
It involves on-farm activities such as mulberry cultivation, egg production, silkworm rearing, cocoon
production, and off-farm activities like raw silk reeling, spinning, throwing, and weaving. Grainage
centers [5] separate the cocoons based on their gender and allow pairs to mate and produce silkworm
eggs (also called seeds). These seeds are utilized by the farmers for cocoon production and later based
on the quality and requirements, the cocoons are either sent for reeling, to obtain raw silk or made
available to the grainage centers for increased seed production.

In terms of productivity, the success of the silk industry depends mainly on the pre-cocoon stages
of the silkworm life-cycle [6], however, literature and industrial practices surveys highlight a gap in
the automation development in the pre-cocoon stage compared to post-cocoon stage.

Table 1 summarizes the commercially-available machinery for both pre- and post-cocoon stages,
the latter of which can rely on automated machines to reduce the manual labor involved and to improve
the production yield.

In terms of quality and quantity, best practices in seed production require (a) sorting the silkworms
based on gender and (b) and allowing the best pairs to mate in a constrained environment [5]. Although
silkworms can be sorted at different stages during their life cycle (see Table 2), the cocoon stage is the
most effective since it causes minor damages to the pupa [6].

Currently, at the grainage centers [7], the cocoons which contain the live chrysalis are weighed
and separated as males or females. Then the best cocoon pairs are kept in circular cubicles (Figure 2a)
to subsequently allow the moth to emerge, mate and lay the eggs. This manual cocoon-sorting is
made possible since females are bulkier and heavier than the male chrysalises. However, this task is
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still mainly performed manually by employing highly skilled professionals, since a low accuracy in
cocoon separation according to the gender may lead to selfing [8,9], decreasing the quantity of the laid
eggs [10].

Table 1. Available machinery for pre and post-cocoon stage.

Pre-Cocoon Stage Post-Cocoon Stage

Machine for crushing shoots Cocoon de-flossing machine
Mulberry pruning machine Denier detecting device in silk reeling
Litter separation machine Long skein silk book making machine

Pedal-operated reeling twisting machine for muga
and tasar silk Reeling

Reeling and twisting machine
Solar-operated spinning machine

Motorized pedal-operated spinning machine
Wet reeling machine
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Figure 2. (a) Image of cubicles used for egg production. (b) Eggs produced by incorrect separation of
cocoons. (c) Eggs produced by pairing best male and female cocoons.

Table 2. Methods for silkworm gender classification for different stages [11–15].

Stages Methods Remarks

Chromosome
Presence or absence of the “W” chromosome

Female—ZW chromosome
Male—ZZ chromosome

Not practical—high cost

Egg
Color of the egg

Males are usually light yellow
Females are dark brown in color

Not practical—need for skilled workers

Larval
Markings are exhibited on the larval body

Female—crescent marking
Males—plain

Sex separation is possible only on the 1st day of
5th instar. Process is laborious and too slow

operation, larvae may get injured

Cocoon

Color and weight
Color—females are golden yellow/

Males white—CSR2
Weight—females are heavier than males

Color depends on various silkworm breeds
Weight—each cocoon is weighed individually

and sorted—presently followed in
grainages—non-destructive

Pupa Males are smaller in size whereas females
are plumper

Reliable/low error—cocoons have to be cut open
to remove the pupae, which may cause injury

to pupae

Moth

Males are small, slender active moving in
semi-circles with bent abdomen/females are

bigger with bloated abdomen and
rather lethargic

Males and females are easily separated. Selfing
takes place affecting the quality of the eggs,

health hazards from moth dust

Moreover, the quantity of eggs depends on the proper selection of cocoons quality, in terms
of weight and shape, which should fall in specific ranges indicated by industrial standards [6,10].
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According to the industrial partner best practices, the weight of Pure Mysore-breed silkworm cocoons
ranges from 0.8 to 1.1 g for male and from 1.2 to 1.4 g for female cocoons. The CSR 2 breed cocoons
weight ranges from 0.7 to 1.4 g for male and 1.5 to 2.0 g for female cocoons. Moreover, overall
circumference of the female cocoon is larger when compared to the male cocoons.

