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Abstract: The genetic algorithm (GA) is an effective method to solve the path-planning problem and
help realize the autonomous navigation for and control of unmanned surface vehicles. In order to
overcome the inherent shortcomings of conventional GA such as population premature and slow
convergence speed, this paper proposes the strategy of increasing the number of offsprings by using
the multi-domain inversion. Meanwhile, a second fitness evaluation was conducted to eliminate
undesirable offsprings and reserve the most advantageous individuals. The improvement could
help enhance the capability of local search effectively and increase the probability of generating
excellent individuals. Monte-Carlo simulations for five examples from the library for the travelling
salesman problem were first conducted to assess the effectiveness of algorithms. Furthermore,
the improved algorithms were applied to the navigation, guidance, and control system of an
unmanned surface vehicle in a real maritime environment. Comparative study reveals that the
algorithm with multi-domain inversion is superior with a desirable balance between the path length
and time-cost, and has a shorter optimal path, a faster convergence speed, and better robustness than
the others.

Keywords: genetic algorithm; unmanned surface vehicle; path planning; multi-domain inversion;
Monte-Carlo simulation

1. Introduction

The traveling salesman problem (TSP) is a typical non-deterministic polynomial (NP)hard problem
with the goal of designing the shortest route for a traveler to visit each city without repetition, followed
by returning to the starting city. In production and life, TSP has been widely used as a model in many
fields, such as vehicle path planning [1–3], machine learning [4], temporal graphs [5], word sense
disambiguation [6], green logistics [7], fuel efficiency management [8], wireless charging [9], and so on.
Hence, solving the TSP is of great significance for household, civil, and military applications.

Recent studies tend to utilize approximate algorithms for the TSP, such as genetic algorithm
(GA), stimulated annealing algorithm, ant colony algorithm, and neural network algorithm [10,11].
By contrast, GA has advantages of higher robustness and stronger global search capability, and hence
has been applied to the trajectory planning problem for various kinds of autonomous equipment
such as robots, unmanned aerial vehicles (UAVs), and unmanned surface vehicles (USVs). To solve
the collision-free shortest path planning problem of mobile agents, Lee et al. (2018) applied the
obstacle-based GA to shrink the search areas and obtain a considerable path with shorter length and
time-cost [12]. Elhoseny et al. (2018) modified the conventional genetic algorithm (CGA) for a mobile
robot to search for the control points of a Bezier curve and designed the shortest route in a dynamic
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working field [13]. In addition, Sahingoz (2013) applied the parallel GA to the multi-UAVs system in a
multi-core environment. The preliminary planned path was further smoothed by a Bezier curve to
generate the final flyable trajectory [14]. Ergezer et al. (2013) improved the GA with novel evolutionary
operators for multi-UAVs. The favorable route was obtained with consideration of 3D environmental
constraints and the maximization of the collected information from desired regions [15]. In terms of
USVs, Kim et al. (2017) combined three objective functions of avoiding obstacles, reaching the target,
and minimizing travel time to evaluate the fitness of the path under ocean environmental loads [16].

Moreover, in order to overcome the inherent issues of CGA such as slow convergence speed,
poor capability of local search, and easy occurrence of premature convergence, combinations of two or
more optimization algorithms based on biological evolutionary and mathematical ecological theory
have been employed to improve the algorithm performance. Wang et al. (2016) improved the crossover
operator to produce more offsprings, thus enriching the population diversity. With tests of several
TSP examples, the multi-offspring method (MO-GA) was proven to converge faster, reaching a deeper
minimum of cost function than the CGA [17]. With the multiple objectives of the minimization of
total travel fuzzy cost and fuzzy time, Khanra et al. (2019) combined the ant colony optimization and
GA to solve the four-dimensional imprecise TSP, which included source, destination, conveyances,
and routes [18]. In the centralized UAV placement strategy proposed by Sabino et al. (2018), the elitist
non-dominated sorting genetic algorithm was employed to design the optimal positions of UAVs with
the consideration of ground nodes’ positions [19]. Silva et al. (2018) applied the dynamic planning
navigation algorithm, which was based on GA and had better robustness and effectiveness, to the
autonomous navigation of mobile terrestrial robots under unknown dynamic environments [20].
In order to solve the group trading strategy portfolio in stock markets, Chen et al. (2019) employed
the grouping genetic algorithm (GGA) with a fitness function that was calculated by group balance,
weight balance, portfolio return, and risk [21].

In this paper, the CGA is improved by optimizing the chromosome inversion operation. First,
the double-domain inversion-based algorithm (DDIGA) is proposed with two inversion operations
between four randomly sorted inversion points. Furthermore, the number of inversion domains
is increased through permutation and combination of the sequence of the four inversion points.
The multi-domain inversion-based algorithm (MDIGA) is supposed to further enhance the local search
capability since the offsprings are significantly increased, and only the inversed chromosome with the
best fitness survives and is transferred to the new generation.

The contributions of this work consist of three aspects: (1) The optimization strategy of
multi-domain inversion is added after the crossover and mutation operations, with more offsprings
to be selected in order to increase the probability of generating excellent individuals and avoid the
population premature; (2) the MDIGA performs better in both reducing the optimal path length and
enhancing the robustness than the CGA; and (3) path-planning for a USV is conducted using the
MDIGA, which generates feasible routes with satisfactory length.

This paper is organized as follows. The details of CGA, DDIGA, and MDIGA are introduced
in Section 2. The feasibility of MDIGA is then analyzed by comparison with other state-of-the-art
approaches in Section 3. Monte-Carlo simulations for five instances from the library for TSP (TSPLIB)
and the application tests to a USV are conducted to evaluate the effectiveness of every algorithm,
which are described and analyzed in Sections 4 and 5. Conclusions and future research interests are
drawn in Section 6.

