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Fig a. The network architecture of SAEs  

 

 

 

Fig b. Training loss over 200 epochs 



Sparse Auto Encoders (SAEs) was employed to analysis ChlF data over time to extract features 

of different genotypes. The aim of SAEs is to extract the latent or compressed feature of the input, 

which is achieved by minimizing the reconstruction errors between original data and the 

reconstructed data using the extracted features as representatives. SAEs was performed on the 

python program (Python 3.6) based on high-level neural networks API Keras (https://keras.io/) in 

PyCharm IDE (PyCharm 2018.2.2) for Microsoft Windows professional. All of the encoded and 

decoded activation function was achieved through Relu which is widely used in the deep learning 

algorithms training. The training was conducted on a Dell workstation with two Intel® Xeon(R) 

CPU E5-2620 v4 @ 2.10 GHz, 32.0 GB RAM, and one NVIDIA GeForce GTX 1080 Ti. 

The construction of the SAEs can be basically divided into input layer, several hidden layers 

and one output layer (Fig a). The hidden layer represents the key features extracted by the encoding 

layers from the input vector, and its reliability is validated by back propagating the decoding layers. 

The training epochs for each sample was set to 200. Based on the training loss over epochs, most of 

the sample training loss become stable around 0.04 after 75 times training (Fig b). Therefore, 200 

times training epochs are enough for the SAEs neural network of this study. The SAEs applies an 

auto-encoder which could map xi of the training data matrix X= Xi ∈R^n from N subjects to a latent 

representation yi∈Ro (o represents output, which is the extracted vector features) through a linear 

deterministic mapping and a nonlinear activation function. Therefore, in this study, the data of all 

parameters throughout the whole experimental period (with 98 variables in total) was inputted as 

vectors in the shape of (1×98). After down sampling, the hidden layers vectors were reconstructed 

in the shape of (1×60), (1×40), (1×20), (1×10) and (1×5), respectively. The decoding layers then 

reconstructed the original vector (1,98) from the final vector (1,5) in a reverse way with feedback 

propagation to validate the extracted features. The selected vector features were encoded as (1,5) 

for machine learning classification.  

 