Figure 2b shows the effect of selfing due to incorrect classification on the quantity of laid eggs
compared to the ideal separation (Figure 2c).

The literature review provides detailed information about various methods and techniques used
for gender separation of silkworm cocoons with a focus on feasibility of usage at grainage centers
by untrained professionals. The available techniques can be broadly classified as destructive and
non-destructive methods. Destructive methods effectively differentiate the silkworms, but cause
permanent damage either to egg, larva, cocoon, or pupae and therefore cannot be further used for seed
production or reeling. Non-destructive methods cause less or minimal damage to the silkworms and
allow the insect (egg, larva, cocoon, or pupae) to be used in subsequent process. Figure 3 illustrates
these methods and the following paragraph reports them in detail.
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Figure 3. Methods of silkworm gender separation process.

A DNA based gender separation method for sorting silkworm at larvae stage was developed by
Tang Pei [15]. It is a chemical based method which required highly trained professionals and suitable
only for constrained working environments. X-ray imaging-based gender separation techniques were
presented in [14,16]. Calvin J. Witdouck [14] passed X-rays through the silkworm larvae (caterpillar) to
identify its gender. Cai et al. [16] demonstrated a prototype with an appropriate classification tool
for successfully discriminating the gender of silkworm by X-ray imaging the cocoons. Shape features
such as major axis, minor axis, ratio of major axis to minor axis, eccentricity, roundness, rectangularity,
complexity, concave and convex characteristics of the chrysalis are extracted from X-ray images and
inputted to pre-trained classifiers such as k-Nearest Neighbor (kNN) [17], Linear Discriminant Analysis
(LDA) [18], Neural Networks (NN) [19] and Support Vector Machine (SVM) [20] to accurately classify
the cocoons as male or female. The authors considered 1071 samples from three hybrid breeds and
have reported an accuracy of 93.68% with kNN classifier. Although the X-ray-based methods provide
considerably high classification accuracy, constant exposure of the silkworm cocoons to the X-rays
may again result mutations leading to poor egg lays, if the cocoons are used in grainages for seed
production [21].

A number of light-based sorting systems were developed by Shinji Hayashizaki et al. [22],
Raie et al. [23], Yang Bin et al. [24]. In [22] the authors reported light inspection system where the
cocoon was cut-open and each pupa was examined under visible light and near infrared light of
wavelength 600 nm to 1100 nm. Further the frequency data reflected from the pupa are analyzed
and compared with the predefined threshold, based on which the pupa was classified as male or
female. Further, in [23], each pupa was again examined under a stereo-microscope. These images were
transferred to a computer for processing and image analysis. Under analysis, the gender gland of the



Sensors 2019, 19, 2656 5 of 18

silkworm was observed, based on which the sorting was carried out. In both cases, the cocoons are
opened to take out the pupa resulting in a high chance of the pupa getting damaged, and further cut
cocoons cannot be used for reeling. Moreover, the method is slow and requires trained professionals to
examine each pupa accurately.

Zhang et al. [25] developed an apparatus to classify male and female cocoons by radiating
ultraviolet rays on the cocoons. The cocoon being tested presented different fluorescence characteristics
based on gender. The male cocoon showed yellow (wavelength in the range of 577–597 nm) and female
cocoon showed purple (wavelength 390–455nm) fluorescence characteristics respectively. The entire
process has to be carried out in a dark room and the assessment is based on the human vision.
Additionally, this method is labor intensive and requires additional overhead of 200 W power source
and 3600 A wavelength UV light source. This method was further improved by Yang Bin et al. [24]
who automated the process based on the color assessment of the fluorescence characteristics provided
by male cocoons, integrating a photosensitive yellow filter with the ultraviolet filter for detecting and
separating the male cocoon from the female ones.

Yu Xiaohua [26] developed a method for identifying male silkworm cocoon by degumming, i.e.,
soaking the cocoon in hot water and extracting the fibers. Later the fibers are subject to a chemical
process to assess the methionine content and aspartic acid value of three amino acids, based on which
the gender can be determined. This is again a non-automated chemical-based technique, which requires
heating of the cocoon which can damage the pupa.