2. Proposed Algorithms

2.1. Conventional Genetic Algorithm

Figure 1 illustrates the computing steps of the CGA [22,23]. The symbolic coding is chosen as
the encoding method, which uses the string with the sequence numbers of visiting cities to represent
each chromosome. Genetic parameters, such as population size, crossover, and mutation probabilities,
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are normally defined by human experience. After the optimization problem is confirmed, the initial
population of candidate solutions with a certain size is generated randomly. The fitness function,
defined by 1/len (len stands for the relative route length of each chromosome), is used to evaluate
the fitness of each individual. The fitter ones will survive for the reproduction. Then, the algorithm
proceeds to improve the population through repetitive operations of crossover, mutation, and selection.
The evolutionary process will be terminated if certain criteria are satisfied or if the maximum number
of iterations is reached.
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Figure 1. Flow chart of genetic algorithms.

In CGAs, the crossover is performed to concatenate parts of two parent chromosomes, which are
separated by determined break points, and generate two offsprings with a certain crossover probability
(PC). Meanwhile, the mutation interchanges the positions of genes at two randomly chosen mutation
points in a single chromosome. Accordingly, the mutation occurs with a certain mutation probability
(PM). It should be noted that the crossover helps the population to converge by making the chromosomes
alike, whereas the mutation brings the genetic diversity back into the population in case of the local
optimum. In this paper, the single-domain inversion-based algorithm (SDIGA) is presented with
a further inversion operation added after the mutation in the CGA. Two different genes in a single
chromosome are defined as inversion points, between which the fragment is named an inversion
domain. The fragment is then turned through 180◦ (inversed) and inserted back into the original
position of the chromosome. The schematic layouts for crossover, mutation, and single-domain
inversion are illustrated in Figures 2–4, respectively.
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2.2. Double-Domain Inversion-Based Genetic Algorithm

In CGA, the symbolic coding is normally used as the chromosome encoding with the crossover
operator of a partially mapped crossover (PMC) to solve the TSP [24,25]. However, this crossover
operator causes a terrible destruction to the parent chromosomes. Only a fraction of parent genes could
survive, and most genes of offspring chromosomes are generated during the evolutionary process;
this is not conducive to the inheritance of advantage genes from parent chromosomes. In addition,
the mutation or the single-domain inversion has evident deficiencies of local search capacities due to
their limited transformation of genes. Hence, the strategy named the double-domain inversion-based
genetic algorithm (DDIGA) is introduced, as shown in Figure 1.

The positions of four different genes are randomly defined as the inversion points from the
encoding string of a chromosome. Two domains are generated between the first two points and
the latter two points, respectively. The fragments in both domains are inversed simultaneously to
reproduce an offspring. The fitness of both child and parent chromosomes will be compared to
determine the fitter one for the next generation. The double-domain inversion is illustrated in Figure 5,
in which I stands for a parent chromosome, and I’ is the child chromosome after inversion.
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It is supposed that introducing the double-domain inversion could help retain more advantage
genes from parent chromosomes and generate more adaptive encoded strings for child chromosomes.
Meanwhile, the capacity of local search may be improved since the compassion of fitness could
guarantee the evolution towards a higher fitness level.

2.3. Multi-Domain Inversion-Based Genetic Algorithm

It is known that in the CGA, the number of generated offsprings is normally the same as the
number of parent chromosomes. From the point of view of the biological theory foundation, the number
of offsprings needs to be larger than the number of parents so as to prevent species extinction and
maintain species diversity in the process of biological evolution [17].

As mentioned in Section 2.2, four randomly sorted points create two domains for the DDIGA,
and only one child chromosome is generated after two inversions. In fact, however, every two of
four inversion points could define an inversion domain. According to permutation and combination
theory, six domains for a single inversion could be found in total. Hence, six extra child chromosomes
would be reproduced through a single inversion of each domain in the parent chromosome; this would
increase the probability of finding a fitter offspring for every generation to some degree.

Inspired by the above discussion, the MDIGA is proposed based on multi-domain inversion to
increase the number of inversion domains and child chromosomes. As shown in Figure 6, four inversion
points, named a–d, are randomly defined in the encoded string. Six child chromosomes I’1- I’6 are
generated by a single inversion within domains a-b, a-c, a-d, b-c, b-d, and c-d, respectively. Similarly
with the DDIGA, I’7 is generated by double inversions within domains a-b and c-d. The parent and
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seven child chromosomes are then sorted according to the fitness function 1/D (D is the path length of
each chromosome). Only the most advantaged chromosome I’ (I’5 in this case) is reserved for the next
generation, while the others would be eliminated completely.

Theoretically, MDIGA would accelerate the speed of evolution towards a higher fitness for the
population and enhance convergence precision and robustness of algorithm.
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3. Feasibility Analysis

This section analyzes the feasibility of improved algorithms. First, it should be noted that the idea
of the MDIGA and the MO-GA in [17] are both based on the biological theory foundation of multiple
offsprings and the mechanism of population competition. However, the two algorithms differ in the
optimized genetic operator and encoding method. The MO-GA is based on the crossover operation and
generates 2α (α ∈ {2, 3, 4, . . . }) offsprings for a pair of parent chromosomes, while MDIGA improves the
inversion operation and generates seven offsprings for one parent chromosome. In addition, MO-GA
employs binary code and MDIGA uses real-number code. Table 1 compares the planned path length of
the MO-GA and the MDIGA for three TSPLIB instances: burma14, eil51, and kroB100. For the case of
burma14, each algorithm can obtain a desirable solution that is exactly the same as the known optimal
solution in the TSPLIB. As for eil51, the MDIGA is better than the MO-GA, with a length of 434.08 m,
although the value is 1.9% larger than the known optimal value. For kroB100, the planned path of the
MDIGA is 3.5% longer than those of the MO-GA and the known optimal value of the TSPLIB.

Table 1. Comparative results of planned path length using the multi-offspring method (MO-GA) and
multi-domain inversion-based algorithm (MDIGA).

burma14 eil51 kroB100

Optimal solution MDIGA 30.88 m 434.08 m 22,918.84 m
MO-GA 30.88 m 442.19 m 22,141.27 m

Known optimal solution 30.88 m 426 m 22141 m

As mentioned in Section 2.1, the values of crossover probability (PC) and mutation probability
(PM) are normally determined by experience. According to the suggestions by Elhoseny et al. [13],
the value range of PC is suggested to be from 0.7 to 1. A lower value than this range will reduce the
crossover operation, which is not efficient for evolution. Meanwhile, the value range of PM is suggested
to be 0.001 to 0.05. A larger value than this range will increase the mutation operation, making the
algorithm jump out of the best solution and deteriorating the solution quality. Hence, three pairs of PC
and PM within their respective value range are selected for comparison: PC = 0.9, PM = 0.1; PC = 0.8,
PM = 0.05; and PC = 0.7, PM = 0.01. Since GA is a stochastic search method, the comparative results of
100 Monte-Carlo simulations using the MDIGA for two numbers of planned points are listed in Table 2.
The standard deviation is calculated to show how far the set of data are spread out from their average
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value, which reflects the robustness of algorithm. Under the same working condition, a lower value of
standard deviation indicates a better algorithm robustness. In addition, the critical number of iterations
(Ncri) at which the solution reaches a convergence level is also presented. In general, minor differences
can be found for the three pairs of PC and PM in the mean value of optimal planned path, the standard
deviation, and the critical number. Only the case of PC = 0.7, PM = 0.01 has a relatively larger standard
deviation and critical number than the others. Hence, the pair of PC = 0.9, PM = 0.1 is sorted for the
following study.

Table 2. Comparative results of various pairs of PC and PM for two numbers of planned points.

Case Setting Best (m) Mean (m) Std. Dev. (m) Ncri

P = 51
S = 500

Nmax = 1600

PC = 0.9, PM = 0.10 428.98 443.60 5.84 244
PC = 0.8, PM = 0.05 428.98 441.59 5.10 252
PC = 0.7, PM = 0.01 428.87 443.46 6.11 262

P = 76
S = 500

Nmax = 1600

PC = 0.9, PM = 0.10 558.39 575.87 9.07 344
PC = 0.8, PM = 0.05 554.63 573.95 8.84 347
PC = 0.7, PM = 0.01 555.39 576.64 9.98 342

* Std. Dev. is the abbreviation of standard deviation.

Furthermore, three TSPLIB instances are used to compare the feasibility of proposed GAs with
some other state-of-the-art approaches, including ant colony optimization (ACO), simulated annealing
(SA), and particle swarm optimization (PSO). Similarly, one hundred Monte-Carlo simulations are
carried out with the statistical results shown in Table 3. By contrast, the MDIGA has certain advantages
for the three problems in terms of the planned path length and the standard deviation. For the problem
of eil51, the MDIGA optimizes the path with a length of 448.41 m, which is comparable with the known
optimal solution of 426 m.

Table 3. Comparative results with other state-of-the-art approaches for three problems.

Problem Known Optimal
Solution (m) Algorithm Worst (m) Best (m) Mean (m) Std. Dev. (m)

ulysses22 75.31

ACO 78.79 75.98 77.74 0.98
SA 82.57 78.48 81.47 1.17

PSO 77.10 75.31 75.97 0.46
DDIGA 77.09 75.31 75.86 0.44
MDIGA 76.02 75.31 75.46 0.26

eil51 426

ACO 466.92 455.26 459.22 3.41
SA 478.94 444.96 465.14 8.51

PSO 480.14 436.06 455.91 9.37
DDIGA 493.33 441.59 461.03 11.67
MDIGA 464.82 434.08 448.41 6.38

eil76 538

ACO 599.22 569.61 588.50 8.07
SA 669.60 634.76 648.68 11.87

PSO 625.39 564.86 590.11 12.40
DDIGA 662.56 581.35 621.71 15.03
MDIGA 617.31 558.39 587.87 11.07

* Std. Dev. is the abbreviation of standard deviation.

4. Algorithms Evaluation

This section employs Monte-Carlo simulations to evaluate the effectiveness of improved algorithms
for the TSP in terms of the number of planned points, the population size, and the computing efficiency.
In order to avoid the effects of computer models on the running capacity of algorithms, all the
simulations are performed on the same personal computer (Intel (R) Core (TM) i7-7700HQ CPU @ 2.80
GHz) with a memory capacity of 8.0 GB. All algorithms have been coded in MATLAB.
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4.1. Comparative Results with Various Numbers of Planned Points

Five sample instances from TSPLIB are considered: burma14, ulysses22, eil51, eil76, and rat99.
Correspondingly, the five numbers of planned points (P) are 14, 22, 51, 76, and 99, with the maximum
numbers of iterations (Nmax) set as 100, 200, 1600, 2000, and 2000, respectively. In addition, the population
size (S) is 100. The crossover probability (PC) and the mutation probability (PM) in this section are
defined as 0.90 and 0.10, respectively. The Monte-Carlo simulations are then repeated one hundred
times to obtain the data set of optimal path distances using four algorithms for each TSP instance.
The comparative results are presented in box-and-whisker plots (Figure 7), with detailed statistics
listed in Table 4.
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Table 4. Statistics results of optimal path distance in 100 runs with five numbers of planned points.