Very few non-destructive methods were developed for gender separation of silkworms. An MRI
imaging technique operating at 20MHz was used by C. Liu, Z.H. Ren [27] to determine the gender of
the silkworm. The MRI image of the cocoon along with live pupa is acquired and later transformed by
fast Fourier transform and T2 weighted images (to accurately reflect the tissue contrast into picture
contrast) were obtained that aids in distinguishing the gender of the silkworms. Although the method is
non-destructive and causes minimal damage to cocoon and the pupa, the imaging process is expensive
and practically unsuitable for grainage centers.

Udaya et al. [28] developed a prototype which included metal grids of various sizes which vibrate
when connected to an electric motor. The cocoons were sorted based on the size of the cocoons.
The female cocoons are bulkier whereas males are thin and slender. The cocoons are transferred into
the vibrating grids of the sorting machine which are of varying size to separate the cocoons. Though
the system was able to achieve an accuracy of 96% in sorting, the device is not meant for gender
separation but mainly used for grading the quality of Tasar variety of cocoons. The graded cocoons are
later sent to reeling where raw silk is extracted from the graded cocoons.

Further, Mahesh et al. [20] proposed a novel non-destructive vision-based system to classify the
cocoons. The methodology integrated the weight, volume, and ZM-based shape features of the cocoons
to form an integrated feature vector for training kNN, LDA, NN, and SVM classifiers. To validate the
integration of these features, the performance was compared with the one obtained from integration
of geometric shape features and integration of weight and volume with geometric shape features.
The method used CSR2 and pure Mysore breeds of cocoons to conduct the experiment. The results
indicated a better performance of NN and SVM classifiers. An accuracy of 91.3% was achieved from
CSR2 cocoon with NN classifier and 100% from pure Mysore cocoons via SVM-based classifier.

This detailed literature review indicates the existing technologies used for silkworm gender
separation at different stages of their life cycle. Separation of silkworm at stages such as eggs, larvae,
or pupae is not feasible in grainage centers [27,29]. X-ray or MRI images of the cocoon are high-cost
alternatives which provide accurate classification, but the radiation can damage the pupa inside the
cocoon. Currently, at grainage centers, the sorting process is manual, where the cocoons’ weight (which
includes the live pupa) and shape are used as features to distinguish their gender.

Taking into account literature and industrial practice gaps, this paper presents the design and
development of a novel non-destructive multi-sensor-based system to classify silkworm cocoons
according to their gender. The system extracts the features of cocoons (weight and shape) individually
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and provides them as inputs to a pre-trained pattern classification model which in turn classifies the
cocoons as male or female. Subsequently, a pair of air blowers and a conveyor system sort the cocoons
into their respective bins. The developed system was trained and tested on two types of silkworm
cocoons breeds, namely CSR2 and Pure Mysore, both provided by Central Silk Board Registered
Grainage Center, Karnataka, India.

The prominent advantages of the developed system are (a) elimination of human intervention in
separation process, (b) reduction in mis-classification error, (c) good repeatability when compared to
manual separation process, and (d) overall increase in speed of separation process.

2. Design and Development of Silkworm Cocoon Gender Classification Multi-Sensor System

The multi-sensor system was designed and prototyped with the aim of performing automatic
silkworm cocoons gender classification process. A schematic diagram of the proposed system is shown
in Figure 4. The corresponding 3D model and developed prototype are shown in Figures 5 and 6.

The cocoons were initially stored in the hopper, then individually picked by a vertical conveyor
module (VCM). The cocoons entered one by one into the feature extraction module (FEM), where
each cocoon was analyzed and their features such as shape and weight were extracted. A dedicated
software, which executes on a standalone workstation, acquired a digital image and weight of each
cocoon, and subsequently extracted significant shape-related features from image instances. Image
features and weight data were then combined in an input feature vector, which was inputted to a
pre-trained pattern recognition classifier for decision-making on gender classification. Eventually,
individual cocoons were transported through a horizontal conveyor module (HCM) which performed
the physical sorting of the cocoons and disposed them into dedicated male or female bins. Each module
is illustrated in detail in the remainder of this paper.
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2.1. Vertical Conveyor Module (VCM)

The purpose of VCM is to pick individual cocoons from the hopper and feed them into the feature
extraction module at a constant velocity without causing major physical damage to cocoons. It consists
of a 60 cm-long conveyor belt, which passes through a 12 cm-diameter pulley mounted on the frame
plates with the help of bearing support (Figure 7a,c). A 12 V, 10 rpm DC motor drives the pulley which
allows each cocoon to travel at a speed of 6.3 cm/s. A loading hopper made from acrylic, which can
accommodate up to 1 kg of cocoons (approximately 770 specimens), is rigidly mounted on frame plates.
The VCM is endowed with 16 specially-designed concave-shaped spoons that can accommodate one
cocoon at a time. Such spoons are riveted on the conveyor belt as shown in Figure 7a,c. The distance
between two consecutive spoons is 10 cm. Spoon edges are smoothed to avoid sticking to the cocoon
fibers. Two pairs of flappers are mounted on both sides of the metal frame (Figure 7c). The position of
flappers was determined experimentally to align the cocoons with the concavity of the spoons and to
avoid clinging to the fibrous outer shells of the other cocoons. Once the cocoons were picked up by
these spoons, they were transferred to FEM for analysis. In this respect, a guide plate (Figure 8a,b) is
positioned on rear side of VCM to enable smooth transfer of cocoons from VCM to FEM.
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2.2. Features Extraction Module (FEM)

The FEM shown in Figure 8 consists of a camera support bracket, flip plate, slope box, exit box,
a detachable load sensor, and an air blower mechanism. The module extracts both the shape features
of cocoon via image processing and the weight of the cocoon (in g) via the load sensor and feeds such
information into a binary classifier to determine the cocoon gender. A 5 mega pixel digital camera is
mounted on the support bracket and a flip plate made of acrylic is mounted below the camera assembly.
The structure allows continuous acquisition of objects on the flip plate. The flip plate is attached to a
rotating shaft which is powered by a servo motor to allow the plate to be positioned at three different
orientations (a) 0◦ (horizontal), (b) 90◦ (clockwise), and (c) −90◦ (counter clockwise). When the system
is switched on, the flip plate is positioned horizontally to receive cocoons from the VCM.

Silkworm cocoons have a hard shell that is covered by fibrous outer coating as shown in Figure 9a,b.
The accuracy of the classifier depends on how well the shape features are extracted from the cocoon
rigid shell images by eliminating the negative effect of fibrous coating. Practically, it is not possible
to remove the fibers from each cocoon manually at grainage centers before loading cocoons into the
hopper. To tackle this issue, the FEM is endowed with an 18 W square LED panel light (shown in
Figure 9a,b) attached to the flip plate. Such an illumination system provides the necessary back-lighting
to capture the silhouette of the hard shell of the cocoon enabling accurate area calculation by image
thresholding techniques [30,31].
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Figure 9. (a) RGB image of the cocoon on flip plate captured by FEM camera without backlight, (b) RGB
image of the cocoon on flip plate captured by FEM camera with backlight illumination, and (c) binarized
image of the cocoon shell with fibrous outer surface removed.

By comparing the two images, the cocoon sample in normal light conditions without backlight
(Figure 9a) and the same cocoon sample placed on the flip plate with backlight (Figure 9b), the advantage
of the adopted illumination system is evident in the results.

After image acquisition, the cocoon is transferred to the load sensor by letting it fall through
a slope box (see Figure 4), where the velocity of falling cocoon is attenuated by travelling through
number of inclined slopes. Once fallen on the load sensor unit, the cocoon weight data are acquired
with a resolution of ±0.01 g and transferred to the workstation.