P Algorithm Worst (m) Best (m) Mean (m) Std. Dev. (m)

14

CGA 32.18 30.88 31.31 0.45
SDIGA 31.21 30.88 30.88 0.03
DDIGA 31.21 30.88 30.93 0.12
MDIGA 30.88 30.88 30.88 0.00

22

CGA 93.05 75.31 78.62 3.62
SDIGA 76.62 75.31 75.76 0.37
DDIGA 77.09 75.31 75.86 0.44
MDIGA 76.02 75.31 75.46 0.26

51

CGA 649.91 518.38 581.70 30.13
SDIGA 486.91 439.13 455.24 9.41
DDIGA 493.33 441.59 461.03 11.67
MDIGA 464.82 434.08 448.41 6.38

76

CGA 1031.27 747.25 869.48 47.76
SDIGA 628.62 563.02 592.26 12.51
DDIGA 662.56 581.35 621.71 15.03
MDIGA 617.31 558.39 587.87 11.07

99

CGA 3095.31 2159.52 2635.83 153.87
SDIGA 1487.05 1293.35 1389.34 38.24
DDIGA 1670.66 1432.29 1562.88 49.04
MDIGA 1417.72 1255.06 1341.81 31.41

* Std. Dev. is the abbreviation of standard deviation.

For each algorithm in every box plot, a range bar is drawn to represent the interquartile range
(IQR) of the data set, which indicates the degree of dispersion in a data set. The median value and
the average value are identified with a red line and the symbol of a plus sign in the bar. In addition,
there are whiskers extending around the bar’s sides. The ends of the whiskers stand for the minimum
and maximum values, respectively [26].

When there are 14 planned points, the CGA provides solutions with a longer mean distance and a
higher degree of data dispersion than the others in Figure 7a, while the three improved algorithms
have similar results of 30.9 m for the average optimal path distance. Meanwhile, the median values of
the CGA and the DDIGA are smaller than their average values; this means the two algorithms are
easier for producing larger data than the others in one hundred repeated simulations.

As P increases from 22 to 99, the CGA always obtains the longest planned path and the largest
standard deviation, while the MDIGA has the superior performance in both reducing the path distance
and improving the robustness. For the case of P = 99, the mean distance and the standard deviation
of the MDIGA are 1341.81 m and 31.41 m, which are 49.0% and 79.6% smaller than that of the CGA,
respectively. Moreover, the SDIGA performs relatively better than the DDIGA in almost all cases
except when P = 22, which means not all the improvements in this work are effective for the algorithm.
Since both SDIGA and DDIGA have the same number of offsprings as the number of parents, there is
no essential difference between the single-domain inversion of SDIGA for enough iterations and the
double-domain inversion of DDIGA for enough iterations. It also indicates that only by increasing
the number of offsprings could the algorithm performance be optimized substantially. Furthermore,
a four-number summary of data sets are listed in Table 4, including the worst, the best, the mean,
and the standard deviation values of optimal path distances.

4.2. Comparative Results with Different Population Sizes

We chose the TSP instance eil51 with 51 planned points as the working condition in this section.
Five population sizes (S) of 20, 40, 60, 80, and 100 are considered. Besides, the maximum number of
iterations (Nmax) for each algorithm is set as 1600. The crossover probability (PC) and the mutation
probability (PM) are still 0.90 and 0.10, respectively. The Monte-Carlo simulations of one hundred
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times are then conducted using the four algorithms using every population size. Figure 8 consists
of five box-and-whisker plots that show the comparative results. Detailed statistics of optimal path
distances are listed in Table 5.

As shown in Figure 8a, all the three improved algorithms, especially the SDIGA and the MDIGA,
effectively reduce the optimal path distance and improve the algorithm robustness in comparison with
the CGA. In addition, the median value is almost coincided with the mean value in each bar; this means
all the algorithms could produce uniformly distributed data under the working condition of eil51.

As shown in Figure 8b–e, evident influence appears that the overall optimal distance is further
reduced for each algorithm when S increases. Although the robustness of every algorithm changes a
little due to the population size, no regular tendency could be found. Furthermore, the algorithm with
double-domain inversion fails to outperform the SDIGA in both reducing optimal path distance and
improving algorithm robustness, which is not in accordance with our supposition as mentioned in
Section 2.2. By contrast, the MDIGA is the most advantageous algorithm for the TSP. In the case of
S = 60, the mean distance and the standard deviation of MDIGA are 451.63 m and 7.72 m, which are
25.8% and 79.2% smaller than that of CGA, respectively. Detailed statistics, including the worst,
the best, the mean, and the standard deviation values of optimal path distance are shown in Table 5.
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Table 5. Statistical results of optimal path distance in 100 runs with five population sizes.

S Algorithm Worst (m) Best (m) Mean (m) Std. Dev. (m)

20

CGA 786.79 595.42 693.54 43.53
SDIGA 490.20 440.58 458.17 10.34
DDIGA 541.94 456.46 486.77 15.31
MDIGA 473.07 430.75 454.68 8.81

40

CGA 735.63 543.38 628.01 38.08
SDIGA 496.69 438.34 456.86 11.31
DDIGA 534.33 443.32 469.31 15.03
MDIGA 486.53 437.13 453.35 9.34

60

CGA 695.26 516.64 608.39 37.11
SDIGA 481.26 437.39 455.69 8.95
DDIGA 507.01 440.81 466.99 13.18
MDIGA 469.83 435.19 451.63 7.72

80

CGA 691.82 499.26 583.23 33.71
SDIGA 480.88 437.55 457.38 9.69
DDIGA 507.26 438.73 461.56 12.22
MDIGA 469.27 430.75 450.01 8.21

100

CGA 656.51 501.25 577.98 32.48
SDIGA 482.07 437.03 454.14 8.66
DDIGA 492.81 439.11 462.64 10.68
MDIGA 471.82 428.98 449.60 7.84

* Std. Dev. is the abbreviation of standard deviation.

4.3. Comparative Results of Computing Efficiency

The results of five TSPLIB instances with different planned points are employed for comparison of
computing efficiency in this section. Two main criteria are selected to evaluate the computing efficiency
of every algorithm: time consumption and convergence speed. The former refers to the time cost of
completing the maximum number of iterations, and the latter means the critical number of iterations
(Ncri) at which the solution reaches to convergence level. Figure 9 shows the convergence history of
optimal path distance versus iterations for each algorithm. Meanwhile, all the detailed information of
solutions for each algorithm is listed in Table 6.
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Table 6. Simulating results of computing efficiency for each algorithm.

P Nmax Algorithm Ncri Time Cost

14 100

CGA 50 1.8
SDIGA 22 2.6
DDIGA 57 1.3
MDIGA 29 2.4

22 200

CGA 133 2.9
SDIGA 84 4.7
DDIGA 146 3.1
MDIGA 72 4.0

51 1600

CGA 697 26.9
SDIGA 380 42.9
DDIGA 626 30.4
MDIGA 377 38.6

76 2000

CGA 1599 39.1
SDIGA 842 59.4
DDIGA 1283 43.5
MDIGA 586 57.2

99 2000

CGA 1870 43.1
SDIGA 1064 62.9
DDIGA 1748 47.6
MDIGA 1002 59.0
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Overall, the path distance of every algorithm is optimized gradually to be shorter with the increase
of iterations, then converges to a stable and horizontal level at a critical number (Ncri), and finally reaches
the global optimum. With the increase of planned points’ numbers, both the critical number and the time
consumption have a rising tendency for each algorithm. By contrast, the curve of the MDIGA is lower
than that of the other algorithms during the entire computing process and has a faster convergence speed
and a lower critical number. When P = 76 for instance, the MDIGA converges at Ncri = 586, which is 63%
faster than the CGA, which spends 46% more time to complete the same iterations. It should be noted
that the improved algorithms, especially the SDIGA and the MDIGA, scarify the computation time-cost to
guarantee the precision of solution and avoid being trapped in the local optimum.

Furthermore, Figure 10 presents the best trajectories of the five TSPLIB instances (burma14,
ulysses22, eil51, eil76, rat99) using the MDIGA. The abscissa and ordinate stand for the values of
latitude and longitude of every planned point, respectively. The red number is the sequence of
randomly generated points. The start point is enclosed in a red rectangle, and the arrows represent the
heading of planned path.
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5. Application to an Unmanned Surface Vehicle

Nowadays, the unmanned surface vehicle (USV) has been utilized worldwide in both civil and
military fields due to the benefits of reducing casualty risk and increasing mission efficiency. As one of
the core technologies, the path planning problem is of great significance to realize the autonomous
navigation for and control of the USV. In this section, the aforementioned algorithms are applied to
plan the route for a self-developed USV. As a preliminary study, the present work neglects the factors
of wind, current, and waves in the algorithms.

5.1. Unmanned Surface Vehicle Model and Multi-Sensor

The USV model, as shown in Figure 11, is self-designed and constructed by the Sea Wolf group of
Qingdao University of Science and Technology. It is 1.8 m in length and 0.9 m in width and has five
underwater side bodies. Meanwhile, a 48V 45A battery provides power for electrical motors to drive
the propeller.Sensors 2018, 18, x FOR PEER REVIEW  13 of 22 
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Figure 11. A self-developed unmanned surface vehicle: (a) 3D model; (b) USV in water.

The navigation, guidance, and control (NGC) system is contained in the hull, with guaranteed
waterproof capability. It consists of three module subsystems: the navigation data processing
subsystem, path planning subsystem, and autopilot subsystem. In the first subsystem, multi-sensors
including electronic compass and GPS (in Figure 12a) are employed for acquiring the direction of the
bow and the USV’s location data. An ultrasonic weather sensor, produced by AIRMAR® (Model:
WeatherStation® PB200, shown in Figure 12b), is used to collect the real-time, site-specific weather and
location information. All the voltage signals from the aforementioned multi-sensors are collected by a
navigation data acquisition (DAQ) system. The navigation data is stored in real-time along with ship
log and status information.
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All the information is then processed and passed to the path planning subsystem, where the GAs
are applied to generate an optimal trajectory. According to the planned route, the autopilot employs a
closed loop controller to determine the heading and the speed of the USV. In addition, a graphical
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user interface (GUI) program compiled based on the Spring model view controller (MVC) framework
is used to process and record all the data in a personal computer. The general packet radio service
(GPRS) wireless network is established as the communication unit between the USV and the personal
computer, with an effective distance of 5 km and a transmission speed of 1–100 Mbps. The navigation
data acquisition system and the GUI program are shown in Figure 13. It is worth mentioning that there
are still several challenges when applying the path planning algorithms to the NGC system of the USV.
Since the vehicle have the tendency to deviate from the planned trajectory due to the influence of wind,
waves, and currents, the corresponding correction of heading is necessary. Meanwhile, the stability
of data transmission for the USV needs to be strengthened, especially when far offshore operation is
required. Additionally, the dynamic obstacle detection and avoidance needs to be added to the path
planning subsystem, which will have certain demands for the precision of multi-sensors, especially in
bad environments.
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5.2. Application Tests

Corresponding to four working conditions, four numbers of planned points are selected randomly
in a practical environment near the Qingdao Olympic Sailing Center at Fushan Bay: 15, 25, 35, and 45.
Every condition has the same start point of (N 36◦03′22.38”, E 120◦22′57.06”) in latitude and longitude.
For the location coordinates of other planned points, refer to Tables A1–A4. The four aforementioned
GAs are then employed separately to the USV model for comparison of their effectiveness of path
planning. The population size (S) is set as 100. The maximum numbers of iterations (Nmax) are 150,
250, 350, and 450, respectively, which are dependent on the numbers of planned points. In addition,
the crossover probability (PC) and the mutation probability (PM) are still 0.90 and 0.10.