Following the weight data acquisition, an air blower mechanism (Figure 10) is employed to
transfer the cocoon from the load sensor unit to the HCM. The blower mechanism consists of an air
blower which continuously provides a compressed air supply and a freely rotating swivel arm which
is used to stop the air flow instantly. One end of the swivel arm is coupled with a servo motor and
the other end is fixed on the side wall by a freely rotating cylindrical pin joint. Figure 10a shows the
mechanism in closed position (the air stream is blocked). Figure 10b shows the mechanism in open
position (the air stream is directed to the cocoon). Normally, the air blower mechanism is in the closed
position, hence no air flow is directed on the cocoon. Once the weight data are acquired, the system
sends a command to the servo motor and the swivel arm opens for 2 s allowing for the cocoon to
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be transferred from the load sensor to the HCM. As regards the FEM power requirement, the major
contributions are represented by the back light: 18 W, the flip plate servo motor: 5 V × 0.9 A = 4.5 W
and the digital camera: 5 V × 0.5 A = 2.5 W, for a total power requirement equal to 25 W.

Sensors 2019, 19, x 10 of 18 

 

contributions are represented by the back light: 18 W, the flip plate servo motor: 5 V × 0.9 A = 4.5 W 

and the digital camera: 5 V × 0.5 A = 2.5 W, for a total power requirement equal to 25 W. 

 

(a) 

 

(b) 

Figure 10. (a) 3D model of air blower frames; (b) developed air blower mechanism. 

2.3. Horizontal Conveyor Module 

Once the shape and weight features are extracted by the FEM, the cocoon moves to next module, 

The Horizontal Conveyor Module (HCM) consists of a rotating conveyor belt, an infra-red (IR) 

proximity sensors and 2 blower mechanism units (Figure 11). The conveyor belt is 2-meter-long and 

actuated by a 12 V DC motor (10 rpm and 120 kg·cm torque) to rotate continuously at a speed of 

approximately 8 cm/s. A pair of IR sensors and a pair of air blowers are placed at a distance of 40 cm 

along the conveyor as shown in Figure 11.  

(a) 
 

(b) 

Figure 11. (a) Horizontal Conveyor Module; (b) IR proximity sensor close-up. 

Their positions were determined empirically based on the computation time required by the 

workstation to provide the classification index. The HCM classifies the cocoons based on the index 

obtained from the workstation. As the cocoon crosses the first sensor–blower pair, its index is 

retrieved from the workstation. Based on the predicted index, the blowers in each pair 

activate/deactivate and transfer the cocoon to their respective trays. 

2.4. Communication and Synchronization of Modules 

The prototype consists of three modules which contain several individual components. Each 

component performs an individual function to carry out the cocoon sorting process. These 

Figure 10. (a) 3D model of air blower frames; (b) developed air blower mechanism.

2.3. Horizontal Conveyor Module

Once the shape and weight features are extracted by the FEM, the cocoon moves to next module,
The Horizontal Conveyor Module (HCM) consists of a rotating conveyor belt, an infra-red (IR)
proximity sensors and 2 blower mechanism units (Figure 11). The conveyor belt is 2-meter-long and
actuated by a 12 V DC motor (10 rpm and 120 kg·cm torque) to rotate continuously at a speed of
approximately 8 cm/s. A pair of IR sensors and a pair of air blowers are placed at a distance of 40 cm
along the conveyor as shown in Figure 11.
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Figure 11. (a) Horizontal Conveyor Module; (b) IR proximity sensor close-up.

Their positions were determined empirically based on the computation time required by the
workstation to provide the classification index. The HCM classifies the cocoons based on the index
obtained from the workstation. As the cocoon crosses the first sensor–blower pair, its index is retrieved
from the workstation. Based on the predicted index, the blowers in each pair activate/deactivate and
transfer the cocoon to their respective trays.
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2.4. Communication and Synchronization of Modules