The convergence history of optimal path distance versus iterations for each algorithm under
four working conditions are shown in Figure 14 with detailed information listed in Table 7. Similar
conclusions with Figure 9 could be drawn as follows. The MDIGA is superior among the four compared
algorithms. Meanwhile, the advantages of the MDIGA in accelerating the convergence and optimizing
the path distance become more obvious with the increase of P. When P = 45 for instance, the curve of
the MDIGA converges at Ncri = 186 and obtains the optimal path distance of 77.1 m, which is 33.1%
shorter than that of the CGA. In addition, the DDIGA fails to outperform the SDIGA. The trajectory
planned by the DDIGA is slightly longer than that of the SDIGA in most cases, as shown in Figure 14a–c.
Furthermore, the three improved algorithms require more time for computation than the CGA under
the same Nmax. However, the MDIGA is not the most time-consuming algorithm, which indicates a
desirable capability of balancing the path optimization and the time consumption.

Figures 15–18 present the optimal trajectory of each algorithm under each working condition.
When there are 15 planned points in Figure 15, the SDIGA and the MDIGA perform better with fewer
corners than the CGA around points 3, 12, and 15. Moreover, the trajectories become more complex
with more evident differences in path shape and distance as P increases. The trajectories generated by
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the CGA and DDIGA have different levels of path-crossing phenomena in Figure 16a, Figure 17a,c,
and Figure 18a; this would be the reason why a longer route distance is generated when compared
with the other algorithms under the same condition. However, at the same time, the advantages of
the MDIGA reflect more obviously in reducing the path length effectively and simplifying the path
shape, especially when more planned points are considered. The reason behind this may be that a
larger number of offsprings and the reservation of the fittest individuals could help avoid the local
optimum and converge to the optimal solution.Sensors 2018, 18, x FOR PEER REVIEW  15 of 22 
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Table 7. Simulating results of each algorithm with four numbers of planned points.

P Nmax Algorithm Ncri Time Cost (s) D (m)

15 150

CGA 42 1.97 35.50
SDIGA 33 3.36 32.32
DDIGA 37 3.12 32.73
MDIGA 38 5.66 32.32

25 250

CGA 80 3.39 70.37
SDIGA 142 6.49 57.33
DDIGA 230 4.01 58.91
MDIGA 87 5.47 56.38

35 350

CGA 261 4.82 74.67
SDIGA 283 8.31 70.05
DDIGA 212 6.47 74.01
MDIGA 110 7.68 67.20

45 450

CGA 376 6.80 115.19
SDIGA 382 10.90 84.52
DDIGA 281 9.94 83.87
MDIGA 186 10.26 77.07
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6. Conclusions

Based on the CGA, this paper proposes the concept of multi-domain inversion to increase the
number of offsprings for the purpose of enhancing the capability of local search and increasing
the probability of generating excellent individuals. Monte-Carlo simulations for several TSPLIB
examples are carried out to analyze the feasibility and the effectiveness of the improved algorithms.
The algorithms are further applied to the path planning problem of a self-developed USV model.
Some concluding remarks are summarized as follows:

(1) The MDIGA has the superior performance in reducing the optimal path distance, improving the
robustness, and accelerating the convergence. The advantages become more obvious with the
increase of planned points’ numbers.

(2) The increase of population size could help reduce the path distance. However, its effects on
algorithm robustness are irregular.

(3) The DDIGA fails to outperform the SDIGA in both reducing optimal path distance and improving
algorithm robustness. With the same number of offsprings as the number of parents, there is no
essential difference between the single-domain inversion of SDIGA for enough iterations and the
double-domain inversion of DDIGA for enough iterations.

(4) The improved algorithms scarify the computation time-cost to realize the reduction of the optimal
path distance and improvement of the algorithm robustness. By contrast, the MDIGA achieves
the most desirable balance.

(5) The MDIGA is able to reduce the route length effectively and simplify the path shape, especially
when more planned points are considered; this is because generating more offsprings and
reserving the fittest individuals help guarantee solution precision and avoid being trapped in the
local optimum.

However, generating more offsprings and the second fitness evaluation among them would add
certain complexities to the algorithm. Hence, more efforts should be made to optimize the computing
time-cost. In addition, future study will also focus on comparing the performance of the different ways
of generating more offsprings with different encoding methods. Furthermore, comparative studies
with different optimization algorithms for the TSP will be also conducted.

Author Contributions: J.X. and J.S. developed the idea and designed the exploration framework. J.Z. developed
the algorithms. F.Y. performed the experiments. Y.C. drafted the work.

Funding: This work is supported by the Natural Science Foundation of China (Grant No.51609120), the Science
and Technology Plan for Shandong University (Grant No. J16LB7), the Key R & D project of Shandong Province
(Grant No. 2018YFJH0704), the Scientific Research Foundation of Chongqing Education Commission (KJ1600509),
and the Foundation and Frontier Projects of Chongqing Science and Technology Commission (cstc2016jcyjA0561).

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

D optimal path distance
len relative route length of each chromosome
N number of iterations
Nmax maximum number of iterations
Ncri critical number of iterations
P number of planned points
PC crossover probability
PM mutation probability
S population size
a proportionality constant
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Abbreviation

ACO ant colony optimization
CGA conventional genetic algorithm
DDIGA double-domain inversion-based genetic algorithm
GA genetic algorithm
GUI graphical user interface
GPRS general packet radio service
IQR interquartile range
MDIGA multi-domain inversion-based genetic algorithm
MO-GA multi-offspring genetic algorithm
MVC model view controller
NGC navigation, guidance, and control
NP non-deterministic polynomial
PMC partially mapped crossover
PSO particle swarm optimization
SA simulated annealing
SDIGA single-domain inversion-based genetic algorithm
Std. Dev. standard deviation
TSP traveling salesman problem
TSPLIB a library of sample instances for traveling salesman problem
UAV unmanned aerial vehicle
USV unmanned surface vehicle

Appendix A

Table A1. Location coordinates of 15 planned points.

No. Latitude Longitude

1 N36◦03′22.38” E120◦22′57.06”
2 N36◦03′21.94” E120◦23′11.96”
3 N36◦03′09.95” E120◦23′06.15”
4 N36◦03′38.43” E120◦22′55.51”
5 N36◦03′11.26” E120◦22′56.27”
6 N36◦03′09.76” E120◦23′05.38”
7 N36◦03′20.26” E120◦22′58.45”
8 N36◦03′02.14” E120◦23′17.12”
9 N36◦03′06.57” E120◦23′24.70”
10 N36◦03′08.45” E120◦23′10.63”
11 N36◦03′12.20” E120◦23′08.70”
12 N36◦03′11.14” E120◦23′12.10”
13 N36◦03′09.95” E120◦23′00.67”
14 N36◦03′27.69” E120◦23′13.90”
15 N36◦03′17.70” E120◦23′08.02”

Table A2. Location coordinates of 25 planned points.

No. Latitude Longitude

1 N36◦03′22.38” E120◦22′57.06”
2 N36◦03′21.94” E120◦23′11.96”
3 N36◦03′09.95” E120◦23′06.15”
4 N36◦03′38.43” E120◦22′55.51”
5 N36◦03′11.26” E120◦22′56.27”
6 N36◦03′09.76” E120◦23′05.38”
7 N36◦03′20.26” E120◦22′58.45”
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Table A2. Cont.

No. Latitude Longitude

8 N36◦03′02.14” E120◦23′17.12”
9 N36◦03′06.57” E120◦23′24.70”

10 N36◦03′08.45” E120◦23′10.63”
11 N36◦03′12.20” E120◦23′08.70”
12 N36◦03′11.14” E120◦23′12.10”
13 N36◦03′09.95” E120◦23′00.67”
14 N36◦03′27.69” E120◦23′13.90”
15 N36◦03′17.70” E120◦23′08.02”
16 N36◦03′16.82” E120◦23′13.03”
17 N36◦03′16.26” E120◦23′18.20”
18 N36◦03′31.62” E120◦23′11.66”
19 N36◦03′25.82” E120◦23′08.26”
20 N36◦03′15.32” E120◦23′04.92”
21 N36◦03′44.86” E120◦23′54.46”
22 N36◦03′28.53” E120◦23′47.99”
23 N36◦03′24.43” E120◦23′59.50”
24 N36◦03′27.32” E120◦23′54.61”
25 N36◦03′24.44” E120◦23′59.50”

Table A3. Location coordinates of 35 planned points.

No. Latitude Longitude

1 N36◦03′22.38” E120◦22′57.06”
2 N36◦03′21.94” E120◦23′11.96”
3 N36◦03′09.95” E120◦23′06.15”
4 N36◦03′38.43” E120◦22′55.51”
5 N36◦03′11.26” E120◦22′56.27”
6 N36◦03′09.76” E120◦23′05.38”
7 N36◦03′20.26” E120◦22′58.45”
8 N36◦03′02.14” E120◦23′17.12”
9 N36◦03′06.57” E120◦23′24.70”
10 N36◦03′08.45” E120◦23′10.63”
11 N36◦03′12.20” E120◦23′08.70”
12 N36◦03′11.14” E120◦23′12.10”
13 N36◦03′09.95” E120◦23′00.67”
14 N36◦03′27.69” E120◦23′13.90”
15 N36◦03′17.70” E120◦23′08.02”
16 N36◦03′16.82” E120◦23′13.03”
17 N36◦03′16.26” E120◦23′18.20”
18 N36◦03′31.62” E120◦23′11.66”
19 N36◦03′25.82” E120◦23′08.26”
20 N36◦03′15.32” E120◦23′04.92”
21 N36◦03′44.85” E120◦23′54.46”
22 N36◦03′28.52” E120◦23′47.98”
23 N36◦03′24.43” E120◦23′59.49”
24 N36◦03′27.32” E120◦23′54.61”
25 N36◦03′24.44” E120◦23′59.49”
26 N36◦03′25.98” E120◦24′19.16”
27 N36◦03′24.44” E120◦23′59.49”
28 N36◦03′34.67” E120◦23′54.48”
29 N36◦03′26.06” E120◦24′15.69”
30 N36◦03′36.45” E120◦23′41.22”
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Table A3. Cont.

No. Latitude Longitude

31 N36◦03′28.29” E120◦23′42.87”
32 N36◦03′27.26” E120◦23′55.84”
33 N36◦03′37.42” E120◦23′43.61”
34 N36◦03′24.64” E120◦24′04.51”
35 N36◦03′28.05” E120◦24′07.45”

Table A4. Location coordinates of 45 planned points.

No. Latitude Longitude

1 N36◦03′22.38” E120◦22′57.06”
2 N36◦03′21.94” E120◦23′11.96”
3 N36◦03′09.95” E120◦23′06.15”
4 N36◦03′38.43” E120◦22′55.51”
5 N36◦03′11.26” E120◦22′56.27”
6 N36◦03′09.76” E120◦23′05.38”
7 N36◦03′20.26” E120◦22′58.45”
8 N36◦03′02.14” E120◦23′17.12”
9 N36◦03′06.57” E120◦23′24.70”
10 N36◦03′08.45” E120◦23′10.63”
11 N36◦03′12.20” E120◦23′08.70”
12 N36◦03′11.14” E120◦23′12.10”
13 N36◦03′09.95” E120◦23′00.67”
14 N36◦03′27.69” E120◦23′13.90”
15 N36◦03′17.70” E120◦23′08.02”
16 N36◦03′16.82” E120◦23′13.03”
17 N36◦03′16.26” E120◦23′18.20”
18 N36◦03′31.62” E120◦23′11.66”
19 N36◦03′25.82” E120◦23′08.26”
20 N36◦03′15.32” E120◦23′04.92”
21 N36◦03′44.85” E120◦23′54.45”
22 N36◦03′28.52” E120◦23′47.98”
23 N36◦03′24.43” E120◦23′59.49”
24 N36◦03′27.32” E120◦23′54.61”
25 N36◦03′24.44” E120◦23′59.49”
26 N36◦03′25.98” E120◦24′19.16”
27 N36◦03′24.44” E120◦23′59.49”
28 N36◦03′34.67” E120◦23′54.48”
29 N36◦03′26.06” E120◦24′15.69”
30 N36◦03′36.45” E120◦23′41.22”
31 N36◦03′28.29” E120◦23′42.87”
32 N36◦03′27.26” E120◦23′55.84”
33 N36◦03′37.42” E120◦23′43.61”
34 N36◦03′24.64” E120◦24′04.51”
35 N36◦03′28.05” E120◦24′07.45”
36 N36◦03′22.94” E120◦24′02.24”
37 N36◦03′31.70” E120◦23′55.24”
38 N36◦03′35.57” E120◦23′36.32”
39 N36◦03′41.94” E120◦23′43.24”
40 N36◦03′35.38” E120◦23′53.98”
41 N36◦03′26.34” E120◦24′11.33”
42 N36◦03′25.65” E120◦24′03.80”
43 N36◦03′25.46” E120◦24′19.64”
44 N36◦03′26.40” E120◦23′41.82”
45 N36◦03′57.69” E120◦23′39.77”
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15. Ergezer, H.; Leblebicioğlu, K. 3D path planning for multiple UAVs for maximum information collection.
J. Intell. Robot. Syst. 2013, 73, 737–762. [CrossRef]