The prototype consists of three modules which contain several individual components.
Each component performs an individual function to carry out the cocoon sorting process. These
components need to be synchronized in order perform automated operation. Figure 12 presents the
flow diagram of silkworm cocoons gender sorting machine.
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The acquired cocoon image in FEM module is sent to the workstation, where the shape features
(area, perimeter, major axis length, minor axis length, etc.) are computed. At times, there is a
chance of entering more than one cocoon into the FEM module. This condition is detected by
computing the cocoon area from the binarized image and comparing it to an empirical threshold value.
The experimental setup was designed to achieve the most favorable experimental conditions in terms
of image quality and illumination, for this reason, the thresholding operation for image binarization is
carried out on the acquired image utilizing the Otsu’s algorithm [32]. If the computed area exceeds the
threshold, then exceeding cocoons are ejected by rotating the flip plate in counterclockwise direction.
Ejected cocoons move out of the module through exit box (Figure 4) to be fed back to the hopper. If the
binarized image area results within the threshold limit (i.e., only one cocoon present on the flip plate),
a signal is provided to the microcontroller to rotate the flip plate in clockwise direction to transfer
the cocoon to the load sensor smoothly through slope box. At this point, the sample cocoon weight
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is acquired and provided to the algorithm in the workstation. Shape and weight features are then
combined and fed to a pre-trained SVM to determine the gender of cocoon under examination. Further,
the cocoon index and its corresponding predicted label are stored in the workstation and the cocoon
present on the load sensor is moved to HCM module by the air blower mechanism.

As the cocoon moves along the HCM, the IR proximity sensors (Figure 11) provide an input signal
to microcontroller-2 which in turn retrieves the classification label of the current cocoon obtained from
the workstation. The label is used to control the respective blowers. In this respect, if the predicted
label is “male”, the first blower is triggered, and the cocoon is pushed on to the “male cocoon tray”.
Conversely, if the cocoon label is “female”, the second blower is triggered and pushes the cocoon into
the “female cocoon tray”.

3. Experimental Methodology

The experimental campaign was carried out on two silkworm cocoons breeds, namely CSR2 and
Pure Mysore, both provided by the industrial partner. Prior to the experimental tests’ commencement,
the cocoons were manually labelled as male and female by highly trained and skilled professionals
using a weight threshold as discriminating parameter. The cocoon weight is an important factor since
it is highly correlated to the cocoons gender (i.e., cocoons above the weight threshold are considered as
females and ones below are males) and is most commonly used gender separation method employed in
the grainage centers. A weight threshold of 1.4 g for CSR2 breed and 1.1 g for Mysore breed was used
to separate the cocoons as male and female to build the ground truth used for benchmarking. Besides
cocoon weight, shape features are also significant in discriminating the cocoons based on gender [20].

A total number of 167 cocoons was used to build the dataset, which included 76 Pure Mysore and
91 CSR2 breeds. For Pure Mysore breed, there were 35 male and 41 female specimens; similarly, CSR2
breed contained 47 males and 44 females. The training set was used to pre-train the SVM classifier for
decision-making on gender classification. The dataset subdivision was carried out using the hold-out
method [33] with the following proportions: 60% for training and 40% for testing, as shown in Table 3.

Table 3. Dataset for silkworm cocoons.

Training Set Testing Set

M F M F
CSR2 28 26 19 18

Pure Mysore 21 24 14 17

M: Number of male specimens; F: number of female specimens.

The training set was used to pre-train the Support Vector Machine (SVM) classifier. SVM is based
on statistical learning theory aimed at determining the location of decision boundaries yielding the
optimal separation of classes [34]. For a binary pattern recognition problem in which the classes are
linearly separable the SVM selects from among the infinite number of linear decision boundaries the
one that minimizes the generalization error. Thus, the selected decision boundary will be one that
leaves the greatest margin between the two classes, i.e., the sum of the distances to the hyperplane
from the closest points of the two classes [35]. The data points that are closest to the hyperplane are
used to measure the margin; hence these data points are termed “support vectors” [29].

If the two classes are not linearly separable, the SVM tries to find the hyperplane that maximizes
the margin while, at the same time, minimizing the misclassification errors. SVM can also be extended
to handle nonlinear decision surfaces by projecting the input data onto a high-dimensional feature
space using kernel functions [36] and formulating a linear classification problem in that feature space.
In this research work a linear kernel has been utilized to train the SVM.

In order to train the classifier, the separated training cocoons were labelled and indexed manually
prior to being loaded into the VCM hopper. Once the cocoon was transferred from the VCM to FEM,
the cocoon’s silhouette was acquired by camera and passed to the workstation. If the camera was
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rigidly fixed at distance of 18 cm from the flip plate, the area of an individual cocoons ranged between
500 and 550 pixels. If the area was greater than this interval, the system assumed that the VCM has
transferred more than one cocoon to FEM, therefore the exceeding cocoons were ejected back to the
hopper through the exit box. Once the FEM ensured the feeding of a single cocoon, a number of shape
features were computed and extracted from the silhouette image as reported in Table 4.

Table 4. Shape-related features extracted from the silhouette binary image.

Parameter Description

Area (A) Describes the number of pixels in the region of the shape

Perimeter (P) Provides the number of pixels in the boundary of the shape

Major axis length (λ1) Specifies the length (in pixels) of the major axis of the ellipse that has the
same normalized second central moments as the region

Minor axis length (λ2) Specifies the length (in pixels) of the minor axis of the ellipse that has the
same normalized second central moments as the region

Eccentricity (E)

Measure of the aspect ratio. Computed using minimum bounding box
(smallest rectangle containing every point in the shape) method.

E =
Lb
Wb

where Lb = Length of the bounding box and Wb = Width of the
bounding box

Circularity/Roundness (C)
Circularity ratio represents how a shape is similar to a circle. It is given
by the ratio of the area of a shape to the shape’s perimeter square.
C = A

P2

Rectangularity (R)

Represents how rectangular a shape is, i.e. how much it fills its
minimum bounding rectangle. It is given by:

R =
A
Ar

where Ar = Area of the minimum bounding rectangle

Solidity (S)

Describes the extent to which the shape is convex or concave. It is
given by:

S =
A
H

where H = is the convex hull area of the shape. The solidity of a convex
shape is always 1

Convex area (AC)

Specifies the number of pixels in convex image. It is given by:

AC =
Perimeter of the convex hull

P

where convex hull of a region is the smallest convex region including it.

Once the features were computed, the flip plate rotated clockwise and weight of the cocoon (W)
was obtained from the weight sensor placed below and serially transferred to work station. Later, using
the air-blower mechanism explained in section, the cocoon moved to the next stage of the pipeline.
At the work station extracted shape features were integrated with the weight to form an integrated
feature vector (IFV) as shown in Equation (1):

IFV =
{
W, A, P,

(
λ1

λ2

)
, E, C, R, S, AC

}
(1)



Sensors 2019, 19, 2656 14 of 18

The IFV was further normalized to standardize the range of obtained features using Z-score
normalization [37], given by:

IFVnorm =
IFVi − µi

σi
, i = 1, . . . , L (2)

where L is the length of the IFV, µ is the mean of the feature and σ the standard deviation of the feature.
The normalized IFV is labeled for supervised machine learning. Label “1” indicates category “Male”
and “0” indicated category “Female”.

4. Results and Discussion

The proposed pattern classifier performance is assessed in terms of accuracy, robustness and
computation speed.

4.1. Classifier Accuracy

The performance assessment of the SVM classifier is carried out using the hold-out method [33],
where the labelled training set is used in training the classifier to create an optimal model. The model
is further evaluated using the testing data set. The results of the training process are displayed using a
confusion matrix (CM) to calculate the performance metrics of the training phase [38]. Such matrices
show the True Male, True Female, False Male, and False Female. With reference to the SVM training
process, the classification results CMs for the CSR2 and Pure Mysore breeds cocoons are reported in
Figure 13.
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Figure 13. SVM training confusion matrices for CSR2 (a) and Pure Mysore cocoons (b).

To validate the accuracy of the prototype, unknown cocoon samples are indexed and loaded into
the VCM’s hopper. As the cocoon travel from VCM to FEM, its features are extracted and transferred
to the workstation where the pre-trained SVM provides the predicted classification label. The label and
the corresponding cocoon indices are stored as look up table within the workstation. When the cocoon
moves along the HCM, the IR proximity sensors and with the microcontroller query the workstation
to provide the classification label of the current cocoon. This label is used by the sensor to blow the
cocoons to their respective trays as explained in Section 2. This process utilizes all the cocoons present
in the testing dataset and the performance of the prototype with SVM model is evaluated similar to
that of the training process. With reference to the SVM test process, the classification results CMs for
the CSR2 and Pure Mysore breeds cocoons are reported in Figure 14.
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Figure 14. SVM test confusion matrix for CSR2 cocoons (a) and Pure Mysore cocoons (b).