16. Kim, H.; Kim, S.H.; Jeon, M.; Kim, J.; Song, S.; Paik, K.J. A study on path optimization method of an
unmanned surface vehicle under environmental loads using genetic algorithm. Ocean Eng. 2017, 142,
616–624. [CrossRef]

17. Wang, J.; Ersoy, O.K.; He, M.; Wang, F. Multi-offspring genetic algorithm and its application to the traveling
salesman problem. Appl. Soft Comput. 2016, 43, 415–423. [CrossRef]

18. Khanra, A.; Pal, T.; Maiti, M.K.; Maiti, M. Multi-objective four dimensional imprecise TSP solved with a
hybrid multi-objective ant colony optimization-genetic algorithm with diversity. J. Intell. Fuzzy Syst. 2019,
36, 47–65. [CrossRef]

19. Sabino, S.; Horta, N.; Grilo, A. Centralized unmanned aerial vehicle mesh network placement scheme:
A multi-objective evolutionary algorithm approach. Sensors 2018, 18, 4387. [CrossRef] [PubMed]

20. Silva, C.A.D.; De Oliveira, Á.V.F.M.; Fernandes, M.A.C. Validation of a dynamic planning navigation strategy
applied to mobile terrestrial robots. Sensors 2018, 18, 4322. [CrossRef]

21. Chen, C.H.; Chen, Y.H.; Lin, J.C.W.; Wu, M.E. An effective approach for obtaining a group trading strategy
portfolio using grouping genetic algorithm. IEEE Access 2019, 7, 7313–7325. [CrossRef]

22. Tuncer, A.; Yildirim, M. Dynamic path planning of mobile robots with improved genetic algorithm.
Comput. Electr. Eng. 2012, 38, 1564–1572. [CrossRef]

23. Albayrak, M.; Allahverdi, N. Development a new mutation operator to solve the traveling salesman problem
by aid of genetic algorithms. Expert Syst. Appl. 2011, 38, 1313–1320. [CrossRef]

http://dx.doi.org/10.1007/s10846-012-9805-3
http://dx.doi.org/10.1016/j.trc.2015.03.005
http://dx.doi.org/10.1287/trsc.2017.0791
http://dx.doi.org/10.1016/j.tcs.2016.04.006
http://dx.doi.org/10.1007/s10462-011-9288-9
http://dx.doi.org/10.1016/j.tre.2016.01.010
http://dx.doi.org/10.3390/s150101245
http://dx.doi.org/10.3390/s17071560
http://dx.doi.org/10.1016/j.pnsc.2008.03.028
http://dx.doi.org/10.1007/s10957-007-9308-8
http://dx.doi.org/10.3390/electronics7100212
http://dx.doi.org/10.1016/j.jocs.2017.08.004
http://dx.doi.org/10.1007/s10846-013-9968-6
http://dx.doi.org/10.1007/s10846-013-9895-6
http://dx.doi.org/10.1016/j.oceaneng.2017.07.040
http://dx.doi.org/10.1016/j.asoc.2016.02.021
http://dx.doi.org/10.3233/JIFS-172127
http://dx.doi.org/10.3390/s18124387
http://www.ncbi.nlm.nih.gov/pubmed/30544992
http://dx.doi.org/10.3390/s18124322
http://dx.doi.org/10.1109/ACCESS.2018.2889737
http://dx.doi.org/10.1016/j.compeleceng.2012.06.016
http://dx.doi.org/10.1016/j.eswa.2010.07.006


Sensors 2019, 19, 2640 23 of 23

24. Chan, F.T.S.; Chung, S.H.; Chan, L.Y. An introduction of dominant genes in genetic algorithm for FMS. Int. J.
Prod. Res. 2008, 46, 4369–4389. [CrossRef]

25. Pavai, G.; Geetha, T.V. A survey on crossover operators. ACM Comput. Surv. 2016, 49, 72. [CrossRef]
26. Spear, M.E. Charting Statistics; McGraw-Hill: New York, NY, USA, 1952.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/00207540600632190
http://dx.doi.org/10.1145/3009966
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Proposed Algorithms 
	Conventional Genetic Algorithm 
	Double-Domain Inversion-Based Genetic Algorithm 
	Multi-Domain Inversion-Based Genetic Algorithm 

	Feasibility Analysis 
	Algorithms Evaluation 
	Comparative Results with Various Numbers of Planned Points 
	Comparative Results with Different Population Sizes 
	Comparative Results of Computing Efficiency 

	Application to an Unmanned Surface Vehicle 
	Unmanned Surface Vehicle Model and Multi-Sensor 
	Application Tests 

	Conclusions 
	
	References