From the confusion matrices reported in Figures 13 and 14, a number of performance metrics were
computed, namely Accuracy, True Male Rate (TMR), True Female Rate (TFR), Male Predictive Rate
(MPR), Female Predictive Rate (FPR), and F1 score [39,40]. Such performance metrics are reported in
Table 5 with reference to both training and test phases for CSR2 and Pure Mysore cocoons respectively:

Table 5. Performance metrics (PM) obtained for CSR2 and pure Mysore cocoons from SVM training
and testing.

Training Testing

PM CSR2 Pure Mysore CSR2 Pure Mysore

Accuracy: 0.9259 0.9778 0.8649 0.9355
True Male Rate 0.9642 1.0000 0.8947 0.9286

True Female Rate 0.8846 0.9583 0.8333 0.9412
Male Predictive Value 0.9000 0.9545 0.85 0.9286

Female Predictive Value 0.9583 1.0000 0.8824 0.9412

4.2. Robustness and Computation Speed

To validate the prediction robustness, 50 cocoons were randomly selected from CSR2 breed and four
trials were conducted. The cocoons were indexed, and their classification labels recorded prior to the
trial conduction. The prediction results from protype each cocoon for all the four trials are illustrated
in Figure 15. The chart shows that 44 cocoons were correctly predicted in all the four trials. Hence the
repeatability of the machine is calculated as the ratio of the number of correctly classified cocoons in all the
four trials over the total number of tested cocoons. The repeatability of cocoons separation through the
fusion of weight and shape features using the prototype resulted to be 44/50 = 88%.
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Figure 15. Graph of cocoon index vs. predicted gender for the sample batch.

The average time required for a cocoon to reach the FEM from VCM is 4.6 s. The cocoon then
lays on the flip plate for about 1 s to allow for the image acquisition. The cocoon is subsequently
transferred to the load sensor, where the weight feature extraction requires 1.2 s. In total, the cocoon
stays in the FEM module for about 2.2 s. The cocoon reaches the collection tray through the HCM in
about 3.6~4.1 s. Thus, the maximum time taken for a cocoon to reach the tray from hopper is 10.9 s.

From the observed results, the proposed system classifies approximately 5.5 cocoons in a minute
and thus it can classify 330 cocoons in an hour. For eight hours shift, the prototype can classify about
2640 cocoons. Considering an average weight of a cocoon equal to 1.3 g, the presented system can
classify approximately 3.4 kg of cocoons in eight hours shift yielding an accuracy ranging from 86.48%
to 93.54% depending on the breed, whereas highly experienced staff working in a grainage center can
probably sort a similar daily amount of cocoons bearing in mind that manual classification is prone to
human error over prolonged working hours and may lead to serious health and safety issues [41,42].

5. Conclusions

The work presented in the paper represents a kick-off in modern sericulture automation to
eliminate human intervention in classifying silkworms based on gender in the cocoon stage without
damaging the shell. The developed system has the potential to boost the productivity of grainage
centers who are currently carrying out the gender classification process manually. The results obtained
during testing showed a maximum accuracy of 93.54% with a repeatability of 88%, demonstrating a
potential suitability of the proposed method for industrial applications.

Future research efforts need to be focused on the following critical aspects for improving the
industrial suitability of the system:

• design optimization to reduce the overall dimensionality and operation speed from a hardware
perspective in terms of more powerful workstation and more efficient blower mechanism;

• endowing the VCM with a deflossing unit [5] in order to remove the fibers of the cocoon to avoid
clinging phenomena which drastically reduce the system speed;

• extend the experimental campaign to a wider variety of cocoon breeds to improve the system
generalization and to increase the system versatility.
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